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Upscaling of dispersion in gas-liquid absorption on an inclined surface
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We extend the Taylor-Aris dispersion theory to upscale the gas absorption into a viscous incompressible
liquid flowing along an inclined surface. A reduced-order model of advection-dispersion-reaction is developed
with the aid of Reynolds decomposition and cross-sectional averaging techniques. The upscaled model allowed
evaluation of the dispersion, advection, and absorption kinetics as a function of the Peclet number (Pe) and
the Damköhler number (Da). The transport and kinetics parameters for the limiting cases of nonabsorption and
absorption dominant are also evaluated. The upscaled model is solved analytically, and the obtained solution is
used to evaluate the upscaled mass transfer between the gas and liquid. The results for the overall Sherwood
number identify three regions: (i) advection dominant, (ii) transition where both advection and absorption play a
role, and (iii) absorption dominant. The scaling relation between the Sherwood number (Sh) and the Da for the
last region was determined to follow Sh ∼ Da1/2. It is also revealed that in the first two regions, the Sherwood
number versus the Peclet number exhibits a bell-shaped (or Gaussian) behavior, suggesting an optimal Pe that
maximizes mass transfer between gas and liquid in these regions. The model and insights presented have the
potential to be applied in a wide range of industrial separation processes involving the interaction of a gas
exposed to a liquid flowing downward on an inclined surface under gravity.
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I. INTRODUCTION

Gas absorption into a liquid phase is of fundamental
significance for the separation process and is extensively im-
plemented in numerous industrial applications such as carbon
capture [1,2]. Generally, gas absorption is often utilized to
separate undesirable components from a gas stream [3,4],
gas dissolution and exsolution [5], or to produce a chem-
ical [6]. Therefore, numerous theoretical and experimental
studies have been conducted to enhance our understanding
of the process, and these studies continue to evolve [7]. In
this process, a gas is often exposed to a laminar, viscous
incompressible liquid flowing downward on an inclined sur-
face under gravity. The gas solute is absorbed and eliminated
by the underlying liquid flow, while the mass transfer of the
solute takes place from the gas phase to the liquid phase across
the interface of these two phases. The contact time between
the gas solute and liquid is long enough to establish a steady
velocity profile [8]. Such dynamics are frequently needed for
gas absorption and other important applications, including
falling film microreactors, heat exchangers, and desalination
processes [9–14].

The gas-liquid mass transfer has been studied in wet-
ted wall columns [15], on inclined surfaces [16], and on
spheres [17], where the liquid and gas phases can be water and
carbon dioxide-containing gas streams, and amine solutions
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and carbon dioxide-containing gas streams, among others.
While the dispersion of a gaseous solute during gas absorp-
tion through the gas-liquid interface [18–20] is key for the
evaluation of the performance of the separation process, less
attention has been paid to this subject until now.

Taylor [21] and Aris [22] established the mathematical
foundation of shear-induced solute dispersion, or the so-called
Taylor-Aris theory. Many significant extensions have been
made to the Taylor-Aris theory to determine the solute dis-
persion for different fluids (Newtonian, non-Newtonian, and
viscoelastic) [23–25], flows (pressure-driven or Poiseuille,
electro-osmotic, and cross-flow) [26–28], geometries (circu-
lar, rectangular, triangular, and elliptical conduits) [29–31],
wall conditions (adsorbing, constant concentration, porous,
permeable, and rough) [32–36], phases (one phase, two phase,
and multiphase) [37,38], and porous media (matrix-fracture
and stratified media) [39,40].

However, the derivation of the dispersion for gas solute
absorption into a liquid phase with advection, diffusion, and
reaction on an inclined surface, despite its significance in
numerous chemical engineering applications, has not been
reported.

In this work, the Taylor-Aris dispersion theory is extended
to study the gas solute transport in a liquid phase on an
inclined surface due to the gas absorption at the interface
between the gas and liquid phases. First, the Stokes equation
describing the fully developed laminar flow subject to a no-
shear stress condition at the liquid-gas interface and a no-slip
condition at the surface is applied to derive the velocity profile
of the liquid. Then, the gas solute transport in the liquid phase
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FIG. 1. Schematic diagram of gas absorption into a liquid phase
with advection, diffusion, and reaction on an inclined surface.

is modeled by implementing the unsteady two-dimensional
advection-diffusion-reaction equation in conjunction with a
constant gas concentration at the gas-liquid interface and
a zero-gas flux at the wall surface. Finally, the extended
reduced-order model of advection-dispersion-reaction solute
transport due to a laminar flow of a viscous incompressible
liquid with gas absorption on an inclined surface is established
using Reynolds decomposition and cross-sectional averaging.
The resulting model provides an evaluation of advection, dis-
persion, and absorption kinetics coefficients, which are then
utilized to analyze the process. In addition, the average gas
solute concentration in the liquid phase and the Sherwood
number (Sh) are derived and studied.

The rest of this work is structured as follows. First, the
physical system and underlying assumptions are presented.
Subsequently, the reduced-order model is established. Then,
the obtained results are discussed, followed by a summary of
the findings and concluding remarks.

II. PHYSICAL SYSTEM AND ASSUMPTIONS

The schematic diagram of the physical system under con-
sideration in this study is shown in Fig. 1. The system involves
gas absorption into a downward-flowing laminar, viscous in-
compressible liquid on an inclined surface, where the effects
of gravity, advection, diffusion, and reaction are considered.
The inclined surface makes an angle θ with the horizontal
plane. The liquid phase inlet serves as the reference point
for the direction along the surface (x̂), while the gas-liquid
interface serves as the reference point for the direction per-
pendicular to the surface (ẑ). The length and the thickness of
the liquid are L̂ and δ, respectively. The liquid flow is fully
developed, and the velocity profile is û. The gas solute equi-
librium solubility in the liquid is c∗, and the solute-free liquid
phase enters the domain at x̂ = 0. The physical properties of
the liquid, such as viscosity, μ, and density, ρ, are taken as
constant. Gravitational acceleration is g and it acts in a vertical
downward direction.

III. MATHEMATICAL MODELING

The Stokes equation, as a second-order linear ordinary
differential equation, is applied to describe the fully developed

laminar flow of a liquid phase on an inclined surface:

μ
d2û

dẑ2
+ ρg sin θ = 0. (1)

Equation (1) can be solved subject to a no-shear stress
condition at the liquid-gas interface (ẑ = 0) and a no-slip
condition at the surface (ẑ = δ):

dû(ẑ = 0)

dẑ
= 0 (2)

û(ẑ = δ) = 0, (3)

which results in the following analytical solution for the ve-
locity profile of the liquid:

û(ẑ) = ρgδ2 sin θ

2μ

[
1 −

(
ẑ

δ

)2
]
. (4)

The cross-sectional average velocity of the liquid, ¯̂u, is
defined as follows:

¯̂u =
∫ δ

0 û(ẑ)dẑ∫ δ

0 dẑ
= ρgδ2 sin θ

3μ
. (5)

If û is scaled by ¯̂u, the nondimensional velocity profile of
the liquid, u, will be obtained as

u(z) = û(ẑ)
¯̂u

= 3

2
(1 − z2), (6)

where z = ẑ/δ is the nondimensional direction perpendicular
to the surface [41].

The mass balance leads to the following unsteady two-
dimensional advection-diffusion-reaction equation for the
nondimensional concentration of gas solute in the liquid
phase, c(x, z, t ):

∂c

∂t
+ Pe u(z)

∂c

∂x
+ Da c = ∂2c

∂x2
+ ∂2c

∂z2
, (7)

where c = ĉ/c∗, t = Dt̂/δ2, x = x̂/δ, the Peclet number (Pe)
= ¯̂uδ/D, and the Damköhler number (Da) = κδ2/D, in which
ĉ is the dissolved gas concentration in the liquid phase, t̂ is the
time, t is the nondimensional time, D is the gas diffusivity in
the liquid phase, x is the nondimensional direction along the
surface, Pe is defined as the advection-to-diffusion transport,
κ is the first-order reaction rate constant, and Da is defined as
the reaction-to-diffusion transport.

Equation (7) can be solved using the following initial and
boundary conditions:

The initial gas concentration in the liquid phase is zero:

c(x, z, t = 0) = 0. (8)

At the inlet, the liquid phase begins as a pure liquid, imply-
ing that the gas concentration is zero:

c(x = 0, z, t ) = 0. (9)

The solute gas concentration gradient (or flux) is zero at the
outlet of the liquid phase when the liquid thickness is much
smaller than the liquid length, δ � L̂,

∂c(x = L, z, t )

∂x
= 0, (10)

where L = L̂/δ is the nondimensional length of the liquid.
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At the gas-liquid interface, the gas concentration is con-
stant and equal to the equilibrium solubility of the gas in the
liquid phase:

c(x, z = 0, t ) = 1. (11)

The solute gas concentration gradient (or flux) is zero at
the inclined wall surface:

∂c(x, z = 1, t )

∂z
= 0. (12)

Using Reynolds decomposition as an approach to separate
the cross-sectional average and fluctuation components of a
variable [41] results in the following expressions for c and u,
respectively:

c(x, z, t ) = c̄(x, t ) + c′(x, z, t ) (13)

and

u(z) = ū + u′(z) = 1 + u′(z), (14)

where c̄ and ū are the nondimensional cross-sectional average
gas concentration and velocity components, and c′ and u′ are
the nondimensional gas concentration and velocity fluctuation
components, which satisfy the following equations:

c̄(x, t ) =
∫ 1

0
c(x, z, t )dz, (15)

ū =
∫ 1

0
u(z)dz = 1, (16)∫ 1

0
c′(x, z, t )dz = 0, (17)

and ∫ 1

0
u′(z)dz = 0. (18)

Equations (17) and (18) indicate that the cross-sectional
averages of c′ and u′ are zero.

Replacing for c in Eqs. (7)–(12) from Eq. (13) leads to
∂ c̄

∂t
+ ∂c′

∂t
+ Pe u(z)

∂ c̄

∂x
+ Pe u(z)

∂c′

∂x
+ Da c̄ + Da c′

= ∂2c̄

∂x2
+ ∂2c′

∂x2
+ ∂2c′

∂z2
, (19)

c̄(x, t = 0) + c′(x, z, t = 0) = 0, (20)

c̄(x = 0, t ) + c′(x = 0, z, t ) = 0, (21)

∂ c̄(x = L, t )

∂x
+ ∂c′(x = L, z, t )

∂x
= 0, (22)

c̄(x, t ) + c′(x, z = 0, t ) = 1, (23)

and

∂c′(x, z = 1, t )

∂z
= 0. (24)

The cross-sectional average of Eq. (19) using Eq. (15),
along with the aid of Eqs. (17) and (24) gives

∂ c̄

∂t
+ Pe

∂ c̄

∂x
+ Pe u(z)

∂c′

∂x
+ Da c̄ = ∂2c̄

∂x2
− ∂c′(x, z = 0, t )

∂z
.

(25)

Subtracting Eq. (25) from Eq. (19) results in

∂c′

∂t
+ Pe [u(z) − 1]

∂ c̄

∂x
+ Pe u(z)

∂c′

∂x
− Pe u(z)

∂c′

∂x
+ Da c′

= ∂2c′

∂x2
+ ∂2c′

∂z2
+ ∂c′(x, z = 0, t )

∂z
. (26)

Equation (26), which is exact, can be reduced to Eq. (27)
if the three assumptions adopted by Taylor [21] and Fis-
cher et al. [42], including ∂c′/∂t ≈ 0 for a timescale on
the order of magnitude of the diffusion time across the liq-
uid phase (δ2/D), Pe u(z)∂c′/∂x ≈ Pe u(z)∂c′/∂x for slowly
varying fluctuation components, and Pe [u(z) − 1]∂ c̄/∂x �
∂2c′/∂x2 for a controlled gas solute transport by the longitu-
dinal advection and transversal diffusion, along with Eq. (6),
are taken into consideration here:

Pe

(
1

2
− 3

2
z2

)
∂ c̄

∂x
− ∂c′(x, z = 0, t )

∂z
= ∂2c′

∂z2
− Da c′. (27)

Equation (27) is an inhomogeneous, second-order linear
ordinary differential equation, which can lead to the following
expression for c′ when subjected to Eqs. (12) and (17) to find
the two integration constants:

c′ = Pe

(
− 3 cosh(

√
Daz)

Da3/2 sinh(
√

Da)
+ (3z2 − 1)Da + 6

2Da2

)
∂ c̄

∂x

+
(

sinh(
√

Daz)√
Da

− cosh(
√

Daz)√
Da tanh(

√
Da)

+ 1

Da

)

× ∂c′(x, z = 0, t )

∂z
. (28)

Using Eq. (28), the expression for ∂c′/∂x, which is needed
to determine u(z)∂c′/∂x in Eq. (25) and to close the formula-
tion, can be obtained as follows:

∂c′

∂x
= Pe

(
− 3 cosh(

√
Daz)

Da3/2 sinh(
√

Da)
+ (3z2 − 1)Da + 6

2Da2

)
∂2c̄

∂x2

+
(

sinh(
√

Daz)√
Da

− cosh(
√

Daz)√
Da tanh(

√
Da)

+ 1

Da

)

× ∂2c′(x, z = 0, t )

∂z∂x
. (29)

Therefore, the cross-sectional average of the product of
Eqs. (6) and (29) gives

u(z)
∂c′

∂x
=

∫ 1

0
u(z)

∂c′

∂x
dz = �Pe

∂2c̄

∂x2
+ �

∂2c′(x, z = 0, t )

∂z∂x
,

(30)

where the constants � and � are defined as

� = − 9

Da5/2 tanh(
√

Da)
+ 9

Da3
+ 3

Da2
− 1

5Da
(31)

and

� = 3

Da2
− 1

2Da
− 3

Da3/2 sinh(
√

Da)
. (32)
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Replacing for u(z)∂c′/∂x in Eq. (25) from Eq. (30) results
in

∂ c̄

∂t
+ Pe

∂ c̄

∂x
+ Da c̄ = (1 − �Pe2)

∂2c̄

∂x2
− ∂c′(x, z = 0, t )

∂z

− �Pe
∂2c′(x, z = 0, t )

∂z∂x
. (33)

The interface between the gas and liquid causes the last two
derivatives on the right-hand side of Eq. (33) to be nonzero;
therefore, the appropriate expressions need to be obtained to
close the problem. First, Eq. (28) is evaluated at z = 0 and
combined with Eq. (23) to replace the first derivative with the
expression

∂c′(x, z = 0, t )

∂z
= 1

	
(1 − c̄) − �

	
Pe

∂ c̄

∂x
, (34)

where the constant Ф is defined as

	 = − 1√
Da tanh(

√
Da)

+ 1

Da
. (35)

Second, Eq. (34) needs to be differentiated with respect to x
to replace the second derivative with the following expression:

∂2c′(x, z = 0, t )

∂z∂x
= − 1

	

∂ c̄

∂x
− �

	
Pe

∂2c̄

∂x2
. (36)

Substituting Eqs. (34) and (36) into Eq. (33) leads to the ex-
tended reduced-order model of advection-dispersion-reaction
solute transport due to a laminar flow of a viscous incompress-
ible liquid with a gas absorption on an inclined surface,

∂ c̄

∂t
= K

∂2c̄

∂x2
− V

∂ c̄

∂x
− λc̄ + ω, (37)

where the constants K , V , λ, and ω are defined as

K = 1 +
(

−� + �2

	

)
Pe2, (38)

V =
(

1 − 2�

	

)
Pe, (39)

λ =
(

1 − 1

	Da

)
Da, (40)

and

ω = − 1

	
. (41)

It is worth noting that the last two terms, λ and ω, are the
equivalent reaction constant and source term. The term λ ac-
counts for the reaction rate of the gaseous solute in the liquid
phase, while the source term, ω, accounts for the gas-liquid
interface.

For a special case, in the absence of gas absorption and
a closed boundary at z = 0, the gas solute concentration
gradient (or flux) will be zero, and these two derivatives
on the right-hand side of Eq. (33) vanish. As a result, the
nondimensional dispersion coefficient of K = 1 − �Pe2 for
the advection-dispersion-reaction solute transport is obtained.
As the Damköhler number approaches zero (Da → 0), K be-
comes equal to 1 + (2Pe2/105) [43]. The detailed derivation
of the dispersion for gas absorption into a liquid phase without
reaction on an inclined surface is presented in the Appendix.

Equations (38) and (39) stand for dispersion and advection
coefficients, respectively.

Equation (37), subject to the following initial and boundary
conditions, can be solved to obtain the early-time solution of
the cross-sectional average concentration:

c̄(x, t = 0) = 0, (42)

c̄(x = 0, t ) = 0, (43)

and
∂ c̄(x → ∞, t )

∂x
= 0. (44)

Equations (42)–(44) are found by the cross-sectional aver-
age of Eqs. (20)–(22), where x = L is replaced by x → ∞,
using Eq. (15) along with the aid of Eq. (17).

Taking the Laplace transform with respect to t from
Eqs. (37), (43), and (44) using Eq. (42) gives

K
d2 ˜̄c

dx2
− V

d ˜̄c

dx
− (λ + s) ˜̄c = −ω

s
, (45)

˜̄c(x = 0, s) = 0, (46)

and

∂ ˜̄c(x → ∞, s)

∂x
= 0, (47)

where the nondimensional cross-sectional average gas con-
centration in the Laplace domain, ˜̄c, is defined as

˜̄c(x, s) = �t {c̄(x, t )} =
∫ ∞

0
e−st c̄(x, t )dt , (48)

in which �t is the Laplace transform operator with respect to
t , and s is the Laplace variable.

Equation (45) is an inhomogeneous, seconder-order linear
ordinary differential equation, which can lead to the following
expression for ˜̄c if it is subjected to Eqs. (46) and (47) to find
the two integration constants:

˜̄c(x, s) = ω

s(λ + s)

(
1 − e

[ V
2K −

√
( V

2K )
2+ 1

K (s+λ)]x )
. (49)

This solution, Eq. (49), can be inverted to a time domain
solution using the shift theorem [44] as given by

c̄(x, t ) = ω

λ
(1 − e−λt ) − 1

2

∫ t

0
ωe−λ(t−τ )e( V

2K )x

×
{

e−
√

α
K xerfc

(
x

2
√

Kτ
− √

ατ

)

+ e
√

α
K xerfc

(
x

2
√

Kτ
+ √

ατ

)}
dτ, (50)

where τ is the integral variable and the constant α is defined
as

α =
(

V

2
√

K

)2

+ λ. (51)

Equation (37), subject to Eqs. (42) and (43) and the follow-
ing boundary condition, can be solved to find c̄ for a domain
of finite length L:

∂ c̄(x = L, t )

∂x
= 0. (52)
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Equation (52) is found by the cross-sectional average of
Eq. (22) using Eq. (15), along with the aid of Eq. (17).

Using the separation of variables, Eq. (37), subject to
Eqs. (42), (43), and (52), gives the analytical solution

c̄(x, t ) =ω

λ

(
1 − r2er2Ler1x − r1er1Ler2x

r2er2L − r1er1L

)

+
∞∑

n=1

cne−( V
2K )x sin(

√
μnx)e−(α+μnK )t , (53)

where r1 and r2 are the real distinct roots of the character-
istic polynomial equation Kr2 − V r − λ = 0, which can be
obtained as

r1, r2 = V

2K
±

√
α

K
, (54)

μn are the roots of the transcendental equation(
V

2K

)
tan

√
μn + √

μn = 0, n = 1, 2, 3, . . . ,∞, (55)

and cn is expressed by

cn = 4ω
√

μn

λ [2L
√

μn − sin(2
√

μnL)]

×
∫ L

0

(
r2er2Ler1x − r1er1Ler2x

r2er2L − r1er1L
− 1

)
e−(

V
2K )x

× sin(
√

μnx)dx. (56)

The steady-state form of Eq. (37) turns to

K
d2c̄

dx2
− V

dc̄

dx
− λc̄ = −ω. (57)

Equation (57) is an inhomogeneous, second-order linear
ordinary differential equation, which can lead to the following
expression for c̄ when subjected to Eqs. (43) and (52) to find
the two integration constants:

c̄(x) = ω

λ

(
1 − r2er2Ler1x − r1er1Ler2x

r2er2L − r1er1L

)
. (58)

The local Sherwood number, Shx, is defined as the ratio
of the gas solute mass flux to the pure diffusive flux at the
interface, as given by

Shx = − 1

1 − c̄

∂c(x, z = 0, t )

∂z
= − 1

1 − c̄

∂c′(x, z = 0, t )

∂z
.

(59)
The combination of Eqs. (34), (58), and (59) results in

Shx = − 1

	
+ �

	

Pe(
1 − ω

λ

(
1 − r2er2Ler1x−r1er1Ler2x

r2er2L−r1er1L

)) ω

λ
r1r2

×
(

er1Ler2x − er2Ler1x

r2er2L − r1er1L

)
. (60)

The overall Sherwood number can be obtained by averag-
ing Shx, Eq. (60), along the interface:

Sh = 1

L

∫ L

0
Shxdx. (61)

The integral in Eq. (61) has been evaluated numerically.

FIG. 2. The transient cross-sectional average concentration c̄
along the surface x for several times at Da = 10 and Pe = 10.

IV. RESULTS AND DISCUSSION

Figure 2 depicts the transient behavior of the cross-
sectional average concentration for Da = 10 and Pe = 10 at
various time intervals using Eq. (50). The findings indicate
that the concentration profile attains a steady-state solution
at t ∼ 0.3. Furthermore, the results suggest that the concen-
tration reaches a plateau beyond L ∼ 2, implying that the
longitudinal concentration gradients can be ignored. There-
fore, the system can be considered lumped, and the plateaued
transient concentrations can be obtained using the solution to
the following first-order linear ordinary differential equation:

dc̄

dt
= −λc̄ + ω. (62)

Equation (62) subject to c̄(0) = 0 gives

c̄(t ) = ω

λ
(1 − e−λt ). (63)

The results indicate that steady-state plateaued concentra-
tions can be expressed as c̄ss = ω/λ.

Figure 3 shows the steady-state cross-sectional average
concentration profiles for various Peclet and Damköhler num-
bers using Eq. (58). As shown, a higher Damköhler number
leads to the rapid absorption of the gas solute at the gas-
liquid interface and a significant decrease in its concentration
throughout the domain. The concentration profiles also reveal
that at high Peclet numbers, the system is flooded with fresh
liquid devoid of the solute, leading to a substantial decrease in
solute concentration along the domain. While the effect of the
Peclet number is not evident at high Damköhler numbers, its
effect becomes more prominent at low Damköhler numbers.

Figure 4(a) and 4(b) shows K (dispersion coefficient) and
V (advection coefficient) as a function of Da, respectively, for
different Peclet numbers, 0.01 � Pe � 104, obtained using
Eqs. (38) and (39). The reaction term λ and source term
ω versus Da are also shown in Fig. 4(c) and 4(d), respec-
tively, obtained using Eqs. (40) and (41). It is revealed from
Fig. 4(a) that for Pe � 1, the dispersion remains around unity
(K ≈ 1) as the Damköhler number is increased. This implies
that the transport by dispersion is negligible. For Pe > 1, as
expected, the dispersion increases by increasing the Peclet
number. However, when Da � 1, the transport is primarily
governed by diffusion and advection, with its dependence on
Da being nearly negligible. The limiting value of the dis-
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FIG. 3. The steady-state cross-sectional average concentration c̄ with respect to the distance along the surface x for several Damköhler
numbers, where Da = (a) 0.01, (b) 0.1, (c), 1, (d) 10, (e) 100, and (f) 1000 at different Peclet numbers, 0.01 � Pe � 10 000.

persion for each Peclet number in the absence of absorption
can be obtained using Eq. (38) when Da → 0, as given by
K = 1 + (99Pe2/11 200), which is also confirmed from the
solution obtained for this special case given by Eq. (A13). For
Da > 1, the absorption process becomes significant, leading
to a reduction in dispersion as the solute gas is absorbed into
the liquid phase. Finally, as Da approaches infinity (Da →
∞), the dispersion tends to unity, indicating insignificant
transport by dispersion, which can be deduced from Eq. (38).
When the Damköhler number approaches infinity, the solute
is consumed nearly instantaneously at the gas-liquid interface.
Consequently, this results in the complete absorption of the
solute by the liquid, leading to its absence within the liquid
phase. This can also be inferred from Eqs. (31) and (32),
where both � and � tend to approach zero as the Damköhler
number approaches infinity.

The results depicted in Fig. 4(b) indicate that, as antic-
ipated, advection intensifies with an increase in the Peclet
number. The results also inferred that, initially, advection
remains constant. Subsequently, it gradually increases and
eventually stabilizes for each Peclet number value as the
Damköhler number increases. For the case of a very small Da,
the limiting value of the advection can be found by applying
Eq. (39) when Da → 0, as V = 13Pe/20. The results suggest
that the upscaled advection is approximately 13/20 of the
actual advection when Da → 0. In the scenario of a large
Damköhler number (Da → ∞) �, as indicated by Eq. (32),
tends to approach zero. This reduces Eq. (39) to V = Pe. For
this limiting case, the nonabsorbing liquid recovers the same
result, as shown by Eq. (A14). In summary, the advection
increases from 13Pe/20 to Pe when the Damköhler number
varies from zero to infinity.
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FIG. 4. (a) K (dispersion coefficient) and (b) V (advection coefficient) as a function of the Da for different Pe, 0.01 � Pe � 10 000, and
(c) λ and (d) ω versus Da.

Figure 4(c) and 4(d) shows the upscaled absorption coef-
ficient λ and the source term ω, respectively. The upscaled
absorption coefficient represents the reduced-order gas ab-
sorption in the liquid, and the source term originates from
the gas-liquid interface boundary condition. Both the upscaled
absorption coefficient and the source term are independent
of the Peclet number and only function of the Damköhler
number. The results indicate that the values of λ and ω remain
unaffected by the Damköhler number when Da � 0.1. How-
ever, beyond this threshold, both λ and ω increase with the
increment of Da. For low Damköhler numbers (Da � 0.1),
λ = ω = 3, which can be inferred from Eqs. (40) and (41)
when Da → 0. For the special case of a nonabsorbing liquid,
Eqs. (A15) and (A16) recover the same solutions. The up-
scaled absorption coefficient represents first-order absorption
kinetics while the source term represents a zero-order kinetic,
and the value of λ exceeds the value of ω for Da > 0.1.

Figure 5(a) and 5(b) illustrates the relationship between the
overall Sh and the Da obtained using Eq. (61), for the respec-
tive ranges of 0.01 � Da � 1000 and 0.01 � Da � 10. The
figures are plotted for various Pe ranging from 0.01 to 10 000.
Three different regions can be identified in Fig. 5(a). In the
first region (Da � 1), for each Peclet number, the Sherwood
number exhibits minimal variations with Da, indicating that
Sh primarily depends on the Peclet number rather than the
Damköhler number. In this region, the Sherwood number
demonstrates a nonmonotonic behavior with respect to the
Peclet number. Therefore, the first region is controlled by
advection.

In the second region (1 < Da < 10), Sh varies with both
Da and Pe. Although the Sherwood number demonstrates
a nonmonotonic behavior in relation to Pe, it increases as
the Damköhler number increases. Consequently, the second
region is influenced by both advection and absorption, making
it Peclet and Damköhler dependent. The inset plot in Fig. 5(b)
also illustrates Sh as a function of Pe for Da = 0, 0.01, 0.1,
and 1. In the first two regions, for all Damköhler numbers,
the relationship between the Sherwood number and the Peclet
number exhibits a bell-shaped (or Gaussian) behavior. This
indicates that there exists a specific Peclet number for the first
two regions at which the mass transfer can be maximized by
controlling the advective transport, Pe.

In the third region (Da � 10), the Sherwood number solely
depends on the Damköhler number, and it tends to increase
as the Damköhler number increases. Thus, in the third re-
gion, the behavior is primarily governed by absorption and
is independent of advection effects. The scaling relation be-
tween Sherwood and Damköhler numbers can be found as
Sh ∼ Da1/2, suggesting that, in the third region, mass transfer
is directly proportional to the thickness of the liquid and
the square root of absorption kinetics while being inversely
proportional to the molecular diffusion of gas into the liquid.

V. CONCLUSION

The upscaling of dispersion in gas-liquid absorption on an
inclined surface is studied. The Taylor-Aris dispersion the-
ory, along with Reynolds decomposition and cross-sectional
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FIG. 5. The overall Sh versus the Da for (a) 0.01 � Da � 1000 and (b) 0.01 � Da � 10. Inset: Sh as a function of Pe for Da = 0, 0.01,
0.1, and 1.

averaging, is extended to develop the reduced-order model
of advection-dispersion-reaction solute transport. The model
specifically considers the laminar flow of a viscous incom-
pressible liquid on an inclined surface with gas absorption
occurring at the gas-liquid interface. The reduced-order model
obtained allows evaluation of the upscaled dispersion, ad-
vection, absorption, and interface boundary condition as
functions of the system’s dimensionless groups—namely, the
Peclet and Damköhler numbers.

The evaluation of the resultant upscaled dispersion co-
efficients reveals that for a specified Peclet number, gas
absorption leads to a reduction in the dispersion coefficient.
In the absence of absorption, the dispersion coefficient as a
function of the Peclet number can be expressed as K = 1 +
(99Pe2/11 200). However, in an absorption-dominant system,
the dispersion coefficient approaches unity, indicating that
transport is primarily driven by pure diffusion. As expected,
the dispersion is found to be an increasing function of the
Peclet number. In the absence of absorption, the upscaled
advection coefficient as a function of the Peclet number can
be expressed as 13Pe/20. This finding implies that the up-
scaled advection coefficient is a fraction of the coefficient
observed in the detailed two-dimensional model. On the other
hand, in an absorption-dominant system, the advection co-
efficient approaches the Peclet number, indicating that the
advection coefficient retains its original value of the detailed
two-dimensional model. The upscaled reaction kinetics were
found to be an increasing function of the Damköhler number.
In the limit of no absorption, the upscaled kinetics approach
a constant value of λ = 3. The gas-liquid interface bound-
ary condition appeared as zero-order kinetics in the upscaled
model, which is shown to be an increasing function of the
Damköhler number. The zero-order kinetics approach a con-
stant value of ω = 3 for a nonabsorbing system. The results
suggest that the zero-order kinetics constant is lower than the
first-order kinetics constant for all Da values greater than 0.1.

The upscaled model was solved analytically, and the mass
transfer between gas and liquid was evaluated. The results for
the overall Sherwood number identify three different regions:
(i) advection dominant, (ii) transition, and (iii) absorption
dominant. The scaling relationship between the Sherwood
number and the Damköhler number for the third region was
found to follow Sh ∼ Da1/2. It is also revealed that the Sher-

wood number versus the Peclet number for the first two
regions exhibits a bell-shaped (or Gaussian) behavior, sug-
gesting that there is an optimal Peclet number where the mass
transfer can be maximized by manipulating the advective
transport.

The model and the insight presented in this work find po-
tential applications in various industrial separation processes.
One notable example is the absorption of carbon dioxide from
gaseous streams. The ability to predict and optimize the mass
transfer accurately in such processes is crucial for enhancing
their efficiency.
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APPENDIX: DISPERSION FOR GAS ABSORPTION
INTO A LIQUID PHASE WITHOUT REACTION

ON AN INCLINED SURFACE

The mass balance leads to the following unsteady two-
dimensional advective-diffusive equation for the nondimen-
sional concentration of gas solute in the liquid phase,
c(x, z, t ):

∂c

∂t
+ Pe u(z)

∂c

∂x
= ∂2c

∂x2
+ ∂2c

∂z2
. (A1)

Replacing for c in Eq. (A1) from Eq. (13) leads to

∂ c̄

∂t
+ ∂c′

∂t
+ Pe u(z)

∂ c̄

∂x
+ Pe u(z)

∂c′

∂x
= ∂2c̄

∂x2
+ ∂2c′

∂x2
+ ∂2c′

∂z2
.

(A2)

The cross-sectional average of Eq. (A2) using Eq. (15)
along with the aid of Eqs. (17) and (24) gives

∂ c̄

∂t
+ Pe

∂ c̄

∂x
+ Pe u(z)

∂c′

∂x
= ∂2c̄

∂x2
− ∂c′(x, z = 0, t )

∂z
. (A3)
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Subtracting Eq. (A3) from Eq. (A2) results in

∂c′

∂t
+ Pe [u(z) − 1]

∂ c̄

∂x
+ Pe u(z)

∂c′

∂x
− Pe u(z)

∂c′

∂x

= ∂2c′

∂x2
+ ∂2c′

∂z2
+ ∂c′(x, z = 0, t )

∂z
. (A4)

Equation (A4), which is exact, can be reduced to Equation
(A5) if the three assumptions adopted by Taylor [21] and Fis-
cher et al. [42], along with Eq. (6) are taken into consideration
here:

Pe

(
1

2
− 3

2
z2

)
∂ c̄

∂x
− ∂c′(x, z = 0, t )

∂z
= ∂2c′

∂z2
. (A5)

Equation (A5) is an inhomogeneous, second-order linear
ordinary differential equation, which can lead to the following
expression for c′ if it is subjected to Eqs. (12) and (17) to find
the two integration constants:

c′ = Pe

(
− 7

120
− 1

8
z4 + 1

4
z2

)
∂ c̄

∂x

+
(

z − 1

3
− 1

2
z2

)
∂c′(x, z = 0, t )

∂z
. (A6)

Using Eq. (A6), the expression for ∂c′/∂x, which is needed
to determine u(z)∂c′/∂x in Eq. (A3) and to close the model-
ing, can be obtained as follows:

∂c′

∂x
= Pe

(
− 7

120
− 1

8
z4 + 1

4
z2

)
∂2c̄

∂x2

+
(

z − 1

3
− 1

2
z2

)
∂2c′(x, z = 0, t )

∂z∂x
. (A7)

Therefore, the cross-sectional average of the product of
Eqs. (6) and (A7) gives

u(z)
∂c′

∂x
=

∫ 1

0
u(z)

∂c′

∂x
dz

= − 2

105
Pe

∂2c̄

∂x2
− 7

120

∂2c′(x, z = 0, t )

∂z∂x
. (A8)

Replacing for u(z)∂c′/∂x in Eq. (A3) from Eq. (A8) results
in

∂ c̄

∂t
+ Pe

∂ c̄

∂x
=

(
1 + 2

105
Pe2

)
∂2c̄

∂x2
− ∂c′(x, z = 0, t )

∂z

+ 7

120
Pe

∂2c′(x, z = 0, t )

∂z∂x
. (A9)

The interface between the gas and liquid causes the last two
derivatives on the right-hand side of Eq. (A9) to be nonzero;
therefore, the appropriate expressions need to be obtained to
replace them. If there is no gas absorption and the liquid
is bounded at z = 0, the gas concentration gradient (or gas
flux) will be zero, and these two derivatives will vanish. As
a result, the advection-dispersion solute transport due to a
laminar flow of a viscous incompressible liquid without gas
absorption, including the nondimensional dispersion coeffi-
cient of K = 1 + (2Pe2/105), will be achieved. To replace
the first derivative with the appropriate expression, Eq. (A6)

is determined at z = 0 and combined with Eq. (23):

∂c′(x, z = 0, t )

∂z
= −3(1 − c̄) − 7

40
Pe

∂ c̄

∂x
. (A10)

To replace the second derivative by the appropriate expres-
sion, Eq. (A10) needs to be differentiated with respect to x:

∂2c′(x, z = 0, t )

∂z∂x
= 3

∂ c̄

∂x
− 7

40
Pe

∂2c̄

∂x2
. (A11)

Substituting Eqs. (A10) and (A11) into Eq. (A9) leads
to the extended reduced-order model of advection-dispersion
solute transport due to a laminar flow of a viscous incompress-
ible liquid with gas absorption on an inclined surface,

∂ c̄

∂t
= K

∂2c̄

∂x2
− V

∂ c̄

∂x
− λc̄ + ω, (A12)

where the constants K , V , λ, and ω are defined as

K = 1 + 99

11 200
Pe2, (A13)

V = 13

20
Pe , (A14)

λ = 3, (A15)

and

ω = 3. (A16)

Equation (A12) subject to Eqs. (42)–(44) can be solved to
obtain the early-time solution of the cross-sectional average
concentration. Taking the Laplace transform with respect to t
from Eq. (A12) using Eq. (42) gives

K
d2 ˜̄c

dx2
− V

d ˜̄c

dx
− (λ + s) ˜̄c = −ω

s
. (A17)

Equation (A17) is an inhomogeneous second-order linear
ordinary differential equation, which can lead to the following
expression for ˜̄c if it is subjected to Eqs. (46) and (47) to find
the two integration constants:

˜̄c(x, s) = ω

s(λ + s)

(
1 − e

[ V
2K −

√
( V

2K )
2+ 1

K (s+λ)]x )
. (A18)

This solution, Eq. (A18), can be inverted to a time domain
solution using the shift theorem [44] as given by

c̄(x, t ) = 1 − e−λt −
∫ t

0
ωe−λ(t−τ ) 1

2
e( V

2K )x

×
{

e−
√

α
K xerfc

(
x

2
√

Kτ
− √

ατ

)

+ e
√

α
K xerfc

(
x

2
√

Kτ
+ √

ατ

)}
dτ, (A19)

where τ is the integral variable, and the constant α is defined
as

α =
(

V

2
√

K

)2

+ λ. (A20)

The analytical solution to Eq. (A12), subject to
Eqs. (42), (43), and (52), can be obtained using the separation
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of variables as given by

c̄(x, t ) = 1 − r2er2Ler1x − r1er1Ler2x

r2er2L − r1er1L

+
∞∑

n=1

cne−( V
2K )x sin(

√
μnx)e−(α+μnK )t , (A21)

where r1 and r2 are the real distinct roots of the character-
istic polynomial equation Kr2 − V r − λ = 0, which can be
obtained with

r1, r2 = V

2K
±

√
α

K
, (A22)

and μn are the roots of the transcendental equation(
V

2K

)
tan

√
μn + √

μn = 0, n = 1, 2, 3, . . . ,∞, (A23)

and cn is expressed by

cn = 4
√

μn

[2L
√

μn − sin(2
√

μnL)]

×
∫ L

0

(
r2er2Ler1x − r1er1Ler2x

r2er2L − r1er1L
− 1

)

× e−(
V
2K )x sin(

√
μnx)dx. (A24)

The steady-state form of Eq. (A12) turns to

K
d2c̄

dx2
− V

dc̄

dx
− λc̄ = −ω. (A25)

Equation (A25) is an inhomogeneous second-order linear
ordinary differential equation, which can lead to the following
expression for c̄ if it is subjected to Eqs. (43) and (52) to find
the two integration constants:

c̄(x) = 1 − r2er2Ler1x − r1er1Ler2x

r2er2L − r1er1L
. (A26)

The local Sherwood number, Shx, is defined as the ratio
of the gas solute mass flux to the pure diffusive flux at the
interface:

Shx = − 1

1 − c̄

∂c(x, z = 0, t )

∂z
= − 1

1 − c̄

∂c′(x, z = 0, t )

∂z
.

(A27)
A combination of Eqs. (A10), (A26), and (A27) results in

Shx = 3 + 7

40
r1r2Pe

(
er1Ler2x − er2Ler1x

r2er2Ler1x − r1er1Ler2x

)
. (A28)

The overall Sherwood number can be obtained by averag-
ing Shx, Eq. (A28), along the interface:

Sh = 1

L

∫ L

0
Shxdx. (A29)

The integral in Eq. (A29) has been evaluated numerically.
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