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Simple model for self-propulsion of microdroplets in surfactant solution
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We propose a simple active hydrodynamic model for the self-propulsion of a liquid droplet suspended in
micellar solutions. The self-propulsion of the droplet occurs by spontaneous breaking of isotropic symmetry
and is studied using both analytical and numerical methods. The emergence of self-propulsion arises from the
slow dissolution of the inner fluid into the outer micellar solution as filled micelles. We propose that the surface
generation of filled micelles is the dominant reason for the self-propulsion of the droplet. The flow instability is
due to the Marangoni stress generated by the nonuniform distribution of the surfactant molecules on the droplet
interface. In our model, the driving parameter of the instability is the excess surfactant concentration above
the critical micellar concentration, which directly correlates with the experimental observations. We consider
various low-order modes of flow instability and show that the first mode becomes unstable through a supercritical
bifurcation and is the only mode contributing to the swimming of the droplet. The flow fields around the droplet
for these modes and their combined effects are also discussed.
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I. INTRODUCTION

A common example of an artificial microswimmer is a
liquid droplet dispersed in another immiscible fluid and pro-
pelled by self-generated Marangoni flow. This requires the
creation of nonuniformity of surface tension, which is main-
tained by a nonuniform distribution of surface active species
on the interface. One way of creating such surface tension
gradients is chemical reactions [1–11]. Another way of gen-
erating surface tension gradients is micellar solubilization in
which a drop of one fluid slowly dissolves in a micellar so-
lution of another fluid by forming filled micelles. Surfactant
molecules can exist in three forms in the outer fluid viz. as
monomers, as empty micelles, and as filled micelles that have
acquired some molecules of the dissolving inner fluid. There
can be several different mechanisms for the solubilization of
an oil or water droplet into a micellar solution. It is possible
that empty micelles directly collide with the droplet interface
and collect solute molecules and diffuse into the bulk. The
empty micelles may acquire individual solute molecules from
a diffused layer around the droplet near its interface. There
may be direct emission of solute-filled micelles from the
droplet interface. Earliest reports of spontaneously generated
convective flow fields by such solubilizing droplets can be
found in [12–15]. In recent years, several studies focused on
droplet motion due to micellar solubilization [16–27]. Some
of these systems involved water droplets in solutions of a
nonionic surfactant in an organic oil [16,23], while some
others involved oil droplets suspended in aqueous solutions of
ionic surfactants [17–22,24–26]. In all of these systems, it was
found that the drops simultaneously exhibit self-propulsion
and dissolution above a sharp threshold total concentration of
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the surfactant in the outer fluid, which is much greater than
the critical micellar concentration (CMC). It was also found
that the inner fluid can be in the isotropic [21,22,28], nematic
[17–20,24], or cholesteric phases [26] while self-propulsion
of smectic droplets has not been reported. It was also shown
using fluorescence microscopy that the droplets leave behind
a trail of filled micelles [18,25].

There are several models aiming to explain the self-
propulsion of such droplets by proposing mechanisms for
sustaining the nonuniform distribution of surfactants. Since
there is no inherent asymmetry in such systems, one relies
on the spontaneous symmetry breaking of isotropic surfactant
distribution. Herminghaus et al. [17] proposed that the inter-
face region of the droplet acts as a sink (source) for empty
(filled) micelles. This leads to a radial gradient of the density
of empty micelles in the steady state. This gradient plays the
role of a driving parameter in their model for self-propulsion.
The authors showed that, in systems where the empty mi-
celles collect solute molecules from the bulk, increasing the
empty micelle gradient can result in increased surfactant con-
centration at the interface. This effect combined with small
perturbations of droplet flow fields can lead to the desired
self-propulsion of the droplet. In an attempt to formulate a
generalized model, Morozov et al. [29,30] treated the droplet
interface as a sink for monomers and assumed a fixed flux
condition at the interface. Assuming a characteristic velocity
scale associated with such a fixed flux, they formulated an
intrinsic Peclet number (Pe) defined as the ratio of charac-
teristic strength of advection and diffusion. They showed that,
beyond a critical value of this Peclet number, the nonlinear
coupling between concentration and velocity field leads to
self-propulsion. More recently, Morozov et al. [31] attempted
to treat the droplet interface as a source for swollen micelles
and developed a similar model. Izzet et al. [22] showed that
a radial gradient of surfactant monomers in the vicinity of the
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droplets can exist because of the possible lowering of CMC
due to the presence of the small number of oil molecules
dissolved near the interface. An infinitesimal perturbation in
the droplet velocity can lead to anisotropy in surfactant con-
centration on the droplet interface, inducing a Marangoni flow,
and at high-enough dissolution rates, the droplet can propel
itself.

Most of the existing models take into account only
the variation of surfactant concentration outside the droplet
[16,17,29–31] as the mechanism of self-propulsion. One key
aspect of such systems found experimentally is that droplet
motion can only occur above a certain critical value of sur-
factant concentration in the bulk far exceeding the CMC. The
excess concentration above the CMC produces micelles that
are in a dynamic equilibrium with the monomers in the fluid.
Therefore, the monomer concentration in the bulk is expected
to remain close to the CMC value for any deficiencies in
monomer concentration should be quickly replenished by the
dissociation of empty micelles. Only one of the available
models takes this factor into account [31]. This model con-
siders the transport of adsorbed monomers at the interface
and assumes an explicit form of the filled micelle production
rate from the interface. However, it still relies on symmetry
breaking of species concentration in the bulk. The present
study aims to provide a minimal model that directly correlates
the onset of self-propulsion beyond a total bulk concentra-
tion of the surfactant and to show that self-propulsion can
be achieved through interfacial processes alone. A surface-
dominated mechanism for the propulsion of a droplet due to
chemical reaction-driven instability on the surface was pro-
posed previously [8]. The physical origin of the instability in
our model is quite different from that of [8].

In Sec. II, we describe the geometry of the model sys-
tem used in our calculations and the mathematical model
developed to account for the self-propulsion of a droplet.
The linear stability analysis of the model equations is dis-
cussed in Sec. III. In Sec. IV, we describe the numerical
methods used to solve the nonlinear transport equations.
The results and conclusions are given in Secs. V and VI,
respectively.

II. MODEL

The physical system consists of a swimming droplet of ra-
dius a slowly dissolving into a surfactant solution. The droplet
interface is covered with surfactant molecules that can be
transported along the interface due to diffusion and advection.
We assume that the solubility of the surfactant molecules in
the droplet’s inner fluid is negligible and they mostly exist
at the interface and the outer fluid. Both the inner and outer
fluids are assumed to be Newtonian and incompressible in
our model. The droplet is assumed to be moving in the outer
fluid of an infinite extent with no externally imposed flow. The
density and viscosity of the inner (outer) fluids are homoge-
neous and denoted as ρ̃(ρ) and μ̃(μ), respectively. Since the
Reynolds number (Re) associated with these systems is often
much less than unity, the inertia of the fluids and the drop is
negligible. Hence the flow fields satisfy the Stokes equations.
The flow fields are subjected to kinematic, dynamic, and stress

balance conditions at the droplet interface. These boundary
conditions, along with the surfactant transport equation, are
used to solve for the velocity fields and the surfactant distri-
bution on the droplet interface.

Far above the CMC, the empty micelle concentration in
the solution is expected to be large. We assume that the bulk
micellar solution acts as a reservoir for the monomer and the
equilibration of the monomer and the empty micelles occurs
on a much faster scale than the rate of solubilization or fluid
flow. The dissociation of empty micelles quickly replenishes
the depletion of the monomer concentration with a uniform
concentration of monomers throughout the bulk solution. The
aggregation numbers of molecules in a single empty micelle
for 0.83 wt % and 18.46 wt % of TTAB in water are known
to be close to 90 and 200, respectively [32]. Thus the dissoci-
ation of a single empty micelle can provide a large number
of monomers in such systems. Hence we assume that the
bulk monomer concentration C1 remains homogeneous and
constant at the CMC value Cm [31]. We further assume that the
spontaneous emission of filled micelles, from the interfacial
monolayer of adsorbed surfactant molecules, is the dominant
process contributing to the solubilization in our model [31].
We propose that the filled micelles are formed at the interface
between the fluids by a nanoscale budding process. The mono-
layer of surfactant on the surface buckles and forms the filled
micelles by taking some molecules of the inner fluid. The rate
of emission of filled micelles is postulated to be proportional
to excess surfactant concentration Ce = (Ctot − Cm), where
Ctot is the total surfactant concentration. The excess surfac-
tant concentration Ce increases the propensity of holding the
filled micelles in the outer fluid. This emission is expected to
decrease the average interfacial surfactant concentration com-
pared to that of a nonsolubilizing drop in a micellar solution.
We note that minute perturbation of surfactant distribution
leads to small amplitude flow fields near the droplet interface.
We propose that, in regions of negative surface divergence
of these flow fields, there is compression of the monolayer,
which, in turn, facilitates the formation of filled micelles from
those regions. On the other hand, in regions of positive surface
divergence, the stretching of the monolayer hinders the emis-
sion of swollen micelles. It is found that, for the dissolving
droplets, the radius decreases linearly with time, which hints
that it can be a surface-dominated process [15,16,20].

The model equations are made dimensionless by perform-
ing the following transformations of the relevant variables.
The radial distance is measured in units of the droplet radius
a giving the dimensionless form r∗ = r/a. The dimension-
less time t∗ = t/( a2

Ds
), where Ds is the molecular diffusivity

of surfactant molecules at the interface. The dimensionless
interfacial surfactant concentration, bulk monomer concentra-
tion, and bulk excess surfactant concentration are defined as
�∗ = �/�m, C∗

1 = C1/Cm, C∗
e = Ce/Cm, respectively, where,

�m is the maximum possible interfacial surfactant concentra-
tion. The dimensionless surface tension σ ∗ = σ/σ0, where σ0

is the surface tension of the fluid-fluid interface in absence of
surfactants. The fluid velocity and pressure are made dimen-
sionless as u∗ = u/( Ds

a ) and p∗ = p/( μDs

a2 ). For convenience,
we henceforth denote the dimensionless parameters and vari-
ables without the superscript star.
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FIG. 1. Schematic diagram of a swimming droplet of radius a in
an outer fluid with coordinates system used to denote a general point
P. The red arrows depict the far field velocity of the outer fluid in the
droplet rest frame.

In the dimensionless form, the momentum transport and
continuity equations for the incompressible outer or inner
fluids for low Reynolds number can be written as

∇2u = ∇p , ∇ · u = 0, (1)

ν∇2ũ = ∇ p̃, ∇ · ũ = 0, (2)

where {u, p}({ũ, p̃}) represent the dimensionless velocity
and pressure fields of the outer (inner) fluids, respectively.
All the bulk material properties of the fluids are taken to
be constant and the gravitational effects are negligible. The
self-propulsion of the droplet along a certain direction occurs
with the spontaneous breaking of the isotropic symmetry. We
assume the flow field around the droplet is axisymmetric and
solve the equations in the droplet rest frame using a spherical
polar coordinate system as shown in Fig. 1. Without loss of
generality, the droplet is assumed to be moving along the
negative x axis in the laboratory frame, so that in the droplet
rest frame the far-field velocity takes the form

u → Ux̂, (3)

where U is the magnitude of droplet velocity in the laboratory
frame and x̂ is the unit vector along the polar axis. The dimen-
sionless boundary conditions at the droplet surface r = 1 can
be written as

ur = ũr = 0, uθ = ũθ , (4)

which represent the vanishing of the normal component of
velocity due to the impenetrability of the interface and the
continuity of the tangential component of velocity, respec-
tively. The Capillary number Ca = μU/σ is estimated to be
of order 10−6 for the TTAB, water and 5CB system [17]. The

droplet is assumed to remain spherical at all times due to the
very small value of this capillary number.

The dimensionless form of the advection-diffusion equa-
tion for the interfacial surfactant concentration � can be
written as

∂�

∂t
+ ∇s · (us�) = ∇2

s � + kaC1(1 − �) − kd�

− (e1 − e2∇s · us)Ce, (5)

where the terms on the left-hand side of Eq. (5) repre-
sent the explicit time derivative and advection of surfactants,
respectively. The operator ∇s represents the surface gradient
on the droplet interface. The first term on the right-hand side
represents the molecular diffusion of adsorbed surfactants on
the interface. The second (third) term on the right-hand side
represents the adsorption (desorption) of monomers at the
interface from (to) the outer fluid with the dimensionless rate
coefficient ka (kd ). The last term in Eq. (5) takes into account
the spontaneous emission of filled micelles from the interface.
The first part of this term with coefficient e1 represents an
isotropic emission independent of flow and the other part
with coefficient e2 represents the emission contribution de-
pending on the flow as discussed earlier. The dimensionless
parameters appearing in Eq. (5) are related to their dimen-
sional counterparts as k∗

a = kaa2Cm/�m, k∗
d = kd a2/Ds, e∗

1 =
e1Cma2/(Ds�m), e∗

2 = e2Cm/�m and again we removed the
star for convenience.

For simplicity, we consider a linear relationship between
surface tension and interfacial surfactant concentration as
σ (�) = 1 − RT �m

σ0
�, where R is the ideal gas constant and T is

the absolute temperature. The tangential stress component due
to the Marangoni effect is discontinuous across the interface
whenever ∇sσ is nonzero and this boundary condition in the
spherical polar coordinate frame can be written as

ν

(
− ũθ

r
+ ∂ ũθ

∂r

)
−

(
− uθ

r
+ ∂uθ

∂r

)
= −M

∂�

∂θ
, (6)

where M = RT �ma
Dsμ

is the Marangoni number and ν = μ̃

μ
is the

ratio of the dynamic viscosities of the inner and outer fluids,
respectively.

The hydrodynamic equations given by Eqs. (1) and (2)
under axisymmetric conditions can be solved using a stream
function formulation with the superposition of different or-
thogonal modes [3,33–35]. Noting that there is no external
body force acting on the droplet, the solutions for the radial
and tangential components of the fluid velocity field in the
droplet rest frame can be written as

ur = U

(
1 − 1

r3

)
η +

∞∑
n=2

αnn(n + 1)(r−n−2 − r−n)Pn(η), (7)

uθ = −U

(
1 + 1

2r3

)√
1 − η2 +

∞∑
n=2

αnn(n + 1)((2 − n)r−n + nr−n−2)
Gn+1(η)√

1 − η2,
(8)

ũr = −3U

2
(1 − r2)η −

∞∑
n=2

αnn(n + 1)(rn+1 − rn−1)Pn(η), (9)

ũθ = 3U

2
(1 − 2r2)

√
1 − η2 +

∞∑
n=2

αnn(n + 1)((n + 3)rn+1 − (n + 1)rn−1)
Gn+1(η)√

1 − η2
, (10)
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where η = cos θ and the functions Pn(η), Gn(η) are the Leg-
endre polynomial of degree n and the Gegenbauer polynomial
of order n and degree − 1

2 , respectively. Substituting these ex-
pressions for the velocity fields in the stress balance condition
Eq. (6) and using the orthogonality properties of the Legendre
and the Gegenbauer polynomials, the far-field flow speed can
be written as

U = M

3ν + 2

∫ π

0

∂�

∂θ
G2 dθ. (11)

On the other hand, the flow amplitudes αn of the higher-order
modes for n � 2 can be found as

αn = − M

4(ν + 1)

∫ π

0

∂�

∂θ
Gn+1 dθ. (12)

III. LINEAR STABILITY ANALYSIS

The linear stability analysis was performed on the nonlin-
ear equations of the model to determine the threshold value
of the control parameter above which the reference state
becomes unstable. In the reference state, the droplet has a
uniform distribution of surfactants on the interface with zero
flow in the inner and outer fluids. The linear stability analysis
was carried out by introducing small perturbation of order ε

to the dependent variables from their reference values as

u = 0 + εu,

ũ = 0 + εũ,

� = �0 + ε�1. (13)

The different orders of approximation can be obtained by
substituting the variables from Eq. (13) into Eqs. (1) to (6) and
collecting the terms of the same powers of ε. The zeroth-order
approximation gives the uniform surfactant concentration on
the droplet interface in the reference state as

�0 = ka − e1Ce

k
, (14)

where k = ka + kd . In the first-order approximation, �1 satis-
fies the transport equation

∂�1

∂t
= ∇2�1 − k�1 + ∇s.us(e2Ce − �0), (15)

and the flow velocities in the fluids satisfy the Stokes equa-
tions. Then the solutions to the fluid velocity components can
be written in the form of Eqs. (7) to (10). Assuming �1 can be
expanded as

�1 =
∞∑

n=1

bn(t )Pn(cos θ ), (16)

we solve the resulting time evolution equations for the mode
amplitudes bn(t ). Then using Eqs. (11) and (12), the ampli-
tudes for the flow velocities can be written as

U = − 2Mb1

3(3ν + 2)
,

αn = Mbn

2(ν + 1)(2n + 1)
for n � 2. (17)

For the first mode (n = 1), the amplitude b1(t ) satisfies

db1

dt
=

[
2M

3ν + 2
(e2Ce − �0) − (2 + k)

]
b1, (18)

which gives b1 ∝ eλ1t with the growth exponent

λ1 = 2M

3ν + 2
(e2Ce − �0) − (2 + k). (19)

For λ1 > 0, the reference motionless state becomes unstable
to the swimming mode (n = 1) giving the threshold excess
concentration as

Ce1 = k(2 + k)(3ν + 2) + 2Mka

2M(ke2 + e1)
. (20)

Similarly for higher-order modes with n � 2, the time evolu-
tion equation of the mode amplitude bn(t ) can be written as

dbn

dt
=

[
Mn(n + 1)

(ν + 1)(2n + 1)
(e2Ce − �0) − {n(n + 1) + k}

]
bn,

(21)

and the threshold excess concentration above which the nth
mode becomes unstable is given by

Cen = k{n(n + 1) + k}(ν + 1)(2n + 1) + kaMn(n + 1)

n(n + 1)M(ke2 + e1)
.

(22)

It should be noted that only mode 1 gives rise to the net
propulsion of the droplet. The higher-order modes though
produce flow around the droplet do not give rise to the net
propulsion of the droplet, as discussed below.

IV. NONLINEAR NUMERICAL ANALYSIS

The linear stability analysis gives the threshold values of
the excess concentration Ce above which reference motionless
state becomes unstable to different instability modes. Above
the threshold, these modes initially grow exponentially with
time but become saturated at long times due to the nonlinear
effects. Hence the full nonlinear model equations need to
be solved to study the long-time behavior of these modes.
The nonlinear surfactant transport equation was solved nu-
merically using a forward time central space (FTCS) finite
difference scheme to find the saturation values of the mode
amplitudes above the threshold. In this numerical method,
the surface velocity field given by Eq. (8) for the modes
under consideration was substituted in Eq. (5). The resultant
equation was discretized for the spatial derivatives using a
second-order central difference scheme and the time integra-
tion was performed using the forward Euler method. For only
the first or the second mode, we retain only the first or the
second term in Eq. (8). For the case of the combined modes,
we retain the first two terms corresponding to the first and
second modes in Eq. (8). Because of the assumed axisymme-
try of the problem, Eq. (5) can be solved in the half-space
0 � θ � π . The condition of axisymmetry also requires that
the diffusive flux of the surfactants on the drop interface be
zero at the poles θ = 0 and θ = π . In our numerical scheme,
this was accomplished by using ghost points outside the range
of θ . L’Hospital’s rule was used to remove the singularity in
the diffusive term (∇2

s �) at the poles. For the first mode, the
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FIG. 2. (a) The time evolution of surfactant concentration � and
surface velocity us at the droplet interface at three different instants
of time for Ce = 50.493 corresponding to the first mode of instability.
(b) The variation of the steady-state droplet propulsion speed U s with
the control parameter Ce. The threshold value of the control parame-
ter for this mode is Ce1 = 50.440, which is shown by the dashed line.
The U s grows continuously from zero above the threshold indicating
a supercritical bifurcation for this mode. The inset depicts the time
evolution of U for Ce = 50.493 showing the saturation at long times.

solution was advanced in time assuming an initial form of
the interfacial surfactant concentration � = �0 − ε1P1(cos θ ),
where ε1 is a small amplitude perturbation to the uniform
concentration. The solution was evolved until the surface
concentration reached a steady distribution and the velocity
amplitudes reached a saturation value. The same method is
used for mode 2 and for the combined mode with suitable
forms for the initial perturbations. To test the accuracy of
the above method, we solve Eq. (5) using one other scheme:
Forward Euler in time, explicit treatment of the advection
term, and the implicit treatment of diffusion term using Crank-
Nicholson method with a second-order central difference for
spatial derivatives. Both methods give very similar results
with negligible differences in the solutions. All the compu-
tations for different values of the parameters were carried out
using the relatively faster FTCS method.

V. RESULTS

The model equations were solved numerically considering
the low-order modes of velocity fields which are the domi-
nant modes controlling the hydrodynamic signature of these

FIG. 3. The numerically computed steady-state flow field of the
inner and outer fluids in the rest frame of the droplet due to mode
1. The flow field has vectorial symmetry and gives rise to the self-
propulsion of the droplet in the laboratory frame.

microswimmers. For the TTAB, water and 5CB system, the
propulsion of the droplet found to occur approximately above
5 wt % TTAB while the CMC for this system is approximately
0.13 wt % [17]. This gives the threshold Ce corresponding to
this system to be ≈ 38.5, which qualitatively agrees with our
theoretically predicted threshold value from the linear stability
analysis for some suitable choice of the model parameters.
The following values of the dimensionless model parameters
are used in the calculations: M = 24775, ν = 60.0, ka = 0.4,
kd = 0.0, e1 = 0.0048, e2 = 0.008. Below we discuss the re-
sults obtained for different instability modes.

A. Mode 1

For the first mode, the nonuniform surfactant distribution
is given by the Legendre polynomial of degree one and has
vectorial symmetry. The velocity fields corresponding to this
mode are given by the first term in Eqs. (7) to (10). This mode
gives rise to net self-propulsion of the droplet consistent with
its vectorial symmetry. Equation (20) shows the expression
for the threshold value Ce1 of the driving parameter from
the linear stability analysis which agrees with the nonlinear
analysis for the above values of the model parameters.

Figure 2(a) shows the time evolution of the surfactant
concentration profile and the velocity field uθ on the droplet
surface for Ce = 50.493 which is slightly above the threshold
value. Both � and uθ become increasingly nonuniform and
tend to a steady-state profile at long times. The velocity pro-
file uθ peaks at θ = π/2 whereas � decreases at θ = 0 and
increases at θ = π . Accordingly, the droplet propulsion speed
U increases with time from zero to a steady state value [see
inset of Fig. 2(b)]. The steady-state droplet propulsion speed
U s increases with increasing values of the driving parameter
Ce as shown in Fig. 2(b). Very close to the onset of the
instability, U s grows as (Ce − Ce1)0.55 in our numerical model
indicating that the instability corresponding to mode 1 has
the signature of a supercritical bifurcation. The steady-state
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FIG. 4. (a) The steady-state surfactant concentration �s and tan-
gential velocity profiles on the droplet interface for mode 2 at
Ce = 50.666 (red graphs) and combined modes at Ce = 50.593 (blue
graphs). (b) The variation of the steady-state amplitude of the second
mode with Ce showing the onset of instability at 50.656 on increasing
Ce. The dashed lines show the region of hysteresis for the subcritical
bifurcation. The inset in (b) depicts the time evolution of this ampli-
tude above the threshold showing the saturation at long times. (c) The
variation of the amplitudes with Ce when both the first and second
modes become unstable simultaneously. The inset in (c) depicts the
time evolution of the amplitudes above the threshold.

velocity profiles of the inner and outer fluids in the droplet
rest frame are shown in Fig. 3, which are axially symmetric
about the propulsion direction. The flow profile has a far-field
velocity in the droplet rest frame, implying that the droplet has
net propulsion in the laboratory frame.

The propulsion can be understood as follows. Small am-
plitude deviations in the surfactant concentration from its

FIG. 5. The numerically computed steady-state flow field of the
inner and outer fluids in the rest frame of the droplet for (a) mode 2
and (b) the combination of mode 1 and mode 2. The flow field for
mode 2 has quadrupolar symmetry and gives rise to extensional flow
with no net propulsion of the droplet. The combination of the two
modes gives rise to a superposed flow pattern.

uniform value on the interface give rise to variations in the
interfacial tension which generates a Marangoni flow by spon-
taneous breaking of isotropic symmetry. The Marangoni flow
requires that the surfactant concentration at the front is slightly
greater than that at the rear end. This induces a negative diver-
gence of the in-plane flow field at the rear end and a positive
divergence at the front end. According to our proposition,
there is a greater probability of the emission of swollen mi-
celles from the regions of negative divergence. These swollen
micelles take away some surfactant molecules from the in-
terface. This process tends to enhance the mode amplitude
and is the source of activity in the system. On the other hand,
the diffusion and advection processes tend to homogenize any
nonuniformity in interfacial surfactant concentration. Above
a critical value of the control parameter Ce, the droplet can
maintain a lesser surfactant concentration at the trailing end
and a higher concentration at the leading end and the resulting
Marangoni flow. It is important to note that the total surfactant
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concentration in the outer fluid is the control parameter in our
model as found in experimental studies.

B. Mode 2 and combined Modes 1 and 2

Similarly, mode 2 corresponds to a surfactant distribution
given by the Legendre polynomial of degree two. This mode
has quadrupolar symmetry and gives rise to a steady exten-
sile flow instead of the self-propulsion of the droplet. The
threshold value of the driving parameter Ce obtained from the
linear stability analysis is given by Eq. (22) for n = 2. For the
parameter values used in our model, the threshold value of Ce

for mode 2 is found to be 50.656, which is slightly greater
than that for mode 1. It is found that mode 1 is always the first
mode to get activated in our model. The nonlinear analysis for
mode 2 was performed for the driving parameter Ce = 50.666
which is slightly above the threshold value. The steady-state
profiles of surfactant distribution and tangential velocity are
shown in Fig 4(a).

For mode 2, since there is now negative surface divergence
at both poles, the surfactant concentration at the poles is
lower compared to the equatorial region and the distribution
is symmetric about the equator. The tangential velocity profile
at the droplet interface has the same magnitude but opposite
direction about the equator. Above the threshold value of the
control parameter, the flow amplitude α2 grows from zero to
a steady-state value as shown in the inset of Fig. 4(b). The
variation of steady-state flow amplitude αs

2 with the control
parameter Ce is shown in Fig. 4(b). The amplitude αs

2 increases
from zero with a jump discontinuity at the onset of the insta-
bility indicating a subcritical bifurcation for this mode. The
corresponding steady-state velocity profile in the droplet rest
frame is shown in Fig. 5(a). The flow fields around the droplet
have axial symmetry about the x axis and mirror symmetry
about the equatorial plane.

We also consider the excitation of these first two modes
simultaneously in the system and studied the resulting steady-
state surfactant distribution and flow profiles as shown in

Fig. 4(a). In the combined mode, the magnitude of uθ peaks
closer to the rear stagnation point and the flow field is no
longer mirror symmetric about θ = π/2. Above a threshold
value of the control parameter, both the flow amplitudes grow
from zero to steady-state values as shown in the inset of
Fig. 4(c). We find that the droplet swimming with the com-
bined modes has the hydrodynamic signature of a pusher
which has been established by recent experiments [25,28].
For the combined modes, the steady-state velocity profile
around the droplet for Ce = 50.593 is shown in Fig. 5(b).
The combined mode gives rise to nonzero extensional flow
contributions in addition to the propulsion even below the lin-
ear stability threshold for α2 as was observed for an isotropic
phoretic particle [36]. We also observe that, when both modes
are considered in the flow field, the first mode does not get
activated for any value of Ce if the initial perturbation to
the surfactant distribution does not have the P1(cos θ ) term
while the second mode gets activated even with only the initial
perturbation corresponding to the first mode.

VI. CONCLUSION

We propose a simple model for swimming active droplets
suspended in a micellar solution. Our hydrodynamic model
predicts the existence of a sharp instability threshold towards
self-propulsion of the droplet in terms of total surfactant con-
centration in the micellar solution which agrees well with
the experimental observations [17]. Linear stability analysis
is performed analytically to determine the instability thresh-
old and full nonlinear equations are solved numerically to
find the steady-state flow field in the fluids. Unlike the pre-
vious models, which take into account only the gradient of
surfactant concentration outside the droplet for the mecha-
nism of self-propulsion, we show that self-propulsion can be
achieved through interfacial processes alone with the sponta-
neous breaking of spherical symmetry. The direct emission of
swollen micelles from the droplet interface is the dominant
self-propulsion mechanism in our model.
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