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Correlations in randomly stacked solids
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Packing of spheres is a problem with a long history dating back to Kepler’s conjecture in 1611. The highest
density is realized in face-centered-cubic (FCC) and hexagonal-close-packed (HCP) arrangements. These are
only limiting examples of an infinite family of maximal-density structures called Barlow stackings. They
are constructed by stacking triangular layers, with each layer shifted with respect to the one below. At the
other extreme, Torquato-Stillinger stackings are believed to yield the lowest possible density while preserving
mechanical stability. They form an infinite family of structures composed of stacked honeycomb layers. In
this article, we characterize layer-correlations in both families when the stacking is random. To do so, we take
advantage of the Hägg code—a mapping between a Barlow stacking and a one-dimensional Ising magnet. The
layer correlation is related to a moment-generating function of the Ising model. We first determine the layer
correlation for random Barlow stacking, finding exponential decay. We next introduce a bias favoring one of two
stacking chiralities—equivalent to a magnetic field in the Ising model. Although this bias favors FCC ordering,
there is no long-ranged order as correlations still decay exponentially. Finally, we consider Torquato-Stillinger
stackings, which map to a combination of an Ising magnet and a three-state Potts model. With random stacking,
the correlations decay exponentially with a form that is similar to the Barlow problem. We discuss relevance to
ordering in clusters of stacked solids and for layer-deposition-based synthesis methods.
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I. INTRODUCTION

Stacking is ubiquitous in solid-state materials. Of elemen-
tal solids, more than half form “close-packed” structures [1,2].
These include hexagonal close-packed (HCP), face-centred
cubic (FCC), double-HCP, and 9R structures. These struc-
tures are all built from stacked triangular layers. Stacking
is also seen in non-close-packed elemental solids such as
graphite, where each layer is a honeycomb lattice. Among
multielemental solids, transition metal dichalcogenides are
a stacked family [3]. Stacking is also seen in alloys where
stacking preferences can be tuned by mechanical processes
or by varying composition, e.g., in the family of high entropy
alloys [4]. In all such solids, the underlying stacking principles
hold the key to understanding various physical properties. For
example, stacking order affects x-ray diffraction [5], phonon
spectra [6], electronic band structure [7], and even mechanical
properties [8]. In this article, we seek to understand correla-
tions that emerge from random stacking protocols. We show
that, despite randomness, the geometric constraints of stack-
ing lead to short-ranged correlations. This acquires relevance
for novel synthesis methods that proceed in a layer-by-layer
fashion [9–11].

Ordering in close-packed structures has been studied ex-
tensively in theoretical models (e.g., see Ref. [12]) as well
as in materials (e.g., in Ref. [13]). A key area of interest
is the emergence of long-range order with periodicity in the

*r.ganesh@brocku.ca

stacking direction. This involves competition between energy
and entropy contributions. When energy dominates over en-
tropy, various ordered states emerge—as exemplified by the
celebrated ANNNI model [14,15]. When energies are compa-
rable, entropy can select a particular ordered state, e.g., see
Ref. [16]. In this article, we discuss the nature of correlations
in a purely entropic setting. We work within a rigid-layer
picture where geometry constrains the relative position of
neighboring layers. We address a particularly simple question:
what is the probability that two distant layers, separated by N
intervening layers, are aligned? We answer this question for
three different stacking schemes below.

II. BARLOW STACKINGS AS A 1D ISING MODEL

Atoms within a solid can be modeled as spheres that are
packed in three dimensional space. In 1611, Kepler conjec-
tured that the highest possible density occurs in a face-centred
cubic arrangement [17]. This was rigorously demonstrated as
recently as in 2017 [18]. It has long been known that the FCC
lattice is just one among an infinite number of arrangements,
all with the same density [19]. This family of close-packed
structures, also called Barlow stackings [20], is constructed
with triangular layers as building blocks. When one layer is
stacked upon another, it must be laterally shifted along one
of two directions. This leads to three possible positions for
each layer, denoted as A, B, and C. In order to ensure maximal
density, we must not repeat letters in succession. We then have
a twofold choice at each layer. The number of configurations
grows exponentially with the number of layers.
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Consider a Barlow stacking with (N + 1) layers. It can be
expressed as a string of letters L1L2 . . . LN+1, where each Li

takes one of three values: A, B or C. The only constraint is
that two adjacent letters cannot be the same, e.g., ABCCA . . .

is forbidden while ABCABC . . . is allowed. Any such structure
can be coded as a string of N Ising variables via a dual
construction, known as the Hägg code [21]. We represent it
as σ1σ2 . . . σN where each σi takes one of two values, ±1. The
variable σi represents the shift when moving from layer i to
layer (i + 1). A forward shift, i.e., A → B, B → C, or C → A,
is encoded as σ = +1. A backward shift, i.e., A → C, B → A,

or C → B, is encoded as σ = −1.
We define the layer correlation function PB.

N as the
probability that layer i and layer i + N are aligned, i.e.,
PB.

N = P(Li = Li+N ). Here, B. stands for Barlow. For example,
if the first layer is A, PB.

N is the probability that the (N + 1)th

layer is also A. This quantity encodes memory of the initial
layer as stacking progresses. In the following sections, we
will evaluate PB.

N for two stacking schemes. It is convenient to
rephrase this quantity in the language of Ising variables. From
layer i to layer (i + N ), we encounter N Ising variables. There
are 2N possible configurations of these Ising variables, rep-
resenting all possible configurations of intervening layers. In
a particular stacking configuration, suppose P Ising variables
have value +1, and Q have −1. The sum P + Q = N is fixed.
Consider A, B, and C to be arranged in a circle (to have
periodic boundaries). As each additional layer is deposited,
we move forward or backward (clockwise or counter clock-
wise) along the circle. The net number of steps in the forward
direction is

∑N
i=1 σi = P − Q. The (i + N )th layer will be the

same as the ith if the net number of steps is a multiple of three.
That is, Li+N = Li if (P − Q) mod 3 = 0.

To evaluate the corresponding likelihood, we divide the
2N Ising configurations into three classes based on (P −
Q) mod 3. We denote the likelihood of (P − Q) mod 3 = 0 as
�0(N ), given by

�0(N ) =
∑

σ1,...,σN

p(σ1, . . . , σN )δ

({
N∑

i=1

σi

}
mod 3, 0

)
. (1)

Here, the sum over (σ1, . . . , σN ) amounts to summing over all
Ising configurations. The likelihood of any particular configu-
ration is denoted by p(σ1, . . . , σN ). Finally, the delta function
selects configurations where the Ising sum is a multiple of
three (i.e., with { ∑N

i=1 σi} mod 3 = 0). On the same lines, we
define

�1(N ) =
∑

σ1,...,σN

p(σ1, . . . , σN )δ

({∑
i

σi

}
mod 3, 1

)
, (2)

�2(N ) =
∑

σ1,...,σN

p(σ1, . . . , σN )δ

({∑
i

σi

}
mod 3, 2

)
. (3)

As there are only three possibilities, the total probability is
given by

�0(N ) + �1(N ) + �2(N ) = 1. (4)

We now consider ei�
∑N

i=1 σi , where � = 2π/3. In configura-
tions with (P − Q) mod 3 = 0, this quantity is unity. In the

other two classes, ei�
∑

i σi = −1
2 ± i

√
3

2 . We have

〈ei�
∑

i σi〉 = �0(N ) + �1(N )ei2π/3 + �2(N )ei4π/3.

The layer-correlation PB.
N is simply the probability that

(P − Q) mod 3 = 0. In other words, PB.
N = �0(N ). From

Eqs. (4) and (5), we express it as

PB.
N = �0(N ) = 1

3

(
1 + 2 Re

{〈
ei�

∑
i σi

〉})
, (5)

where Re{·} represents the real part. This relation ties the
layer-correlation function to a certain moment-generating

function of the Ising model, 〈ei�
∑

i σi〉. We emphasize that
Eq. (5) holds for any Barlow stacking, i.e., for any close-
packed structure. In the following sections, we will explicitly
evaluate this layer-correlation function for two stacking
schemes.

For later use, we also use Eqs. (4) and (5) to write

�1(N ) = 1
3

(
1 + 2 Re{〈ei�{2+∑

i σi}〉}), (6)

�2(N ) = 1
3

(
1 + 2 Re{〈ei�{1+∑

i σi}〉}). (7)

A. Random Barlow stacking

As each layer is deposited, it is assumed to randomly select
one of two allowed positions. In the Ising language, this cor-
responds to generating set N Ising variables at random, e.g.,
by flipping a coin N times. At each flip, the two outcomes
are equally likely. This leads to a truly random sampling with
each Ising configuration having the same likelihood,

p(σ1, . . . , σN ) = 1

2N
. (8)

To evaluate the layer-correlation function of Eq. (5), we con-
sider

(ei� + e−i�)N

2N
= 1

2N

∑
σ1,...,σN

ei�{∑N
i=1 σi} = 〈

ei�
∑

i σi
〉
. (9)

Here, we have used the standard binomial expansion. In the
summation over σ1, . . . , σN , each variable runs over the two
values ±1. We have interpreted the expression on the right as
an expectation value over configurations of N Ising variables.
At the same time, we have ei� + e−i� = −1, from the explicit
expressions for e±i�. We arrive at 〈ei�

∑
i σi〉 = (−1)N/2N .

From Eq. (5), we now obtain

P(r. B.)
N = 1

3

(
1 + (−1)N

2N−1

)
, (10)

where r. B. stands for random Barlow. This layer-correlation
function has two pieces: an N-independent contribution of 1

3
and a term that decays as ∼2−N . Notably, the latter term is
oscillatory in character as it switches signs between even and
odd values of N . At N = 1, P(r. B.) vanishes as two successive
layers cannot be the same. At N → ∞, the oscillatory term
vanishes and we are left with PN → 1/3. This encodes the
fact that at large separations, each layer takes one of three
values: A, B, or C. These three layer positions are sampled
uniformly so that the probability of the final layer aligning
with the first is 1/3. Essentially, the system has no memory of
the initial state. This is not the case at short distances, where
PN oscillates about 1/3.
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B. Biased Barlow stacking

We have evaluated the layer correlation function for ran-
dom stacking using the Ising representation. In terms of Ising
variables, each successive Ising variable was taken to be +1
or −1 with equal likelihood. We now introduce a bias that is
equivalent to a magnetic field in the Ising language, with a
higher likelihood for one of the Ising variables (say +1). This
is equivalent to favoring one stacking “chirality” —if a certain
layer is A, the next is more likely to be B rather than C.

We take the probability for +1 to be α and that for −1 to
be (1 − α). Each configuration of Ising variables is assigned a
probability p(σ1, . . . , σN ) = αP(1 − α)Q. Here, P is the num-
ber of Ising variables with value +1 while Q represents the
number of −1’s. We may now write〈

ei�
∑

i σi
〉 =

∑
σ1,...,σN

αP(1 − α)Qei�
∑

i σi . (11)

To obtain a closed form, we rewrite
∑

i σi = (P − Q). We
then have 〈

ei�
∑

i σi
〉 =

∑
σ1,...,σN

αP(1 − α)Qei�P−i�Q

= (αei� + (1 − α)e−i�)N . (12)

At the last step, we have used the binomial expansion. We
may rewrite (αei� + (1 − α)e−i�) as one complex number,
z = ζeiθ , with amplitude ζ and phase θ . We have

ζ =
√

1 + 3α2 − 3α, (13)

θ =
{

π − tan−1 (
√

3(2α − 1)), α > 1
2

tan−1 (
√

3(1 − 2α)), α < 1
2

. (14)

In terms of these quantities, we have

Re
{〈

ei�
∑

i σi
〉} = ζ N cos(Nθ ). (15)

From Eq. (5), the layer correlation function comes out to be

Pb. B.
N = 1

3 (1 + 2 ζ N cos(Nθ )), (16)

where b. B. stands for biased Barlow. As with random Barlow
stacking, the layer correlation carries an N-independent con-
tribution of 1

3 and a term that decays exponentially (note that
ζ � 1). For large N , the probability approaches 1

3 , reflecting
the number of possible layer positions. There is no memory
of the initial position as positions A, B, and C are sampled
uniformly. For small N , however, there is an oscillatory cor-
rection due to the cosine term. Unlike the random case, the
period of oscillation depends on α. When α is strictly zero
or strictly unity, we obtain an ordered FCC structure with
−ACB− or −ABC− stacking. At these two limiting values,
ζ approaches unity while θ approaches ±2π/3. The resulting
PN has a periodicity of three, with P1 = 0, P2 = 0, P3 = 1,
P4 = 0, P5 = 0, P6 = 1, etc.

III. TORQUATO-STILLINGER STACKINGS
AND THEIR DUAL REPRESENTATION

Torquato-Stillinger (TS) stackings are built from honey-
comb layers [19,22–24]. They can be viewed as derivatives
of Barlow stackings, with one-third of the spheres removed

FIG. 1. Torquato-Stillinger stackings. Left: Each layer must be
laterally displaced with respect to the previous one. The lateral dis-
placement vector can be any one of the six possible choices shown.
Each choice is one-third of a lattice translation vector of the hon-
eycomb lattice. That is, with three displacements by the same vector,
there is no net lateral displacement. Right: We show the nine possible
lateral positions of layers. We mark a reference site on the base layer
(shown as a blue square). In a future layer, the corresponding point
can be laterally shifted to one of the eight positions shown (magenta
circles). It may also be aligned with reference site (blue square).

from each layer. They form “tunneled” crystals, with tunnels
carved through a Barlow stacking framework. As described in
previous sections, Barlow stackings can be characterized as
follows: a twofold choice at each step (σ = ±1) leading to
three possible positions for each layer (A, B, or C). In direct
analogy, TS stackings correspond to a sixfold choice at each
step. In turn, this leads to nine possible positions for each
layer. This can be understood as follows.

Each honeycomb layer is displaced with respect to the
preceding layer by one of six possible lateral displacement
vectors [24]. These vectors have the same magnitude, but are
uniformly spread in direction as shown in Fig. 1. As each layer
is deposited, a sixfold choice is made. For our purposes, it is
convenient to picture this as one threefold choice of direction
(d = A, B, C) and one twofold choice of step (σ = ±1). The
threefold choice is depicted as A, B, and C directions in the
figure, while the step is denoted with ±. Once a direction is
chosen, we may move along or opposite–orresponding to the
twofold choice encoded in σ .

Before broaching layer correlations, we note that the hon-
eycomb lattice has two primitive lattice vectors. A honeycomb
layer is unchanged by a displacement by any integer combi-
nation of these primitive lattice vectors. As seen Fig. 1, three
consecutive displacements along the same direction (any one
of the six allowed directions) aligns the honeycomb lattice
with itself. In fact, we may displace a layer along each di-
rection (A, B, or C) by a different multiple of three. This will
result in the same final position for the layer.

Labeling the layers as M1M2 · · · , we may compare the
relative positions of layer M1 and MN+1. To reach MN+1 from
M1, we must add N lateral displacement vectors (apart from
N copies of the vertical stacking vector). This sum must be
evaluated modulo the primitive lattice vectors. By examining
all vector combinations, we see that the sum can only take
nine values as shown in Fig. 1 (right).

We now define the layer correlation function, PTS
N , as the

probability that M1 and MN+1 are laterally aligned. We may
separate the N intervening lateral displacements into three
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classes associated with the three directions A, B, and C. For
M1 and MN+1 to be aligned, one of the following three condi-
tions must be satisfied:

(i) Along each of the three directions, net displacement (in
units of step length) must be a multiple of three.

(ii) Along each direction, net displacement must be of the
form (3n + 1), where n is any integer.

(iii) Along each direction, net displacement must be of the
form (3n + 2), where n is any integer.

These three cases can be understood from Fig. 1 (right). By
explicitly adding various net displacements, we see that these
three cases result in zero net lateral displacement. In all other
cases, the final layer is shifted with respect to the first.

Below, we calculate the layer correlation function by
adding the probabilities of these three cases.

Random Torquato-Stillinger stacking

With each layer in a TS stacking, a sixfold choice is made.
Here, we assume that the six possibilities are equally likely.
That is, when a layer is deposited, each of the three directions
is equally likely. The two values of the step variable are also
equally likely.

Suppose NA steps were taken in the A direction (including
forward and backward steps), NB in the B direction, and NC in
the C direction. We must have

NA + NB + NC = N. (17)

Restricting our attention to displacements in the A direction,
we have an effective random-Barlow-stacking problem with
NA layers. The net displacement in the A direction may be
zero, one or two (as displacement is calculated modulo three).
The probability for zero displacement is P(r. B.)

NA
, where P(r. B.)

is defined in Eq. (10) above. In the same manner, the probabil-
ities for net zero displacements along B and C are P(r. B.)

NB
and

P(r. B.)
NC

, respectively.
The joint probability for all three directions to have net zero

displacement is

P0,0,0 = 1

3N

∑
NA+NB+NC=N

N!

NA!NB!NC!

× P(r. B.)
NA

× P(r. B.)
NB

× P(r. B.)
NC

. (18)

Here, the sum over NA, NB, and NC represents all three-
partitions of N . That is, it runs over all (nonnegative integer)
values of NA and NB and NC with the constraint that they
must add to N . The term N!

NA!NB!NC ! accounts for all possible
reorderings of the direction variables. In this expression, the
N step variables (σi = ±1) do not appear explicitly. They are
implicitly accounted for within the probabilities P(r. B.)

NA/B/C
.

This expression can be rewritten using the explicit form of
P(r. B.) from Eq. (10). As shown in the Appendix, each term in
the resulting sum can be reexpressed as a trinomial expansion
and evaluated. We find

P0,0,0 = 1

27

[
1 + 3

2N−1
+ (−1)N

2N−3

]
. (19)

To evaluate the layer correlation, we also require the proba-
bilities for cases (ii) and (iii) listed above. Case (ii) requires
the net displacement in each direction to be 1 mod 3. Case

(iii) requires net displacements of 2 mod 3. To find these,
we revert to the problem of random Barlow stacking. With
N Ising variables, the probability of net displacement being 1
mod 3 is given by �1(N ) of Eq. (6), that for 2 mod 3 is given
by �2(N ) of Eq. (7). Assuming random Barlow stacking, we
may follow the arguments in Sec. II A above to find

�
(r. B.)
1 (N ) = �

(r. B.)
2 (N ) = 1

3

(
1 − (−1)N

2N

)
. (20)

For the TS stacking, we now find the probabilities for cases
(ii) and (iii),

P1,1,1 = 1

3N

∑
NA+NB+NC=N

N!

NA!NB!NC!

× �
(r. B.)
1 (NA) × �

(r. B.)
1 (NB) × �

(r. B.)
1 (NC ), (21)

P2,2,2 = 1

3N

∑
NA+NB+NC=N

N!

NA!NB!NC!

× �
(r. B.)
2 (NA) × �

(r. B.)
2 (NB) × �

(r. B.)
2 (NC ). (22)

Here, P1,1,1 represents the probability for each direction to
have a net displacement of 1 mod 3. Similarly, P2,2,2 is the
probability for each direction to have a net displacement of 2
mod 3. Relegating details to the Appendix, we find

P1,1,1 = P2,2,2 = 1

27

[
1 − 3

2N
− (−1)N

2N

]
. (23)

The net probability that layer 1 and layer N + 1 are aligned is
given by

P(r. TS)
N = P0,0,0 + P1,1,1 + P2,2,2 = 1

9

[
1 + (−1)N

2N−1

]
, (24)

where r. TS denotes random TS stacking. We have arrived at
the layer correlation function. This expression is very similar
to the result for random Barlow stacking in Eq. 10. As with
the Barlow case, we obtain a constant contribution of 1/9
and an exponentially decaying oscillatory term. With N = 1,
P(r. T.S) vanishes as two successive layers cannot be the same.
For large N , the layer correlation is 1/9, reflecting the fact
that there are 9 possible lateral positions. This indicates that,
over large distances, the nine lateral positions are sampled uni-
formly. At small distances, the probability has an oscillatory
component that retains memory of the initial layer.

The above arguments can be easily modified to include
biases. We may consider a bias favoring displacements along
one of the three directions and/or one favoring a particular
step value. Irrespective of any bias, the underlying structure
will lead to exponential decay.

IV. DISCUSSION

Stochastic-stacking models have long been discussed in
the context of stacking faults in solids. In particular, local-
bias models have been discussed by various authors [25–27].
They can be viewed as Ising models with local couplings. For
example, each Ising variable may take its value depending on
the immediately preceding Ising variable. In such a model,
a parameter, α, represents the probability that a new Ising
moment aligns parallel to the immediately preceding moment.

035003-4



CORRELATIONS IN RANDOMLY STACKED SOLIDS PHYSICAL REVIEW E 108, 035003 (2023)

A ferromagnetic coupling (α > 1/2) represents bias towards
FCC ordering while an antiferromagnetic coupling (α < 1/2)
favours HCP. This model also shows exponential decay in the
layer-correlation function [27]. Indeed, upon setting α = 1/2
(i.e., on tuning the nearest-neighbour coupling to zero), this
model reduces to the random Barlow case in Sec. II A above.
For example, Eq. 24 of Ref. [27] reduces to Eq. 10 above when
α = 1/2. We note that the models discussed in this article are
qualitatively different from such local-bias approaches. The
models here represent ‘memory-less’ stacking where each
Ising moment is independent of previous moments.

The key result in this work is the explicit form of
layer-correlations in random-stacking models, described in
Eqs. (10), (16), and (24) above. The three stacking models
discussed here show exponential decay with similar functional
forms. The exponential decay arises from entropic reasons.
If the initial and final (first and (N + 1)th) layers are fixed,
the intervening layers can be in ∼ cN configurations. Here,
c is the number of allowed positions per layer (c = 2, 6 for
random Barlow and TS stackings respectively). For large N ,
this number is approximately the same for any choice of initial
and final layers. The probability of the layers aligning is the
ratio of the number of configurations with aligned layers to
the total number for all cases. This ratio decays exponentially
as N increases.

Our discussion of Barlow stackings may be relevant to
materials with weak (noncovalent) interlayer interactions. For
example, noble gas solids [28] have weak inter-atomic in-
teractions of the van der Waals type. As a result, they may
not have a strong preference for a certain local coordination
geometry. They are known to form close-packed structures,
HCP and FCC in particular [29]. Thermal fluctuations or
disorder may lead to a large degree of stacking randomness,
where our results may apply. Our discussion may also be
relevant to graphite which is a non-close-packed material with
honeycomb layers. However, it follows the same stacking rule
as Barlow stackings. Graphite is known to occur in two forms:
Bernal stacking (AB) and rhombohedral stacking (ABC). As
the layers are held together by weak van der Waals’ bonding,
it is conceivable that a high degree of stacking randomness
may occur. Recent studies have explored layer-by-layer syn-
thesis of graphite variants [10,11,30,31]. Our results could
be of relevance here. Stacking correlations may also appear
in densely packed metallic systems. For instance, in high
entropy alloys [4], the cost of stacking faults can be varied
in a controllable fashion. When the cost is minimal [32–34],
we may have near-random stacking and our results may apply.

We have discussed a model of biased Barlow stacking
in Sec. II B above, where one stacking chirality is favored
over another. This model can be realized in multielement
compounds where the stacking unit consists of multiple tri-
angular layers, e.g., in recent experiments on transition metal
dichalcogenides [35]. Chemical vapour deposition, under suit-
able conditions, may favor 3R stacking [36–38], a structure
that is equivalent to FCC structure. As each layer is deposited,
there is a strong preference for one chirality over another.
Our results can be used to quantify stacking bias solely from
measurements on the initial and final layers.

We have also discussed Torquato-Stillinger stackings, a
class of structures with no known material realization so far.

Future studies of stacked honeycomb materials may realize
this model, and thereby realize the lowest-density stable solid.
Our results help to understand the large configuration entropy
within this family.
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APPENDIX: EVALUATING LAYER CORRELATIONS
IN TS STACKING

Using the explicit form of P(Barlow) from Eq. (10), we
obtain

P0,0,0 = 1

27

1

3N

∑
NA+NB+NC=N

N!

NA!NB!NC!

×
[

1 + (−1)NA

2NA−1
+ (−1)NB

2NB−1
+ (−1)NC

2NC−1

+ (−1)NA+NB

2NA+NB−2
+ (−1)NB+NC

2NB+NC−2
+ (−1)NC+NA

2NC+NA−2

+ (−1)NA+NB+NC

2NA+NB+NC−3

]
. (A1)

Each term in this expression is a straightforward example of a
trinomial expansion. We have

∑
NA+NB+NC=N

N!

NA!NB!NC!
= 3N , (A2)

∑
NA+NB+NC=N

N!

NA!NB!NC!

(−1)NA

2NA−1
= 3N

2N−1
, (A3)

∑
NA+NB+NC=N

N!

NA!NB!NC!

(−1)NA+NB

2NA+NB−2
= 0, (A4)

∑
NA+NB+NC=N

N!

NA!NB!NC!

(−1)NA+NB+NC

2NA+NB+NC−3
= (−3)N

2N−3
. (A5)

On the same lines, the expression for P1,1,1 comes out to be

P1,1,1 = 1

27

1

3N

∑
NA+NB+NC=N

N!

NA!NB!NC!

×
[

1 − (−1)NA

2NA
− (−1)NB

2NB
− (−1)NC

2NC

+ (−1)NA+NB

2NA+NB
+ (−1)NB+NC

2NB+NC
+ (−1)NC+NA

2NC+NA

− (−1)NA+NB+NC

2NA+NB+NC

]
. (A6)

The expression for P2,2,2 is identical to that of P1,1,1.
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