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Wrinkling and developable cones in centrally confined sheets
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Thin sheets respond to confinement by smoothly wrinkling or by focusing stress into small, sharp regions.
From engineering to biology, geology, textiles, and art, thin sheets are packed and confined in a wide variety
of ways, and yet fundamental questions remain about how stresses focus and patterns form in these structures.
Using experiments and molecular dynamics simulations, we probe the confinement response of circular sheets,
flattened in their central region and quasistatically drawn through a ring. Wrinkles develop in the outer, free
region, then are replaced by a truncated cone, which forms in an abrupt transition to stress focusing. We explore
how the force associated with this event, and the number of wrinkles, depend on geometry. Additional cones
sequentially pattern the sheet until axisymmetry is recovered in most geometries. The cone size is sensitive
to in-plane geometry. We uncover a coarse-grained description of this geometric dependence, which diverges
depending on the proximity to the asymptotic d-cone limit, where the clamp size approaches zero. This paper
contributes to the characterization of general confinement of thin sheets, while broadening the understanding of
the d cone, a fundamental element of stress focusing, as it appears in realistic settings.
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I. INTRODUCTION

Confinement influences the morphology of countless natu-
ral and engineered structures encountered in daily life. It can
be a source of frustration or danger, such as in the case of
railway buckling, when portions of train tracks buckle later-
ally due to heat. On the other hand, confinement can enable
functionality, as in robotic grippers that use a suctioned outer
membrane to induce jamming of granular media within [1].
It can even enhance aesthetics, as in the wrinkly edges of the
cockscomb flower, which result from differential growth. As
these examples suggest, the response to confinement differs
depending on the geometry of the confined object. For in-
stance, confinement of 0D granular media leads to a transition
from gas- or fluidlike to solidlike behavior. This can enable
structural emergence [2] or cause flooding and ecological
harm when ice becomes trapped in a river constriction [3]
or fjord [4], altering flow. On the other hand, confinement
of 1D structures causes bending or buckling [5], as demon-
strated by the clumping of drying mushroom gills [6] and
the buckling of microtubules in vesicles [7]. In 2D sheets,
the response to confinement is more complex. A thin sheet
prefers to deform by bending only, as stretching costs much
more energy for slender structures. However, unlike a beam,
material constraints can conspire with boundary conditions
to prevent pure bending. In such cases, the sheet will mini-
mize energy by distributing stress, as in the wavy edges of
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cooked bacon or a gathered skirt, or focusing it into small,
sharp regions—namely, stretching ridges [8] and developable
cones or d cones [9,10]—like those in discarded wrapping
paper [11].

Developing a theoretical description of how thin sheets
deform in response to confinement is challenging, as the
Föppl–von Kármán equations that govern the deformations
of thin sheets are analytically unsolvable, in general. Thus,
theoretical progress has been heavily bolstered by experi-
mental and numerical observations, and only certain limits
have become well-understood in recent decades. For example,
confinement with tensile loads, which can generate com-
pressive stresses due to the Poisson effect, prohibits stress
focusing. However, bending comes effectively for free in
highly bendable (e.g., ultrathin) sheets [12–14], so wrinkles
develop instead [15–17], their geometry set by compromise
between the stretching energy and tensile loads. Wrinkling is
also known to emerge when a thin film is compressed while
attached to an elastic substrate, e.g., human skin [18,19]. The
same phenomenon occurs when instead of a physical substrate
there is an imaginary one, e.g., fluid weight [20], curvature
[21–23], or tension [18,21], which also provide resistance to
large-amplitude bending.

In the opposing limit, the d cone, which can be made
by pushing a circular sheet through a ring of smaller radius
[Fig. 1(a), left], is stretch-free away from the indenter. Thus,
for infinitesimally thin sheets indented with a point-sized in-
denter, the bulk shape is captured by minimizing the bending
contribution to the energy alone, reducing analysis to 1D
[24]. This limiting behavior is well-studied from a theoreti-
cal perspective. However, unlike many wrinkling scenarios,
experimental verification only covers a modest geometric
range [25–28]. The transition to stress-focusing, via transient
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FIG. 1. Overview of circumferential buckling in centrally confined, packed sheets. (a) Table-top realizations of the d cone (left) and our
system (right), wherein clamps flatten the central region. (b) Schematic of in-plane parameters: the radii of the clamp Rc, ring Rr , and plate
Rp. (Thickness h is not shown.) (c) Schematic of experiments. The clamped plate is quasistatically pulled upward through the ring (green
arrow). An upward-facing camera records deformation from below. (d) Images from experiments at large ε, when N = Nmax ∈ {1, 2, 3, 4, 5}.
Rp = 35 mm, Rr = 25.2 mm (dashed gray, first image), and Rc ∈ {3.8, 5.9, 13.8, 17.8, 19.7} mm (left to right). The clamp is concealed by the
hex nut in the leftmost image. The buckled arc length 2sc is indicated (at r = Rp) in pink (first image). The angular cone size 2θc(r) = 2sc(r)/r
is marked by the blue arrows on the flattened sheet.

wrinkling, in the d cone was only very recently explored and
rationalized [29]. Furthermore, debates persist about the size
of the stretching core of this fundamental element of thin sheet
deformations [11,30].

Away from these limits, wherein sheets either diffuse or
focus stress rather conclusively, intermediate confinement can
drive sheets to form coexisting stress-focused and stress-
diffuse regions [31,32]. Furthermore, changing boundary
conditions drive spontaneous transitions between these states.
These emergent motifs and behaviors are even less understood
(linear stability analyses and perturbations to the flat state
cannot capture these secondary instabilities) and experiments
[13,33,34] and simulations [35] have been particularly valu-
able in a recent surge of effort in this area.

Here, we set out to investigate the intermediate regime
of confinement, in which there is a cascading transition of
the stress from a diffuse to a focused area. To do so, we
examine a system in which we pack a thin, circular sheet
into a smaller opening while forcing a finite-sized region at
its center to remain flat [see Fig. 1(a), right]. With a compre-
hensive experimental study, informed by molecular dynamics
(MD) simulations, we address the following question related
to thin sheet confinement: How does geometry dictate shape
selection and force response of centrally confined sheets, near
and away from the d-cone limit?

In Sec. II, we explain our experimental and simulation
methods. Then, in Sec. III, we describe the rich transitions
that occur—from axisymmetric deformation to stress-diffuse
wrinkling to stress-focused, sequential formation of truncated
cones—as centrally clamped sheets are pulled through a ring.
Next, in Sec. IV, we study the geometric dependence of the
critical force at which the transition to stress-focusing occurs,
presenting simple rationalizations based on plate buckling and
buckling of a confined ring. In Sec. V, we present our broad
observations of how the cone size, and to a lesser extent, the

number of wrinkles, depend on geometry. For cones, we show
how this behavior diverges depending on proximity to the
asymptotic d-cone limit, i.e., when the clamp size approaches
zero, before concluding in Sec. VI.

II. METHODS

In our experiments and simulations, we vary four geomet-
ric parameters [see Fig. 1(c)]: the plate, or sheet, radius Rp;
the radius of the ring into which the sheet is packed Rr ; the
radius of the clamp in the center of the sheet, Rc; and the sheet
thickness h. We define a dimensionless packing parameter as
ε = d/(Rr − Rc), where d is the distance the sheet is pulled
through the ring. The ranges of parameter combinations are
given in Table I. Our experimental and numerical methods are
described next.

A. Experiments

In experiments, plastic sheets of radius 15 � Rp � 60 mm
are clamped between pairs of smaller, circular acrylic clamps
with radius 1 � Rc � 36 mm, and quasistatically drawn
through a ring of radius 12 � Rr � 52 mm, where Rc < Rr <

Rp [see schematic in Fig. 1(c)]. In the main experiments,

TABLE I. Range of parameter configurations tested in experi-
ments and simulations.

Experiments Simulations

Rc/Rr [2.6 × 10−2, 9.7 × 10−1] (0, 5.4 × 10−1]
Rc/Rp [1.6 × 10−2, 8.8 × 10−1] (0, 8.2 × 10−1]
Rr/Rp [2.1 × 10−1, 9.5 × 10−1] [4.2 × 10−1, 9.5 × 10−1]
h/Rp [1.0 × 10−3, 2.3 × 10−2] [2.0 × 10−4, 9.0 × 10−3]
h/(Rp − Rc ) [2.0 × 10−3, 3.4 × 10−2] [2.0 × 10−4, 1.2 × 10−3]
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FIG. 2. Experimental setup. (a) Full setup before an experiment
begins and (b) view from the right as a sheet is pulled through a
circular cutout in the stage. Labels correspond to A: Instron load cell;
B: drill-type grip; C: stage with ring cutout; D: clamped sheet; E:
aluminum frame; F: light sources; and G: upward-facing camera.

we laser cut (Epilog Laser Helix, 75 W) circular plates
of radius 15 � Rp � 60 mm from polyethylene terephtha-
late (PET) sheets (Dupont Teijin Film, McMaster-Carr) with
Young’s modulus E = 3.6 GPa, Poisson’s ratio ν = 0.38, and
thickness h = 0.127 mm.

Prior to cutting, PET sheets were flattened in an oven set
to 80 ◦C for a minimum of 1 h, while sandwiched between
metal plates. Pairs of circular clamps with radius 1 � Rc �
36 mm were cut from acrylic (thickness 6.35 mm). All plates
and clamps were cut with a 3.8 mm diameter hole at the
center so a 3.6 mm diameter partially threaded aluminum
rod could be fed through the plate, which was sandwiched
between two clamps. A hex nut secured the rod-clamp-plate
assembly, which was then attached to the 500 N load cell
of the Instron 5943 via a drill-type grip (Instron 0.375 in
Keyless Drill-Type Chuck Assembly). A custom-built frame
made from T-slotted aluminum rails (McMaster-Carr) was
mounted to the base of the Instron (see Fig. 2). A CNC-
milled polyvinyl chloride (PVC) plate (thickness 9.53 mm)
with a stepped circular cutout (diameter 55 mm) and three
evenly spaced through-holes was fixed to the top of the
frame. Interchangeable PVC rings were screwed into the
opening, closing the inner diameter some amount to result
in a ring radius 12 � Rr � 52 mm (where Rc < Rr). For a
closer look at small-amplitude wrinkles at low confinement,
we performed additional experiments wherein we replaced
the opaque PET sheets with reflective colored photo filter
film (h = 0.075 mm; Pro Gel, B&H Photo) and stacked two
circular LED ring lights (4 inch diameter, B-Qtech, Amazon

and 6 inch diameter, MACTREM, Amazon) concentrically,
separated by about six inches. Additional experiments to vary
the thickness were performed with shim stock (E = 4.33 GPa,
ν = 0.4, 0.025 � h � 0.400 mm; Artus). The samples are
loaded beyond their elastic limit, so each sheet was used only
once.

The plates are very sensitive to initial conditions, so care
was taken before each experiment to ensure that the ring
and clamped plate were level and centered with respect to
one another and that the clamped plate was just in contact
with the underside of the ring. Then, quasistatic displacement-
controlled tensile tests were administered using the software
BLUEHILL 3. The clamped plate was pulled upward through
the ring at a rate of 0.05 − 1 mm/min. Global characteris-
tics like the number of wrinkles and cones, which can be
readily observed, in general, were recorded during experi-
ments. An upward-facing camera (Nikon D610 DSLR) was
also mounted parallel to the clamped sheet and the ring,
recording deformation as the imposed upward displacement,
d , increased. Videos were recorded and used for postprocess-
ing alongside Instron force-displacement data.

The angular cone size θc was measured in complementary
experiments. The Instron was stopped and points where the
sheet contacts the ring were marked manually, then θc was
measured once the sheet was released from the Instron. Force-
displacement data was not used for these samples. For several
other samples, we took 3D scans (Einscan Pro) of the sheet
while the Instron was paused at regular intervals of d . In
general, we did not observe significant change in θc with ε,
as the excess length that emerges as packing increases can
be accepted by the formation of new cones, as described in
Secs. III and V B.

To investigate how our clamped boundary conditions com-
pare with indentation, which is the typical boundary condition
in d-cone studies, we performed a limited number of ad-
ditional experiments. For these tests, sheets initially rested
above the ring and were indented at the center with the point
of a pencil with a radius of approximately 0.35 mm, attached
to the Instron via the drill-type chuck attachment. The fea-
tures we discuss throughout the text, i.e., early behavior, the
critical force, and the size of cones, likely do not depend
strongly on friction (though sheet self-contact and perhaps
when additional cones form may be affected) [36]. Indeed,
we observe that for fixed geometry, θc is unchanged for a just-
cured polyvinylsiloxane (PVS) elastomer sheet (Zhermack
Elite Double 32, E = 0.96 MPa), which is much more adhe-
sive than PET. Still, talcum powder coatings and an anti-static
gun (Milty Zerostat 3) were used throughout to reduce friction
and static charge between the sheet and the ring.

B. Molecular dynamics simulations

To corroborate our experimental observations and gain in-
sight into features such as the stress distribution [Figs. 3(b)
and 3(c)], we also performed MD simulations using the
large-scale atomic/molecular massively parallel simulator
(LAMMPS). Compared to, e.g., finite element simulations,
MD handles contact well, which is essential for our system.
Friction and gravity are absent in simulations. To simulate a
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FIG. 3. Stages of deformation: Axisymmetric, wrinkling, and sequential cone formation. Images from a representative (a) experiment and
(b), (c) simulation, where Rp = 30 mm, Rr = 15 mm [dashed gray, first image of (a), (b)], Rc = 11 mm, and h = 0.075 mm. As ε increases,
the sheet exhibits a wrinkle-to-cone transition [nw = 6; dashed blue curve highlights one wrinkle in (a), second image], and sequential cone
formation (up to Nmax = 4). Color depicts circumferential stress in (b) and radial stress in (c) (second Piola-Kirkhoff). (Blue: compression;
red: tension. Color scale varies between images.)

plate, we use a triangular lattice of particles, with the potential

U2d =
√

3

4
Eh

∑
i j

(qi j − q0)2 + Eh3

8
√

3

∑
i jk

(1 + cos θi jk ). (1)

Here, q0 is the lattice spacing, which is ten times the thickness.
The first term adds a harmonic stretching potential between
nearest-neighbor particles and the second term adds a bending
potential between all sets of three adjacent, collinear particles.
In the limit of small strains compared to unity, and large radii
of curvature compared to the lattice spacing, this model is
equivalent to an elastic sheet of thickness h, Young’s modu-
lus E , bending rigidity B = Eh3/[12(1 − ν2)], and Poisson’s
ratio ν = 1/3 [37]. The ring is simulated using a granular
pair potential. The plate is offset from the center by a small
amount (approximately 0.1mm, or 0.8h). Without imposing
this asymmetry, the d-cone limit (Rc → 0) results in two
cones, which is known to be of similar, but slightly higher, en-
ergy than a single cone [24]. We clamp particles by manually
enforcing the displacements of all particles within 0 � r � Rc

to be zero (and to move rigidly in the vertical direction during
packing). To achieve the minimum Rc in the clamped d-cone
limit, displacement is imposed on the center of a single central
grain of radius 0.635 mm, but the bond can bend through the
center of the particle, so Rc approaches 0. Source code for
simulations is provided at Ref. [38].

The open source visualization tool OVITO was used along-
side custom MATLAB and Python scripts for postprocessing,
with the force calculated as the derivative of the stretch-
ing energy with respect to the bond length between points.
The angular size of cones, θc, was measured by calculating
the angle between particles that contact the ring, and the

number of wrinkles were counted by observing the vertical
displacements.

III. DEFORMATION REGIMES

When the centrally clamped sheet is packed into the
boundary set by the smaller ring, the free annulus buckles
circumferentially into truncated cones, as shown in Fig. 1(d).
The maximum number of cones, Nmax, and their character-
istic angular size, θc, are sensitive to confinement geometry.
As the free length Rp − Rc decreases, we see an increase in
Nmax while θc decreases. The angular cone size θc appears
to be much less dependent on the sheet thickness h than the
in-plane parameters [see Fig. 9(c)]. However, this saturated
state emerges through a surprisingly rich series of deformation
events (see Supplemental Material (SM) movies [39]), which
we detail in what follows.

At very small ε, deformation is axisymmetric. Compres-
sive azimuthal stress (i.e., σθθ < 0) is felt everywhere outside
of a region surrounding the clamp where radial and azimuthal
stresses are tensile. However, wrinkles soon relieve compres-
sive azimuthal stresses except in a region just outside of the
clamp, which grows with increasing ε, and the tensile core
near the clamp remains. Wrinkles are visible in the outer
region, i.e., roughly between Rr and Rp [Figs. 3(a) and 3(b)].
Wrinkling in indented sheets in the d-cone limit (Rc → 0) was
first reported from experiments, and rationalized very recently
[29], and we confirm this finding in both our experiments and
simulations. We observe that wrinkles are evenly distributed
about the circumference, and their number, nw, depends on
geometry in a similar way to cones, but their wavelength
depends less strongly on Rc [see. Fig. 9(a)].
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FIG. 4. Deformation profiles at different ε. (a) Circumferential
profiles at r = 2Rp/3 = 20 mm and (b) radial profiles at increments
of π/6, corresponding to the simulation in Figs. 3(b) and 3(c) (Rp =
30 mm, Rr = 15 mm, Rc = 11 mm, h = 0.075 mm).

As ε continues to increase, a truncated cone forms through
a sudden buckling event, which is often audible in exper-
iments. The cone accepts enough excess length to replace
multiple wrinkles that were in its vicinity and to reduce
the amplitude of, or collapse entirely, any remaining wrin-
kles. In most cases, the first cone breaks axisymmetry in
the stress and deformation fields, however, we occasionally
observe emergence of multiple cones at indistinguishable ε.
Additional cones emerge sequentially and abruptly, and cone
formation events are accompanied by sharp drops in the
force-displacement curve [Fig. 5(d)]. Cones may rearrange
as others appear (while deformation is still elastic), until they
eventually distribute evenly around the circumference in most
geometries. Unlike wrinkles, cones are separated by flat con-
tact lines, reminiscent of the transversely confined elastica
[40]. The typical shapes of axisymmetric deformations, wrin-
kles, and cones are compared in Fig. 4.

The angular size of cones is set once the first cone ap-
pears: As confinement increases, the cone amplitude grows
but θc is constant, and additional cones adopt the same size
[see Figs. 3, 5(d), and 9(d)]. [There are exceptions at high ε

for some geometries, where the structure appears frustrated
and will form one or more additional, smaller cone(s).] The
bending-dominated elastic energy concentrates in a hingelike
region near the clamp [see Fig. 5(a)]; the wrinkle-to-cone tran-
sition is one from relatively stress-diffuse to stress-focused
deformation [Figs. 3(b) and 3(c)].

When the number of cones saturates at N = Nmax, in-
creasing ε causes further focusing. At high values of ε, the
endpoints of the concentrated stress region of each conical
dislocation near the clamp progressively focus into vertices
[see rightmost images in Figs. 3(b) and 3(c)]; plastic defor-
mation in experiments leads to two sharply curved creases
at these endpoints [Fig. 6(a)]. This gives the impression that
each cone is comprised of two d cones connected by a straight
hinge, which merge in a wrinklonlike manner [32] to form
a single buckle. We observe that the number of cones is
more closely tied to the thickness than is θc, suggesting that
in-plane stretching matters for setting Nmax. This thickness
dependence, from one set of experiments and one set of simu-
lations with typical geometries, is plotted in Fig. 6(c). In all
stages of deformation, we see from simulations that radial
curvature presents in the vicinity of the ring [see Fig. 4(b)],

FIG. 5. Evolution of energy and force as cones form sequentially.
(a) Plot of bending and stretching energies for the same simulation
as Figs. 3(b) and 3(c) (Rp = 30 mm, Rr = 15 mm, Rc = 11 mm,
h = 0.075 mm). Inset plot: Zoomed-in view. (b) Bending energy
density at Nmax = 4. (c) Force versus ε curves from experiments with
Rp = 35 mm, Rr = 25 mm, Rc ∈ {3, 6, 10, 14, 18, 20} mm, and h =
0.127 mm). Two curves are shown for each set of parameters. Drops
correspond to cone formation. (d) 3D scans from an experiment with
the same geometry as the green curves in (d) (Rc = 14 mm).

FIG. 6. Cone saturation at high ε. (a) Image from experiment
showing the development of scars from stress focusing at high ε

in a typical experiment. (b) Image with sparse cones, illustrating
how Nmax does not necessarily equal π/(2θc ). (c) Thickness depen-
dence of Nmax for experiments with Rp = 17.5 mm, Rr = 12.6 mm,
Rc = 5.4 mm (green dots), and simulations with Rp = 63.5 mm,
Rr = 42.3 mm, Rc = 10.1 mm (blue triangles).
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FIG. 7. Critical force at which the first cone forms. (a) Fc versus Rr − Rc for fixed Rp and h = 0.127. Green circles: Experiments with
Rp = 35 mm. Blue triangles: Simulations with Rp = 63.5 mm. Green, dashed line: Log-log fit to experiment series, with a slope of −1.93.
Blue, dotted line: Fit to simulation series, with a slope of −2.08. (b) Fc versus h from with fixed Rp, Rr , and Rc. Green circles: Experiments
with Rp = 17.5 mm, Rr = 12.6 mm, and Rc = 5.4 mm. Blue triangles: Simulations with Rp = 63.5 mm, Rr = 42.6 mm, and Rc = 10.2 mm.
Green, dashed line: Log-log fit to experiment series, with a slope of 3.04. Blue, dotted line: Fit to simulation series, with a slope of 3.23.
(c) Fc versus Rp − Rc for fixed Rr and h (and small Rr − Rc). Green circles: Experiments with Rr = 25 mm (Rr − Rc = 3.09). Blue triangles:
Simulations with Rr = 45 mm (Rr − Rc = 2.6). Green, dashed line: Log-log fit to experiment series, with a slope of 1.30. Blue, dotted line:
Fit to simulation series, with a slope of 0.67. (d) Schematic of the analogy to plate buckling. The section highlighted in blue is compressed
and buckles to form a truncated cone. (e) Schematic of the analogy to ring buckling. The encased ring (red, radius R ≈ Rr) is subjected to
hydrostatic pressure (blue arrows). Top: Side view. Bottom: Section view at the ring. Dashed: pre-buckled state. (f) A scaling constructed from
the empirical findings in (a)–(c) and the analogy in (d) collapses our data, with a fitted slope of 1.008 (dashed line).

as has been previously reported [41,42], and thus deformation
is not developable.

Upon examining the limit Rc → 0, i.e., where the clamp
is very small, we note that as for larger Rc, the d cone
emerges not through gradual growth, but in an abrupt transi-
tion, following wrinkling (see SM movie 7). This sudden cone
formation, accompanied by a drop in the force-displacement
curve, has not been reported in previous studies of the d cone
[25,27], e.g., with faster [36] displacement rates.

To summarize our observations broadly, we see that pre-
serving the characteristic size of cones, θc, prevails over
seeking symmetry, and that both the size of buckled features
and the wrinkle-to-cone transition point are closely tied to the
in-plane geometric parameters of our system. Understanding
how geometry drives pattern formation is central to the study
of confinement and, furthermore, the geometric sensitivity we
observe differs from the d cone, whose size is understood to
be independent of materials and geometry in ideal sheets [24].
Thus, the two questions we address next are: When does the
first cone form, and how does the size of buckled features
depend on geometry?

IV. TRANSITION FORCE

During wrinkling, compressive hoop stress, which is max-
imum at r = Rr , develops due to excess length. This leads
to buckling of a single cone at a critical force Fc, which
is accompanied by a drop in the force-displacement curve
[see Fig. 5(c)]. Stress focusing—the energetically preferable
deformation mode—prevails when this critical buckling load
is reached. Our experiments and simulations show that Fc

scales approximately as (Rr − Rc)−2 and as h3, as shown in
Figs. 7(a) and 7(b). These empirical scalings together are
likely the dominant length scales for setting the critical force.

We speculate that the geometric dependence of the critical
force could perhaps be rationalized in one of two ways. First,
we consider an analogy to plate buckling [see Fig. 7(d)].
The critical force per unit length fc ∼ kB/b2, where B =
Eh3/[12(1 − ν2)], b is the width (or radius, for a circular
plate) in the direction perpendicular to uniform compres-
sive loading, and k is a dimensionless quantity depending
on the plate aspect ratio, boundary conditions, and mode
number [43]. Setting b to Rr − Rc in our geometry and as-
suming k is a constant agrees with our empirical scaling, i.e.,
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Fc(1 − ν2)/(Eh2) ∼ �h(Rr − Rc)−2. Here, the length scale �

emerges due to integration of f over the width, i.e., the total
force Fc = fc�. At small Rr − Rc, we infer an approximately
linear relationship between Fc and Rp − Rc [Fig. 7(c)]. Taking
� to Rp − Rc, we have Fc(1 − ν2)/(Eh2) ∼ h(Rp − Rc)(Rr −
Rc)−2, which collapses our data as shown in Fig. 7(f).

Alternatively, one could imagine that the compressed por-
tion of the annulus which is confined inside the ring is
analogous to concentric, rigidly encased, elastic rings sub-
jected to hydrostatic pressure, which causes compressive
circumferential stresses to develop [see Fig. 7(e)]. (A similar
system was also studied theoretically in Ref. [24], with an
emphasis on the analogy to the d cone, but the onset of
buckling is not considered therein.) The critical pressure Pc

to buckle a section of a confined ring of radius R is Pc =
E (1 − ν2)−1(h/2R)11/5 [44,45]. We note that this expression
differs from the classical result for the critical pressure of
an unconstrained ring, where the critical pressure scales as
[h/(2R)]3 [43]. In the axisymmetric inner region, the material
at r = Rr will buckle first as the stress is highest there, so
we take R → Rr − Rc. Assuming that the critical force, Fc,
equals PcA, where A is the cross-sectional area over which
the force is distributed, i.e., A ∼ �h where, again, � is a length
that could reasonably be Rp − Rc. This gives, in dimensionless
form, Fc(1 − ν2)/(Eh2) ∼ h6/5(Rp − Rc)(Rr − Rc)−11/5.

Each of these scalings, which are very similar and in pre-
liminary agreement with our data, relies on the length scale
�, which we have taken to be Rp − Rc according to a limited
range of data at small Rr − Rc. At larger Rr − Rc, however,
we observe no clear relationship between Rp − Rc and Fc

in experiments (nor for any of the other parameters in our
system; see SM for data.) This could signify a sensitivity
to imperfections (we note that this limit also corresponds to
lower loads, which could amplify this effect due to load cell
limitations in experiments) or a change in asymptotic behav-
ior, i.e., the length scale felt by the sheet shifts. As the conical
singularity is likely governed by a local scale on the order of
the stretching zone, i.e., R∗, we speculate that this could be
the relevant length when Rr − Rc is large. While these simple
analogies may provide a route to a reasonable rationalization
for the dependence of the critical force on geometry, there is
room for a more precise theoretical treatment.

V. WRINKLE AND CONE GEOMETRY

A. Number of wrinkles

Like the critical force, the size and number of cones, and
wrinkles—which precede cones and are evenly distributed
about the sheet circumference—depend on the geometry of
the system. Though our focus here is on the size of cones,
we first recall that wrinkles emerge in the outer region of
the sheet, i.e., between Rr and Rp [Fig. 4(b)], and note that
the number of wrinkles depends primarily on these radii. The
number of wrinkles, nw, versus in-plane geometric parameters
is plotted in Fig. 8(a). The value of nw increases with ε in
some cases; observations are averaged in Fig. 8(a) and error
bars represent the range. Though there is a strong quantizing
effect of the parameter nw and clustering around nw � 6, or
Rr/(Rp − Rr ) � 2.5, we generally observe that the number of

FIG. 8. Geometric dependence of the number of wrinkles.
(a) The dependence of the number of wrinkles nw on the parameter
Rr/(Rp − Rr ). The dashed, gray line has slope 1/2 to guide the eye.
Error bars: Range of observations as ε increases. (b) nw versus Rc/Rr

for fixed Rp, Rr , and h for experiments (green circles) and simulations
(blue triangles), showing that nw is relatively insensitive to Rc. (c) nw

versus h for two series of simulations of fixed Rp, Rr , and Rc, with
Rr/(Rp − Rr ) = 1 (light blue triangles) and Rr/(Rp − Rr ) = 2 (dark
blue triangles). The sensitivity of nw to changing h increases when h
is small.

wrinkles increases with Rr/(Rp − Rr ), i.e., larger wavelengths
are preferred when there is more material outside the ring.
Overall, nw ∼ [Rr/(Rp − Rr )]1/2 appears to capture the trend
of our data, as shown in Fig. 8(a), though this data does not
cover a wide enough range to be confident in this scaling. We
find that the number of wrinkles is relatively insensitive to
Rc [see Fig. 8(b)]. When the thickness is small, nw increases
with decreasing h, but sensitivity to the thickness decreases
for thicker sheets [see Fig. 8(c)]. We find that compared to
wrinkles, cones are more sensitive to geometry and, in par-
ticular, to the size of the clamp, Rc, as we examine in detail
next.

B. Cone size

The d cone emerges in the doubly asymptotic limit of
h/R → 0 and Rc/R → 0 for characteristic in-plane length
scale R, where a cone size (at small ε) of θd-cone

c = 1.21 rad is
predicted to be independent of in-plane geometry [24]. Here,
we have examined experiments and simulations that depart
significantly from the second asymptotic limit. We find that,
in general, for sheets with finite clamp radius, the angular size
of truncated cones is dominated by the relationship between
the in-plane parameters Rc and Rr . In particular, we observe a
general trend of θc/θ

d-cone
c ∼ 1 − Rc/Rr over the range of most

of our data. This is shown in Fig. 9(a). This trend breaks down
in the small Rc/R limit, where we observe increasing scatter in
our data. (We also note that θc is systematically slightly lower
for simulations than for experiments, which we attribute to the
difference in measurement techniques.)

Interestingly, we find that the role of Rr inverts for some
intermediate Rc. In Fig. 9(b), we plot our data for which
Nmax = 1, which corresponds to Rc/Rr � 0.13, and we see
that the cone size in the d-cone limit follows a general trend
of θc/θ

d-cone
c ∼ 1 − Rr/Rp. We have also included data from

experiments with indented d cones instead of a clamped
boundary condition in Fig. 9(b), and available data in the
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FIG. 9. Geometric dependence of the cone size. (a) The angular cone size θc normalized by θc for the d cone (θd-cone
c = 1.21 rad [24])

decreases with increasing Rc/Rr in general, for relatively large Rc. Dotted line: y = x. Inset: The same plot in log-log. (b) In the small Rc limit,
the cone size is better captured by Rr/Rp. Thus, the role of Rr inverts at an intermediate Rc. Our data where Nmax = 1, including experiments
where d cones were produced by indentation instead of clamping, and data from the literature [27,46], are plotted. Data corresponds to
Rc/Rr � 0.13 in (a). Dotted, horizontal line: d-cone solution from Ref. [24]. (c) θc (normalized by the largest measured θc for each series)
versus the sheet thickness. Blue triangles: Simulations with Rc = 10.16 mm, Rr = 42.33 mm, and Rp = 63.5 mm. θc,max = 0.66 rad. Green
circles: Experiments with Rc = 5.4 mm, Rr = 12.6 mm, and R=17.5 mm. θc,max = 0.60 rad. (d) θc of the first cone that forms versus ε, for
Rp = 50 mm, Rr = 33 mm, and varied Rc in simulations. Away from the small Rc/Rp (single d-cone) limit, θc is unchanged over ε, as additional
cones can accept increasing excess length.

literature [27,46,47]. A full understanding of the sensitivity
to boundary condition type will require further investigation,
but our limited data suggests a relatively weak impact on θc.
We summarize these diverging, empirical trends in Eq. (2),
and note that this dependence on in-plane parameters is a
significant difference from the theoretical prediction for ideal
sheets [24], likely due to finite thickness in realistic sheets:

θc

θd-cone
c

∼
{

1 − Rr
Rp

if Rc
Rr

→ 0

1 − Rc
Rr

if Rc
Rr

→ 1.
(2)

We speculate that these empirical trends, which generally
capture cone size over our parameter range, emerge due to the
following energetic considerations: In the Rc

Rr
→ 0 limit, the

size of the stretching core is believed to scale as R∗ ∼ R2/3
r h1/3

[11]. The angular size of a d cone depends on a balance
between the elastic energy in the core region and the bending
energy in the bulk of the sheet [24]. Thus, we expect that
increasing the ring radius Rr raises the core radius, which is
perhaps mediated by producing smaller θc so the core region
is confined to a smaller angular extent. A large plate radius,
Rp, offers more area to distribute bending, allowing a larger
θc. On the other hand, in the relatively large Rc/Rr regime, the
arc length of the concentrated region of high deformation near
the clamp scales approximately as θcRc [see Fig. 5(b)]. The
sheet seeks to minimize the size of this costly region, so as
Rc increases, θc will decrease. Meanwhile, since there is also
radial bending in regions that contact the ring—i.e., over a
length that scales approximately as (π − θc)Rr —larger-cones
could reduce the angular extent of this deformation when Rr

is large. The change in the role of the ring radius in setting θc

at intermediate Rc/Rr remains to be explained.
We emphasize that while these low-order trends offer

coarse-grained insight, there is much room for refinement. In
particular, we do not observe a clear thickness dependence on
θc across most of the range of our data, but it likely needs

to be accounted for to capture a wider range, as suggested
by Fig. 9(c). The in-plane parameters excluded in each limit,
i.e., Rc in the small Rc

Rr
limit and Rp for large Rc

Rr
, likely should

enter as higher order terms in a more precise theoretical de-
scription. We observe enhanced scatter in the small Rc

Rr
→ 0

limit, where a single d cone forms. This scatter may be due
to several factors. In this limit, the nature of the core region
is likely sensitive to small perturbations to the indenter radius
and shape, as well as boundary conditions (clamped versus
indented or pinned). This is currently under investigation by
the authors of Ref. [48], but was not studied closely in the
present paper. Additionally, in contrast to what we observe
for most of our data where Nmax > 1, the cone size grows
nonnegligibly with ε when only one cone forms, as additional
excess length cannot feed other cones [see Fig. 9(c)]. It was
recently suggested that core size depends on ε as well [29].

VI. DISCUSSION AND CONCLUSIONS

In summary, we have investigated with experiments and
MD simulations the response to confinement of centrally
clamped sheets drawn through a ring. We observe a transition
from diffuse deformation to stress focusing, in which small-
amplitude wrinkles precede the sudden, sequential buckling of
truncated cones. We uncover empirical scalings for the force
associated with this transition, i.e., Fc scales approximately
as (Rr − Rc)−2 and the thickness cubed. Two simple models
to rationalize the geometric dependence of the force—based
on buckling of a plate and a rigidly encased ring—produce
similar results and capture our data well despite uncertainty
around an ambiguous length scale. In addition to the crit-
ical force, confinement geometry also strongly impacts the
size of periodic buckled features. Wrinkles, which are visi-
ble between the ring and the edge of the plate, depend on
the parameter Rr/(Rp − Rr ). The angular size of cones at
large deformation depends on the geometric parameters of the
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system in a manner that diverges at intermediate Rc/Rr : In
the regime where the in-plane geometry approaches that of a
d cone, i.e., relatively small clamp radius, we find empirically
that θc ∼ 1 − Rr/Rp. As the clamp size grows, the dependence
on the ring radius inverts, and our data is generally captured
by the relation θc ∼ 1 − Rc/Rr .

We are hopeful that these empirical trends could guide
future theoretical investigations, which could explain the Rr

divergence for θc and offer a more precise description of
how the excluded geometric parameters enter at higher order.
Another interesting feature of the system is that the number
of cones in the saturated state, Nmax, depends more strongly
on the thickness than does θc in our parameter range. This
suggests that in-plane stretching contributes to setting Nmax,
but may be negligible in θc, and implies a separation of energy
scales, which is understood to occur in thin sheets [12,49]:
The dominant energy (bending, in our case) likely determines
the macroscale features, whereas subdominant contributions
nudge the detailed ones. A complete model to describe the
shape selection in the high ε regime where cones are present,
and establishes greater coherence between the forces and de-
formations of confined annular sheets, is left to future work.

The following insights from our findings could have im-
plications for the general confinement and stress focusing
in thin sheets in the following ways: (1) Cones depend
strongly Rc but wrinkles do not, highlighting the extreme
sensitivity to small geometric changes when stress is focused.
(2) Relatedly, our data reveal that in realistic sheets with
finite length scales, the in-plane geometry dependence of the
system departs from the idealized d-cone theory. It remains to

precisely determine the role of the type of boundary condition,
which was clamped in the main experiments and simulations
in this work, as opposed to the indented d cone [48]. However,
we expect that this difference would impact shape selection
more when Rc ≈ Rr instead of near the small Rc limit. (3)
Our explanation for when the stress-focusing transition occurs
may inform other systems that undergo abrupt, secondary
instabilities: even when a given deformation mode is energet-
ically preferable, spontaneous transition may be inaccessible
until a critical load is reached. Further work would include
addressing when subsequent buckling events occur. Our force-
displacement data was much less reproducible after N = 1,
suggesting the existence of multiple, energetically comparable
configurations.

Finally, we note that the concentrated region of stress fo-
cusing in our model is a perturbed version of the stretching
core in the d cone [11,24,30,46], the size of which remains
a conundrum. Though we did not attempt to model this, we
hope that our system offers a window through which to probe
this parameter, i.e., by forcing the core region to spread over a
larger area. Additionally, our simulations do not include plas-
ticity, which could offer further insight into stress focusing.
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