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From stress concentrations between inclusions to probability of breakage:
A two-dimensional peridynamic study of particle-embedded materials
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Particle-embedded materials consist of a dispersed phase of particles in a sticking matrix. We used a
bond-based peridynamics method to investigate their elastic properties, rupture, and probability of failure. We
performed an extensive two-dimensional parametric study where particles are disk-shaped inclusions diluted
into a pore-filling matrix. Both particle and matrix are considered to be brittle elastic with a perfectly bonded
interface. The inclusion volume fraction ϕ and the inclusion matrix toughness ratio β (β � 1) were varied from
0.254–0.754 (jamming point) and 1.5–100.0, respectively. A total of 5000 uniaxial tensile tests up to failure
were performed. We showed that the Halpin-Tsai model fits well all Young elastic moduli even for nearly
in-contact particles. The stress distribution strongly depends on ϕ and β. As the highest stresses (at the origin of
crack nucleation) occur between neighboring particles, we analyzed the average stress in gaps. We found that,
regardless of the particle volume fraction, the yield stress is a power law of a grain-scaled stress concentration
factor. We also investigated the probability of failure of the samples. We found that whatever ϕ and β, this
probability follows a classical Weibull law. Finally, we showed that Weibull modulus, normalized by its value
for infinitely rigid particles, is inversely proportional to a function of the stress concentration factor.
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I. INTRODUCTION

Particle-embedded materials can be found in many applica-
tions in engineering [1], food products [2], pharmaceutical [3],
or in geological structures such as sandstone or granite [4].
The variability of their strength and yield stress is important
for the design of industrial products [5], analysis of food
texture [6], and strength of concrete [7].

In the simplest cases, Particle-embedded materials can be
seen as two-phase materials composed of a dispersed collec-
tion of particles embedded in a continuous percolating phase.
Similarly to fluid suspensions, the bulk mechanical properties
depend to first order on the particle volume fraction. The
highest particle volume fractions correspond to the so-called
cemented granular material, for example, sandstone or wheat
endosperm (composed of starch granules glued together by a
gluten matrix) [8]. For this typical microstructure, the contact
between the particles plays an important role as it concentrates
the stresses and can potentially lead to asymmetrical behavior
between tension and compression, or be at the origin of dissi-
pative interactions at contact [9,10].

In contrast, particle-embedded composites have been ex-
tensively studied from an experimental point of view [11–13].
Most theoretical models (i.e., Halpin-Tsai, Mori-Tanaka, self-
consistent) used to predict their elastic properties assumes
a diluted phase of particles. However, although the elastic
properties are well predicted, the accuracy of the models
generally decreases with increasing particle volume fraction.
In addition, in this limit, the yield stress and probability of
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failure cannot be predicted solely by considering the volume
of phases and the disordered structure of the solid suspension
should be considered. To do so, numerical simulation is a
powerful tool to take into account complex microstructures.
For example, Laubie et al. [14] provide a systematic paramet-
ric study of stress transmission and failure of two-dimensional
(2D) porous materials in which the pore spacial distribution is
controlled by a disorder parameter.

The numerical modeling of the failure of heterogeneous
materials remains a challenging issue. One major challenge is
to take into account the time-evolving discontinuities induced
by crack nucleation and propagation. Finite-element meth-
ods have been enriched to take into account the occurrence
of fractures. As examples, popular approaches are XFEM
method [15], cohesive zone [16], phase field [17]. Neverthe-
less, due to the general use of unstructured meshes, complex
rupture models, or heavy remeshing procedures [18], these
approaches remain highly time consuming. On the contrary,
regular lattice-based approaches are easy to parallelize and of-
fer a versatile framework for the simulation of heterogeneous
materials with complex spacial phase distribution. For exam-
ple, the lattice elements method (LEM) relies on a triangular
mesh of the domain in which each lattice bond is connected to
a pair of material points and is characterized by stiffness and
a yield force [9]. This simple approach has been proven to
be very efficient for the simulation of cementitious granular
materials including a pore phase [8,19]. However, the small
connectivity of the material points, which are only bonded to
the nearest neighbors may lead to undesired meshing effects.
Although the theoretical underpinnings are different [20], the
peridynamic (PD) approach generalizes the LEM by consid-
ering connected bonds beyond the nearest neighbors. Using
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this nonlocal framework meshing effects nearly vanish, and
the mechanical behavior and dynamics of crack propagation
can be addressed in a reasonable time.

In this work, by means of the peridynamics method we
investigate the Young modulus, yield stress, and probability
of failure of disk-shaped particle-embedded composites. We
varied the matrix-inclusion stiffness ratio and the inclusion
dilution over a wide range. In each case, we performed 100
replicates with different random draws of particle positions.

We first introduce the outline of the bond-based peridy-
namics model. A discrete element method (DEM) procedure
is employed to generate sample structures and map disk-
shaped inclusions in the peridynamics domain. Sample series
of different particle volume fractions are generated by vary-
ing the particle radius. We describe the parametric study
performed on 5000 tensile tests on samples with different
stiffness ratios and particle volume fractions. The data from
this extensive parametric study are then used to study the
statistics of the mechanical properties in relation to the mi-
crostructure of the composites.

II. BOND-BASED PERIDYNAMICS

The peridynamic (PD) approach [20] is an alternative the-
oretical framework to classical continuum mechanics. Unlike
continuum mechanics based on partial differential equations,
PD is a nonlocal approach based on an integrodifferential
formulation. In the PD, material points are assumed to interact
remotely up to a so-called horizon distance h for which the
interactions become negligible.

In this study, we used the bond-based peridynamics
(BBPD) approach [21], which relies on pairwise interactions.
The BBPD provides a simple and efficient framework for the
simulation of brittle elastic materials and is capable to upscale
the stress distribution inside highly heterogeneous materials
[22]. Furthermore, the BBPD has been used successfully to
simulate crack initiation and propagation for theoretical issues
such as crack branching [23,24] or applications to the rupture
of various types of heterogeneous materials (concrete [25] or
wood [26]).

The simulations are performed using a parallelized in-
house BBPD code developed by Frank et al. [10,22]. Samples
are first discretized in material points i = 1, . . . , N of posi-
tions xi = (xi, zi ) regularly distributed on a grid of space step
δx. This configuration is chosen as the initial time reference
(t = 0). At time t , all points i will be at position xi + ui, where
ui is the displacement of point i. From Newton’s second law,
we get for a node i:

miüi(t ) =
∑
H(xi )

ki js(ξi j, ηi j )
ξi j + ηi j

‖ξi j + ηi j‖
+ bi(t ), (1)

where H(xi ) is the set of bonds ξi j = x j − xi connecting xi to
its neighbors x j within a circular domain of size h called the
horizon (‖x j − xi‖ � h), mi is the mass of the point i, ui(t )
is its displacement, ηi j = u j − ui is the deformation of ξi j ,
and bi(t ) is a body force applied to the node i (Fig. 1). The
factor ki j is the stiffness of the bond connecting i and j and its

FIG. 1. Schematic view of the discretized peridynamic approach.
Left: reference state (t = 0). A material point xi is chosen, the
neighborhood H(xi ) of xi, the horizon h and a point within the
neighborhood x j are shown. The bond between xi and x j is ξi j . Right:
state after strain (t > 0). The displacement of both xi and x j are ui

and u j , respectively. The deformation of ξi j is ηi j .

elongation can be obtained using

s(ξi j, ηi j ) = ‖ξi j + ηi j‖ − ‖ξi j‖
‖ξi j‖

. (2)

With this model, a solid material before failure behaves as
an elastic material and the bond stiffness ki j can be deduced
from an effective Young’s modulus Eλ(i, j) [24] following

ki j = 6δx4Eλ(i, j)

πh3(1 − ν)
, (3)

where λ(i, j) is the index of the type of the bond between i
and j, and ν = 1/3 is the Poisson ratio. When i and j belong
to the same phase, Eλ(i, j) refers to Young’s modulus of this
phase. On the other hand, when i and j belong to different
phases, the bond between i and j is an interface bond and
its modulus Eλ(i, j) must be defined as an additional material
parameter. Note that Eq. (3) is valid for any system of springs
uniformly distributed on a regular grid and whatever the range
of the neighborhood [25].

In order to simulate the opening of cracks, we assume
that bonds break when they reach an elongation exceeding a
critical value sλ(i, j)

0 . The force exerted by a bond after failure is
then definitely set to 0. The critical elongation can be deduced
from a fracture energy Gλ(i, j)

c using

sλ(i, j)
0 =

√
4πGλ(i, j)

c

9Eλ(i, j)h
. (4)

The toughness Kλ(i, j)
c of the material can be deduced from

Kλ(i, j)
c =

√
Eλ(i, j)Gλ(i, j)

c .
Finally, it should be noted that it is not equivalent to calcu-

lating the phase volume from the number of nodes or links. In
the following, we will use the latter definition. Further tech-
nical details about the numerical approach can be obtained in
Ref. [10].
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FIG. 2. Schematic view of the material properties allocated to
bonds. A quarter particle is shown in yellow at the top right, the
matrix is everywhere else. Examples of particle bonds (P), matrix
(M), and interface (I), are shown in red, blue, and green, respectively.
To guide the eyes, two examples of neighborhoods (light gray disks)
are drawn.

III. NUMERICAL EXPERIMENTS

In this study, we choose to focus on 2D composites com-
posed of disk-shaped particles embedded in a matrix (Fig. 2).
The mechanical behavior of each phase is characterized by
its Young modulus and toughness: (E p, K p

c ) for the particle
bonds (shown in red in Fig. 2) and (Em, Km

c ) for the ma-
trix bonds (in blue in Fig. 2). For particle-matrix interface
bonds (Ei, Ki

c) shown in green (Fig. 2) we set Ei = Em and
Ki

c = Km
c .

By this definition, the contrast of toughness between par-
ticles and matrix is controlled by a single dimensionless
parameter

β = K p
c

Km
c

= E p

Em
. (5)

Note that the same result holds for the fracture energy ratio.
Denoting sp

0 and sm
0 the critical elongation of particles and

matrix, respectively, Eqs. (4) and (5), yields

sp
0 = sm

0 = s0 . (6)

As the mechanical behavior is brittle elastic, it follows that
both particles and matrix exhibit the same value of rupture
strain but with different yield stress as

σ
p

Y = βσ m
Y . (7)

where σ
p

Y and σ m
Y are the yield stress in tension for particle

and matrix phase, respectively.
To build the samples we rely on the following procedure:
(1) The first step is to simulate granular packings of disk

particles. We chose a uniform distribution of particle sizes
with a ratio of 2 between the largest and smallest diame-
ters. This slight polydispersity prevents particles from local
crystallization and limits long-range ordering [Fig. 3(a)]. The
particles are initially distributed on a triangular grid and then
compacted without friction using a discrete element method
(DEM) code [27]. Specific boundary conditions are used to
obtain samples with an aspect ratio of approximately 2.

(2) In order to obtain different solid fractions of particles,
we consider a shrink parameter α, which is used to scale the
particle size [Fig. 3(c)]. In this paper, this value of α will be
chosen according to targeted values of the particle fraction ϕt .

(a) (b)

(c)

(d)

FIG. 3. Sample building procedure. (a) Boundary conditions.
(b) Granular sample after compaction. (c) Granular sample after
particle shrinking. (d) Final microstructure with particles (in dark
gray) embedded into a matrix (in light gray).

It is worth noting that, unlike classical Monte Carlo proce-
dures, this shrinkage method makes it possible to control the
disorder that results here mainly from particle polydispersity.

(3) Peridynamics samples are then obtained from the dis-
cretization of the DEM packings. Due to the DEM procedure,
the ratio of sample height to width is not perfectly equal to 2.
For this reason, we used a rectilinear grid of material points
of 512 in width and approximately 1024 points in height.
With this procedure, we obtain biphasic samples constituted
by material points representing both disk particles and matrix
filling the pores [Fig. 3(d)]. For each bond, a stiffness k and a
critical elongation s0 are attributed according to the phases of
two nodes connected by the bond.

For all simulations, we used a horizon h/δx = 3, which
is a good compromise between the meshing effort and the
anisotropy of elastic properties (less than 5%) [28]. This
value of h/δ corresponds to a connectivity of 28 bonds per
material point (in the bulk) and leads to more than 14 × 106

bond elements per sample. Due to rasterization effects, we
computed peridynamics samples’ particle solid fraction using
ϕ = Np/Ntot , where Np is the number of bonds in the particle
phase and Ntot the total number of bonds. As we have con-
sidered that the interface bonds behave mechanically like the
matrix bonds, we have associated the volume of the interface
bonds with that of the matrix. For this reason, ϕ computed for
α = 1 is slightly lower than the particle solid fraction of the
original DEM packing.

We performed an extensive parametric study in which we
varied ϕ and β parameters. We considered five values of ϕ =
0.254, 0.396, 0.530, 0.631, and ϕ = ϕc = 0.754 correspond-
ing to the case of particles in contact. Regarding β, ten values
ranged from 1.5–100.0 were considered. For each couple
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(a) (b)

(c)

FIG. 4. (a) Example of numerical tensile test for ϕ = 0.631 and
β = 4.0 showing σzz stress field component before failure (the color
gradient ranges from dark blue for σzz = 0 to red for σzz close to its
maximum value). (b) and (c) shows magnifications of typical crack
patterns (for ϕ = 0.396) for toughness ratio β = 2.0 and β = 10.0,
respectively.

(ϕ, β ) in the parametric space, 100 uniaxial tensile tests until
rupture (Fig. 4) were performed using randomly generated
configurations. The total number of mechanical tests equals
thus 5000.

All tests were performed in nearly quasistatic conditions by
applying opposite displacements to both the bottom and upper
boundaries of the sample. The loading rate is taken sufficiently
low to be able to damp the elastic waves using a small viscous
force applied through the body force term [Eq. (1)]. More
details about this procedure can be found in Ref. [10].

Each sample was tested under traction until complete fail-
ure. In many applications, it is interesting to determine the
conditions under which inclusions are damaged [29–31]. Typ-
ical crack patterns are shown in Figs. 4(b) and 4(c) for two
values of β. In this figure, we see that there is competition for
the crack between crossing and bypassing the inclusions. It is
interesting to note that at low β (β > 1) there is a coexistence
of broken and bypassed particles. In the case of the failure
of a two-layered material, He and Hutchinson [32] showed
theoretically that both the toughness ratio and crack angle
of incidence govern the fracture path. Depending on β two
regimes can be identified. At low β, the crack can cross
particles. On the contrary above a critical value βc (between
3 and 4), no particles are damaged. Interestingly, βc is close
to the theoretical value of 3.85 obtained for a disk inclusion
[31,33]. In the specific case of Fig. 4(b) cracks both cross or
bypass particles depending on their angle of incidence when
impinging matrix-particle interfaces.

Figure 5 shows examples of the dimensionless stress σ/σ m
Y

as a function of the normalized strain ε/sm
0 for four values

of the toughness ratio β (with ϕ = 0.530). All the samples

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6

σ/
σ y

m

ε/s0
m

β=2.0
10.0
20.0

100.0

FIG. 5. Typical stress-strain curves for ϕ = 0.530 and various
values of β. The stress σ is normalized by the yield stress of the
matrix σ m

Y and the strain ε is normalized by the critical elongation of
the matrix sm

0 .

exhibit an elastic-brittle behavior with a well-defined slope
corresponding to the normalized Young modulus E/Em and
a maximum value corresponding to the critical stress σY /σ m

Y .
We find that Young’s modulus increases with particle stiffness
but the critical stress tends to decrease as the particles generate
higher local stress concentrations.

IV. RESULTS AND DISCUSSION

A. Elasticity

One major interest in particle-reinforced materials is that
their elastic properties can be tuned through the particle solid
fraction and possibly the stiffness of the particles. Figure 6
(points) shows E/Em as a function of β for different particle
fractions ϕ. For each ϕ the Young modulus increases almost
linearly at the beginning then level off toward the case of
infinitely rigid inclusions. We also note that the error bars are
very small except for high values of β and ϕ.

Various empirical or semiempirical micromechanics ap-
proaches were proposed to model the effective modulus of
multiphase elastic materials [34,35]. In particular, these mod-
els are valid for a dilute phase of particles in a continuous
matrix. However, they fail to predict with good accuracy
the case of high particle solid fractions since the interfaces
between particles lead to strong heterogeneities in stress
concentration. For this reason, we need to account for the
microstructure of the packing. For this reason, in this study,
we used the semiempirical approach of Halpin-Tsai (H-T),
which includes a single fitting parameter ζ capable to describe
the structural effect of the packing (Fig. 6):

E

Em
= 1 + ζωϕ

1 − ωϕ
(8a)

ω = β − 1

β + ζ
, (8b)
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E 
/ E

m

β

φ=0.254
0.396
0.530
0.632
0.754

FIG. 6. Average values of samples elastic moduli E normalized
by the matrix modulus as a function of β. Error bars display standard
deviation and solid lines Halpin-Tsai prediction [Eq. (8)].

where ζ is the so-called reinforcing efficiency (also called
shape factor), which depends on the geometrical character-
istics of the particles and their packing arrangement. Note
that ω = 0 for a homogenous material (β = 1), ω = 1 for
perfectly rigid inclusions (β = ∞) and ω = −1/ζ for holes
(β = 0).

The H-T model is based upon the theoretical self-
consistent model developed by Hill [35] and has been
successfully used to describe with very good accuracy the
elastic properties of composites at high particle solid fraction
[36]. It is worth noting that ζ → 0 and ζ → +∞ are two limit
cases that reduce to the classical inverse rule of mixture and
to the rule of mixture, respectively.

ζ does not necessarily evolve in a monotonic way accord-
ing to ϕ. In our case, limited to high particle load, we found

ζ = 0.53 +
(

ϕ

ϕc

)3.25

(9)

with a coefficient of determination R2 = 0.99 and where ϕc �
0.76. This result is consistent with Affdl and Kardos [36],
which shows that H-T underestimates experimental values
for high-volume fractions of filler. In the same vein, some
authors have proposed empirical laws to take into account the
deviation from the diluted case thanks to ϕ parameter [37].

B. Stress transmission

In a heterogeneous elastic material, the elastic contrast
between phases leads to local stress concentrations, which are
at the origin of crack nucleation. As the stress transmission
is more efficient through stiff phases, for particle-enriched
composites (with β > 1) stress concentrations are expected in
the vicinity of particles. The case of a disk-shaped inclusion in
an infinite matrix submitted to a uniaxial vertical stress σ was

(a) (b)

FIG. 7. Magnification of typical σ22 stress maps for ϕ = 0.396
and toughness ratio (a) β = 2.0, (b) β = 10.0. The stress is normal-
ized by the mean stress value 〈σzz〉. The gray levels were scaled in
order to emphasize the stress concentration zones. As expected, the
contrast increases with β.

investigated theoretically by Yevgeny and Lasko [38]. Using
this model the stress concentration factor in tension

Kβ ≡ 3β

2β + 1
� σmax

σ
(10)

is reached in the vicinity of both particle poles (see Ap-
pendix A) where Kβ is identified to � kz determined for a
single particle in tension). Kβ is an increasing monotonic func-
tion of β varying in a finite interval from 1–1.5 for β = 1.0
(corresponding to a homogeneous material) and β = ∞ (for
a perfectly rigid inclusion), respectively. Interestingly, this
value does not depend on the size of the particle.

At high particle volume fractions ϕ elastic interactions
occur between neighboring inclusions (Fig. 7). These inter-
actions lead to long-ranged correlations in the stress field
and result in stress patterns similar to force chains already
observed in dry [39,40] and cemented [10] granular materials.

To elucidate the influence of ϕ on stress transmission, we
investigate the role of pairwise stress concentration between
neighboring inclusions. It is clear that the stress concentration
decreases with particle dilution and more precisely with the
size of the gaps between the particles. A criterion is needed
to distinguish particles that are close enough to be involved in
pairwise elastic interactions. Two particles are considered as
neighbors if L < λ(Ri + Rj ), where L is the distance between
the centers of particle, Ri and Rj are the radii of i and j
before shrinking, respectively, and λ = 1.1 in our simulations
[Fig. 8(a)].

After the shrinking of particles, we get a composite
material where the gap 
 = L − αRi − αRj [Fig. 8(b)].
These active gaps constitute a lattice through which the
largest stresses are transmitted from the boundary conditions
[Fig. 8(c)].

Using the average radius Reff = (Ri + Rj )/2 we define

 = 
/αReff the normalized gap. If R is of the order of
magnitude of the average particle radius, a typical value of the
gap is 
 = 2(R − αR), and 
 = 2(1 − α)/α = 2(1/α − 1).
Noting that ϕ = α2ϕc we get 1/α = √

ϕc/ϕ and


 = 2

(√
ϕc

ϕ
− 1

)
. (11)
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L

(a)

(b)

(c)

FIG. 8. Gaps between neighboring inclusions. (a) Neighboring
particles in the initial granular packing. The distance between parti-
cle centers is L. (b) Shrunk inclusions in the final composite material,

 is the gap between the surface of particles. (c) A typical lattice of
gaps between neighboring particles (ϕ = 0.396). The inclusions are
shown in blue color, the matrix is in light grey, a thin black line is
drawn between neighboring particles and gaps are thick red lines.

Figure 9 shows that this model is in good agreement with the
numerical computation of 〈
〉. It is worth noting that this uni-
vocal relationship between 〈
〉 and ϕ is clearly a consequence
of the sample building procedure. Other procedures such as
Monte Carlo [14] or fast Poisson sampling [22] would lead to
different relationships. As expected, 〈
〉 decreases with ϕ and
for α = 1.0, the mean gap vanishes when the particle fraction
reaches the critical value ϕc = 0.754.

0.0

 0.4

 0.8

 1.2

 1.6

 0.2  0.4  0.6  0.8

<Δ- >

φ

FIG. 9. Average value of the normalized gaps 
 as a function
of particle fraction ϕ. Error bars are standard deviations. The solid
curve is Eq. (11).

 0.05

 0.1

 0.5

 1

 0.05  0.1  0.5  1

< 
σ g

 >
 / 
σ 

- 1

 2 Fβ ( Δ- / 2 )

φ=0.254
0.396
0.530
0.632
0.754

FIG. 10. Normalized average stress in gaps 〈σg〉/σ from numer-
ical simulations as a function of 2Fβ (
/2) for various values of
particle fraction ϕ. The geometrical factor is set to A = 0.4. The solid
straight line is the identity function. Inset: for a pair of particles, the
black dot indicates the position where σg is evaluated.

It has to be underlined that in this framework the loading
direction is not taken into account. A consequence is that
all gaps contribute equally independently to their orientation
and contribution to stress transmission. The validity of this
approximation relies on the fact that the material is isotropic.

For each gap, we consider σg = σ · n the normal stress in
the middle of the gap, where σ is the stress tensor and n is the
unit branch vector. In order to provide a theoretical evaluation
of 〈σg〉/σ , let us consider the stress distribution in the gap
between a pair of identical inclusions placed one above the
other. Assuming that the principle of superposition holds, the
stress is the sum of three terms: the mean stress σ and the
elastic stress induced by each inclusion taken independently.
Both last two terms can be evaluated using Eq. (A4) (see Ap-
pendix A) by disregarding the mean-field term. By denoting
δ the distance from the boundary of the considered inclusion
(δ ∈ [0,
]) we get

Fβ (δ) = A

2
(Kβ − 1)

[
5 − 3

u2(δ)

]
1

u2(δ)
, (12)

where u(δ) = 1 + δ and A is a geometrical factor reflecting
the distribution of gap orientations in the sample.

As 〈σg〉/σ is evaluated for both inclusions in the middle of
the gap (δ = 
/2) the two elastic terms are identical and

〈σg〉
σ

− 1 � 2Fβ

(



2

)
. (13)

Figure 10 shows that for A = 0.4 we get a good agreement
between 〈σg〉/σ and the theoretical model [Eq. (13)]. While
for diluted cases (ϕ < 0.4) data collapses on a straight line
regardless of the values of β, in the densest cases (ϕ > 0.6)
a second regime occurs at high β values. Interestingly this
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 0.4

 0.6

 0.8

 1

 1  1.2  1.4  1.6  1.8

σ Y
/σ

Ym

Kβ + Fβ ( Δ- )

φ=0.254
0.396
0.530
0.632
0.740

FIG. 11. Normalized mean yield stress 〈σY 〉/σ m
Y as a function of

Kβ + Fβ (
). The solid line is a power law with exponent γ = −1.3.
Inset: The black dot indicates the position where the stress concen-
tration is evaluated (assuming that failure will occur at this point).

latter is concomitant with the appearance of percolating stress
chains in the sample.

In the following, we will investigate the influence of elastic
interactions on yield stress. We will also study the statistical
distribution of these yield stress for large sets of samples
broken in tension.

C. Yield stress

In Sec. IV B, we proposed a theoretical evaluation of the
average stress in the middle of the gaps 〈σg〉. However, the
failure occurs in the close vicinity of the grains. The stress
concentration at the origin of crack initiation must be eval-
uated at this level. If we consider the case of two particles
embedded into a matrix, the maximal stress concentration
will occur close to one of the two particles. According to
Eq. (12) and the principle of superposition, the maximum
stress concentration is the sum of the stress induced by this
closest inclusion and that induced by the farthest one.

The first contribution is approximatively equal to Kβ and
the second one is Fβ (
), obtained using Eq. (12). Thus, as a
first approximation

〈σY 〉
σ m

Y

� [Kβ + Fβ (
)]−γ , (14)

where γ is expected to be positive.
While the expression of Kβ is purely theoretical, the

expression of Fβ (
) depends on A, which is a geometric
parameter accounting for the microstructure. Since Fβ (
) is
used to evaluate long-range interactions between inclusions, it
seems reasonable, as a first approximation, to adjust the value
of A by considering the middle of the gap, where long-range
interactions are dominant.

Figure 11 shows that this approximation (with γ = 1.3)
is in good agreement with the data from the numerical
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FIG. 12. Cumulative probability of failure p as a function of the
applied stress σ for ϕ = 0.530 and various values of β. In order to
gather all curves, for each β the stress is normalized by its corre-
sponding value of σ0.

simulations except for large stress concentrations [Kβ +
Fβ (
) > 1.5]. Interestingly, the deviation of the plot from the
power law occurs at stress concentrations where stress chains
start to appear.

D. Statistical analysis of failure

In this section, we investigate the statistical distribution of
yield stresses for large sets of tensile tests. The probability
p for a sample to break under a stress σ increases with σ .
Although for a perfectly homogeneous isotropic material, the
distribution has a very narrow span (as there is only one
yield stress value σY ) it is generally not the case for usual
particle embed composites whose inclusions act as random
heterogeneities. In other words, the span of the distribution is
a signature of the possible variability of the microstructure.

Following the work of Weibull [41] we considered the
cumulated probability p of failure of a sample submitted to
a given stress σ (in a tensile experiment). To fit the data we
used the so-called Weibull law

p = 1 − e−(σ/σ0 )m

, (15)

where σ0 is a scale factor corresponding to the stress for which
63.2% of samples are broken and m is the Weibull modulus
characterizing the span of the distribution. Note that σ0 is
not independent of 〈σY 〉, as 〈σY 〉 = ∫ ∞

0
∂ p
∂σ

σdσ . After a few
calculations, we get 〈σY 〉 = σ0�(1 + 1/m), where � is the
gamma function.

It is classical to use ln(σ ) and ln(ln(1/(1 − p))) axis in
which Eq. (15) appears as straight line. As an example for ϕ =
0.530, Fig. 12 shows that for each value of β the points follow
an almost straight line except at low yield stresses where
they deviate from the main linear trend. We also observe that
the slope m decreases with β, showing that heterogeneities
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FIG. 13. Weibull modulus m∞ for perfectly rigid particles (cal-
culated with β = 100 values) as a function of 〈
〉. Straight line is
Eq. (16).

in stress concentrations lead to a larger dispersion of yield
stresses.

In order to investigate the relationship between the Weibull
modulus and β and ϕ we first note that at high β values the
slope m tends to converge toward a finite value m∞ corre-
sponding to the case of perfectly rigid inclusions (note that
in this study we consider that m∞ is obtained for β = 100).

For the range of 〈
〉 of our experiments, Fig. 13 shows that
m∞ can be approximated by a straight line:

m∞ = mc
∞ + κ∞〈
〉, (16)

where mc
∞ = 23.5 (for touching particles) and κ∞ = 8.61. As

expected, the Weibull modulus is minimal in the granular
regime corresponding to the highest stress heterogeneity in
the system.

When the normalized average gap 〈
〉 = 0, inclusions
are almost in contact (ϕ = ϕc) and the stress concentra-
tion reaches its highest magnitude. In this case, the failure
stress distribution is broader, and m∞ reaches its lowest value
(Fig. 13). On the contrary, when 〈
〉 increases, the stress con-
centration decreases. Concurrently, the yield stress dispersion
gets smaller, and m∞ increases. According to our model, in the
case of an infinite dilution of inclusions, the Weibull modulus
is infinite indicating that all samples’ yield stress is identical
(without any dispersion). In this asymptotic case, the yield
stress σY tends to σ m

Y /Kβ , the distribution becomes a Dirac
and m becomes infinite. This is true whatever β value and thus
it remains the case when β → ∞. Consequently m∞ → ∞ at
the limit of infinitely diluted particles.

Although for rigid particles the Weibull modulus is solely
controlled by the spatial distribution of inclusions, in the soft
case the influence of β should be taken into account. A simple
approach is to express m as a product of m∞ by a function of
stress concentration factor Kβ . A first constraint is that m/m∞
should tend toward 1 when β tends to ∞. Another constraint is

 1
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m
/m

∞

Kβ - 1

φ=0.254
0.396
0.530
0.632
0.754

FIG. 14. Normalized Weibull modulus m/m∞ as a function of Kβ

for various values of ϕ. Straight line is Eq. (17).

that m/m∞ should tend to ∞ when β tends to 1. The simplest
equation that meets these two conditions is

m

m∞
= 1

2
(Kβ − 1)−1. (17)

Interestingly, we found a very good agreement between
this model and our numerical results (Fig. 14). We note that
the data dispersion is higher when β is close to 1.0 (corre-
sponding to the values of Kβ − 1 close to 0).

V. CONCLUSION

Using a bond-based peridynamics approach in quasistatic
conditions, we investigated the tensile strength, rupture,
and probability of failure of dense suspensions of particles
embedded in a matrix. By means of DEM simulations, we first
simulate slightly polydisperse jammed packing of disks. By
applying a uniform shrinkage factor to each disk, these pack-
ings were then used to get diluted microstructures. Using this
procedure, we randomly generate 100 different phase distribu-
tion maps per dilution. These maps were used for the meshing
of peridynamics samples. Regarding mechanical parameters,
for each sample, we considered ten possible toughness ratios
between particle and matrix phases. Finally, a total of 5000
tensile tests were carried out up to failure and analyzed in this
paper.

An important issue was to clarify the link between bulk
behavior and the spatial distribution of particles. Using a
simple expression of the shape factor parameter, we showed
that the Halpin-Tsai model is able to fit all Young moduli
even for nearly in-contact particles. We showed that the stress
distribution between neighboring particles can be approxi-
mated using a theoretical function of a stress concentration
Kβ (which depends on the toughness ratio) and the average
size of the gaps between inclusions. We found that, regardless
of the particle volume fraction, the fracture is initiated by
stress concentrations at the grain scale and the yield stress is a
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power law of the local stress concentration. Furthermore, we
found that the Weibull modulus, normalized by its value for
infinitely rigid particles, is inversely proportional to a function
of Kβ . In future work, it would be interesting to specify the
influence of possible scaling effects on the Weibull modulus.
This can be achieved by considering different sample sizes.

Finally, for 2D brittle-elastic suspensions of disk-shaped
particles, we were able to propose physically based behavior
laws relating the inclusion scale to the global scale. Although
the dilution by shrinking leads to convincing samples where
the particles are well distributed in the matrix, the obtained
behavior laws may strongly depend on this procedure (espe-
cially for Yield stresses and Weibull moduli). Indeed, particle
disorder is directly inherited from initial granular packings.
In future work, we would like to enrich this study by charac-
terizing other types of disorders and assessing to what extent
the relationships found deviate from the case of shrinkage
dilution. For example, one interesting line of research could
be to impose a random fluctuation of particle position. It can
also be noted that the present study is limited to β > 1, which
corresponds to most situations encountered in practice. In
future work, we would like to extend our parametric study
on particle-reinforced materials by considering the case of
particles that are weaker than the matrix (β < 1), up to the
limit of porous materials (β → 0).
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APPENDIX: STRESS FIELD INDUCED
BY A CIRCULAR INCLUSION

Kirsch [44] proposed a continuum formulation for the
stress concentration induced by a circular hole in an infi-
nite elastic plane of elastic parameters (Em, νm) submitted to
uniaxial loading. The case of an elastic circular inclusion of
elastic parameters (E p, ν p) was investigated by Yevgeny and
Lasko [38] who considered that the stress field can be obtained
by combining three uniaxial loadings using the superposition
principles valid for linear systems. In our case, the solution
is the sum of these of a homogeneous stress field, and two
solutions of Kirsch in tension and compression applied along
the principal axis of the domain. We consider a homogeneous
stress 〈σzz〉 applied to the domain in z direction. Denoting

FIG. 15. Stress field σzz/〈σzz〉 induced by a disk-shaped inclusion
(β = 10) for a vertical loading.

r = √
x2 + z2 the radial position, we get in Cartesian coor-

dinates
σzz

〈σzz〉 = kz (A1)

for r < R (inside the inclusion) and,

σzz

〈σzz〉 = 1 + a

[
1 + 3R2 + 10z2

r2
− b + c

]
− kxR2

r2

(
1 − 2z2

r2

)
(A2)

for r � R (outside the inclusion), where
a = (1−kz+kx )R2

2r2 , b = 8z2 3R2+2z2

r4 , c = 24R2z4

r6 and

kx = E p[(3ν p − 1)Em + (1 − 3νm)E p]

(Em + 2E p)2 − [ν pEm + (1 − νm)E p]2

kz = E p[(3 − ν p)Em + (5 + νm)E p]

(Em + 2E p)2 − [ν pEm + (1 − νm)E p]2 (A3)

In our paper as we considered ν p = νm = 1/3, we get kx = 0
and kz = 3β/(2β + 1). By denoting u = z

R Eq. (A2) becomes

σzz

〈σzz〉 = 1 + 1

2
(kz − 1)

1

u2

[
5 − 3

u2

]
. (A4)

Figure 15 shows a snapshot of the vertical stress field. The
maximum stress concentration σzz

〈σzz〉 = 1 + (kz − 1) 25
24 is

reached in the vicinity of the poles at u = ±
√

6
5 � 1.1. Note

that since 25
24 � 1.04 is close to one σzz

〈σzz〉 � kz.
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