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Universal behavior in fragmenting brittle, isotropic solids across material properties

Joel T. Clemmer 1,* and Mark O. Robbins2,†

1Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
2Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA

(Received 21 June 2023; accepted 24 August 2023; published 12 September 2023)

A bonded particle model is used to explore how variations in the material properties of brittle, isotropic
solids affect critical behavior in fragmentation. To control material properties, a model is proposed which
includes breakable two- and three-body particle interactions to calibrate elastic moduli and mode I and mode
II fracture toughnesses. In the quasistatic limit, fragmentation leads to a power-law distribution of grain sizes
which is truncated at a maximum grain mass that grows as a nontrivial power of system size. In the high-rate
limit, truncation occurs at a mass that decreases as a power of increasing rate. A scaling description is used to
characterize this behavior by collapsing the mean-square grain mass across rates and system sizes. Consistent
scaling persists across all material properties studied, although there are differences in the evolution of grain size
distributions with strain as the initial number of grains at fracture and their subsequent rate of production depend
on Poisson’s ratio. This evolving granular structure is found to induce a unique rheology where the ratio of the
shear stress to pressure, an internal friction coefficient, decays approximately as the logarithm of increasing strain
rate. The stress ratio also decreases at all rates with increasing strain as fragmentation progresses and depends
on elastic properties of the solid.
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I. INTRODUCTION

The breakdown of brittle solids into smaller components,
or comminution, is relevant to countless physical systems
including, but not limited to, industrial processes such as
milling, geomechanical fragmentation of rock, and ballistic
impacts. In such applications, it is of great importance that one
can predict the state of the final fragmented product. To effec-
tively design a milling process that optimizes a given powder
property, such as the coarseness of flour for baking cookies
vs bread [1,2], one must understand the impact of numerous
control parameters such as the speed of the mill and the total
grinding time [3]. In geomechanics, the frictional stability of
faults and the energy balance of earthquakes depend on the
structure and breakup of rock [4–6]. During ballistic impacts,
one may want to estimate the likelihood of fragmentation or
predict debris sizes for asteroid collisions [7,8], particularly
for planning redirection missions [9]. Similar concerns are rel-
evant to the design of ceramics for ballistic armoring [10–12].
Therefore, there is a great need for continuum mechanical
models of fragmentation in brittle materials [13–16].

Beyond such applications, comminution is also theo-
retically interesting as a transformation from a solid to
a complex granular state with dynamically evolving grain
sizes and shapes. Intriguingly, fragmentation has often been
noted to result in a power-law distribution of grain masses
N (M ) ∼ M−τ , where N is the number of grains of a given

*Author to whom correspondence should be addressed.
jtclemm@sandia.gov

†Deceased.

mass M and τ is an exponent with various measured values
in different systems [17]. This has been identified in both
experiments and simulations of different fragmented materials
under various loading conditions [4,18–30].

Due to these findings, comminution has been postulated
to be an example of self-organized criticality [31], where the
system is driven by shear, impact, or crushing to a critical state
with a power-law distribution of grains [18,20,32,33]. In re-
cent work [34], we used large-scale particle-based simulations
of fragmentation to characterize the development of the grain
size distribution in brittle, isotropic solids under shear. In the
quasistatic, infinite-system-size limit, fragmentation produced
a power-law distribution of grains. Moving away from this
limit by introducing finite-size or finite-rate effects, this power
law was truncated by a power of either decreasing system size
or increasing strain rate with nontrivial exponents. In analogy
to critical scaling theories for the magnitudes of avalanches in
the depinning and yielding transitions [35–47], we proposed a
scaling theory for the distribution N (M ) and measured expo-
nents by collapsing grain size distributions and their moments
across rates and system sizes.

An important follow-up question is whether these results
depend on the specific model or material being fragmented
or whether they demonstrate universal behavior. While funda-
mental changes in the class of material, e.g., brittle vs plastic
materials [26], may be associated with significant changes in
critical behavior, does the same scaling theory describe all
isotropic brittle solids such that critical exponents are insen-
sitive to the material properties of the system? Furthermore,
if the critical behavior is universal, are there other important
noncritical aspects of fragmentation that depend on the mate-
rial properties?
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Experimental studies of impacted objects found evidence
suggesting the power-law exponent τ may not depend on
the material being fractured [18]. Similar values of τ have
also been found in various other simulations and experiments
of brittle impacts [22,24,26,48]. In this work we alterna-
tively consider a shear geometry which provides continuous
fragmentation. While most experiments consider either im-
pact [18,26] or compaction [27,28], some experiments use
shear geometries and find a power-law grain size distribu-
tion that continues to evolve until large strains [4,23]. We
also extend upon investigations of universality in fragmen-
tation by systematically controlling material properties to
limit uncertainty and by characterizing how other aspects
of fragmentation depend on material properties. To accom-
plish this task, we build upon the bonded particle model
in the previous work which only included two-body bond
interactions by adding three-body angular interactions. With
this modification, the model has three parameters which can
control Poisson’s ratio and the mode I and mode II fracture
toughnesses.

With variations in material properties, we identify changes
in noncritical behavior such as the onset of power-law scal-
ing in the grain size distribution. However, no significant
deviation from the scaling theory or exponents is detected
with the exception of a possible exponent that may govern
the growing number of grains with strain. In particular, we
find there are initially fewer grains at fracture at higher Pois-
son’s ratios but the number of grains subsequently grows at
a faster rate with increasing strain relative to systems with
small Poisson ratios. While we primarily focus on the role
of elasticity in the fragmentation of two-dimensional systems
in this work, we also briefly explore changes in the frac-
ture toughness and highlight key results for three-dimensional
systems.

In addition, we expand upon our previous work and char-
acterize the rheology of the system. In contrast to typical
studies of granular flow, the grain size distribution in com-
minuting systems evolves with strain. We find this leads to a
reduction in the ratio of the shear stress to pressure, or the
internal frictional resistance to flow, with increasing strain.
Furthermore, we also identify that the grain size distribution is
strongly dependent on the strain rate; finer grains are produced
at higher rates, which produces a unique rheology where the
stress ratio decreases approximately logarithmically with in-
creasing rate. This behavior provides useful insight into the
logarithmic weakening described by theories of rate and state
friction [49].

The remainder of this article is organized as follows.
First we present the methodology and describe the numer-
ical model, its calibration, and the deformation protocol of
simulations in Secs. II A, II B, and II C, respectively. Next
we discuss results starting with a description of how the
system fractures and fragments with strain at different Pois-
son ratios in Sec. III A. Finite-size, finite-rate, and combined
finite-size and finite-rate effects are presented in Secs. III B,
III C, and III D, respectively, along with a scaling theory for
the grain size distribution. The impact of fracture tough-
ness is discussed in Sec. III E and rheology is discussed
in Sec. III F. The results of this article are summarized in
Sec. IV.

II. METHODOLOGY

Fragmentation involves many physical mechanisms which
can be challenging to simulate, including elastic deformation,
contact forces, and crack nucleation, growth, and coalescence.
Beyond the need to represent all of these mechanisms, a
model must also be computationally efficient and scale to
large system sizes to resolve highly polydisperse systems
with a representative number of grains. While there are
mesh-based continuum techniques which can model fracture
[50,51], particle-based models are particularly well suited for
this problem as they naturally handle the large number of dis-
continuities present in the fragmentation and flow of granular
materials. In this article, the term particle is only used to refer
to the fundamental element of a simulation, which may not
correspond to a physical grain. Grains are composed of one or
more particles.

Among particle-based models, there are many continuum
mesh-free methods that can model cracking [52] and several
have already been applied to the fragmentation of granular
materials including the material point method [53] and peri-
dynamics [54]. These approaches are ideal when one needs to
model a specific material with a given constitutive equation re-
lating stress and strain. Another particle-based technique,
which is particularly popular for modeling comminution, is
the discrete-element method (DEM) [55]. In DEMs, particles
traditionally each represent an individual grain and interact
by exchanging pairwise forces and torques while numerically
integrating their translational and rotational degrees of free-
dom using Newtonian mechanics. While the DEM is generally
quite computationally efficient, it can be a challenge to design
and calibrate interactions to reproduce the behavior of specific
materials [56].

To introduce fracture to DEMs, several ideas have been
proposed. One approach is to ignore the dynamics of crack
growth and replace a large particle with multiple smaller
particles when the stress on the large particle exceeds some
critical threshold to induce fracture. This can be done by either
splitting a grain along predicted crack paths as in level-set
DEM [57] or replacing particles with a predefined collection
of smaller particles [20,58]. While well-designed splitting
rules may produce realistic results [59], these techniques are
fundamentally limited to slow strain rates as they assume a
separation in timescales between the external loading of a
grain and the dynamics of fracture. Another approach is to
represent a grain using a collection of particles linked by a
network of attractive bonds [24,60–67]. Fracture is modeled
by allowing bonds to break. There are many variations of these
models with many different names, so for simplicity we refer
to them using an umbrella term of bonded-particle models
(BPMs).

For this work we designed a minimal BPM based on an
early model by Maloney and Robbins [68] revised in more re-
cent work [34] which uses point particles, akin to a breakable
spring network [69,70]. Unlike typical DEM-like BPMs, we
do not resolve the rotational degrees of freedom of particles
as rotation still emerges in collections of bonded particles.
This reduces the computational complexity of evaluating
forces and integrating trajectories, allowing us to simulate
larger systems and longer run times, needed to probe critical
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FIG. 1. Example starting states in (a) 2D and (b) 3D. Bonds that
cross a periodic boundary are not rendered.

behavior. Bonds have equilibrium lengths equal to their ini-
tial length, creating a stress-free reference state, and break if
stretched in tension beyond a threshold. This approach also
provides substantial flexibility to implement a diverse range
of mechanical responses such as plastic deformation [71] with
minimal changes to the model. In this article we introduce
three-body interactions which expands control over material
properties, a feature of the Kirkwood-Keating spring model
[72,73]. Angular terms have similarly been use in studies
of pruning disordered spring networks [74]. The model was
implemented in the large-scale atomic/molecular massively
parallel simulator (LAMMPS) [75,76], which now has a dedi-
cated BPM package.

A. Model details

In three dimensions (3D), particles are monodisperse with
diameters of a, the unit of length. To prevent crystallization
in 2D, particles are bidisperse with diameters of 3/5a and a.
The ratio of the number of large particles to small particles is
(1 + √

5)/4 as in Ref. [77]. All particles have mass m. Disor-
dered packings of particles with periodic boundary conditions
are generated using an initialization protocol similar to that
in Refs. [77–80]. Using a disordered packing ensures solids
are isotropically elastic and avoids anisotropic crack growth
associated with regular lattices [62,81,82].

Four types of interactions are used in simulations: a pair-
wise nonbonded repulsion FNB, a pairwise bonded force FB, a
three-body angular force FA, and a pairwise damping force FD.
These interactions are formulated to use a minimal number
of free parameters while also conserving linear and angular
momentum and avoiding discontinuous forces. A list of bonds
and angles are generated using a Delaunay triangulation of
the initial particle packing. In 3D, each edge with a length
less than 5

4 × 21/6a is used to generate a bond. This maximum
length criterion did not have any significant impact on results
but reduced the necessary communication between processors
for simulations running in parallel. For each triangle in 2D or
triangular face of a tetrahedron in 3D, a three-body angular
bond is created at every vertex unless one of its associated
bonds were pruned due to the length restriction. Each particle
is associated with 6 pairwise bonds and 6 angular bonds in
2D and approximately 11 pairwise bonds and approximately
24 angular bonds on average in 3D, well above the Maxwell
rigidity criterion [83]. Examples of small starting states repre-
senting bulk unfractured material are rendered in Fig. 1

The central-body nonbonded interaction represents contact
forces between particles on opposite sides of a crack or par-
ticles from separate grains that are within a distance r less
than the sum of particle radii ā. Its magnitude is calculated
using a truncated, purely repulsive Lennard-Jones force with
a minimum at ā,

FNB =
{

12u
r

(
ā12

r12 − ā6

r6

)
, r < ā

0, r > ā,
(1)

where u is the unit of energy. Bond forces represent elastic
interactions within a solid body and are central body with a
magnitude that also depends on the initial distance r0 between
the particles,

FB =

⎧⎪⎪⎨
⎪⎪⎩

6×22/3ur2
0

a2r

( r12
0

r12 − r6
0

r6

)
, r < r0

C1(r0 − r) + C3(r0 − r)3, r0 < r < λcr0

0, r > λcr0,

(2)

where λc represents the maximum stretch r/r0 of the bond
and the C coefficients are C1 = 36 × 22/3ua−2 and C3 =
−36 × 22/3(λc − 1)−2ur−2

0 a−2. These coefficients are chosen
to ensure that all bonds have a constant r0-independent linear
stiffness of kB = 36 × 22/3ua−2 around an equilibrium dis-
tance of r = r0 and that forces go to zero at r = λcr0, the limit
where bonds break.

Every three-body angular interaction is associated with
two bonds that share a central particle. This interaction is a
function of the deviation between the initial and current angles
between the two bonds, δθ ≡ θ − θ0, as well as the current
stretch of the two bonds, λ1 and λ2. Three-body forces act as
torque springs within the plane of the three particles with a
magnitude of

FA = kAS(λ1, λ2) ×
{

δθ − 1
θ2

c
δθ3, |δθ | < θc

0, |δθ | > θc,
(3)

where kA is an angular stiffness, θc represents the maximum
angular deviation from θ0, and S(λ1, λ2) is a smoothing term
given by

S(λ1, λ2) =

⎧⎪⎪⎨
⎪⎪⎩

1, εmax < 0

1 − 2 ε2
max
ε2

c
+ ε4

max
ε4

c
, 0 < εmax < εc

0, εmax > εc,

(4)

where εc ≡ λc − 1 and εmax ≡ max(λ1, λ2) − 1. Forces
smoothly go to zero and the angular interaction breaks as δθ

approaches θc or as either of the associated bonds breaks.
Finally, a damping force, commonly used in dissipative

particle dynamics [84], is also applied to all pairwise inter-
acting particles,

�FD = −γ

(
1 − r

rmax

)2

(r̂ · δ�v)r̂, (5)

where �r = rr̂ is the vector between the two particle positions,
δ�v is the difference in particle velocities, rmax represents the
maximum interaction distance (ā for nonbonded particles and
λcr0 for bonded particles), and γ is the damping strength.
This construction is Galilean invariant and is the lowest-order
damping term present in isotropic solids [85]. The damping
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FIG. 2. (a) Bulk and (b) shear modulus normalized by the bulk
modulus at kA = 0, or B(0) = 50.7 in 2D and 37.9 in 3D, as a func-
tion of angular stiffness kA in 2D (blue circles) and 3D (red triangles).
Dashed lines in (b) have slopes of 3.4 and 3.6 and intercepts of 25 and
21 in 2D and 3D, respectively. (c) Poisson’s ratio νPR as a function
of kA. Horizontal dashed lines highlight νPR = 0.17 (the approximate
value of boron carbide), 1

4 , and 1
3 . Vertical lines mark kA = 0 and 3.0.

strength γ does not significantly affect material properties and
is set to 50

√
mu/a in all simulations, large enough to ensure

there are minimal thermal effects. For the remainder of this
article, all quantities are reported without units, scaled by the
necessary factors of a, m, and u. A velocity-Verlet integrator
is used with a time step of 0.005.

B. Calibration of material properties

After accounting for units, the model described above has
three free parameters kA, λc, and θc, i.e., an angular stiffness,
critical bond stretch, and critical angle. In this section these
three parameters are mapped to three important material prop-
erties and calibrated. For isotropic systems, linear elasticity
can be described by two variables such as the bulk and shear
moduli. As λc and θc affect failure at large strains, the only
relevant parameter is kA. The bulk modulus B is measured
by isotropically compressing a periodic sample at a constant
strain rate and fitting the resulting linear rise in pressure up
to a volumetric strain of 0.5%. The response to volumetric
expansion or contraction is largely determined by pairwise
bonds and B has minimal dependence on kA [Fig. 2(a)]. We
therefore assume a fixed value of 50.7 in 2D and 37.9 in
3D. This value can be scaled to match the bulk modulus of
real materials by simply adjusting the units of a simulation.
The shear modulus G is similarly measured using simple

shear deformation and is found to linearly increase with kA

as seen in Fig. 2(b). From these results, the Poisson ratio,
νPR = (B − G)/(B + G) in 2D and (3B − 2G)/(6B + 2G) in
3D, depends significantly on kA in Fig. 2(c).

In isotropic particle packings with pairwise central forces,
Poisson’s ratio is restricted to equal 1

3 in 2D and 1
4 in

3D [86], as approximately obtained above in the absence
of angular forces at kA = 0. By increasing the strength of
angular interactions, triangular or tetrahedral collections of
bonded particles become more resistant to changes in shape.
In isotropic compression or expansion, this is largely irrel-
evant, explaining why B has minimal dependence on kA.
In contrast, this strengthens the material’s shear modulus,
thus decreasing its Poisson ratio, extending into the auxetic
limit.

A similar effect is obtained in BPMs based on the DEM
where particles have rotational degrees of freedom and bonds
transmit shear forces and torques, acting like elastic beams.
By increasing the relative shear stiffness, these models can
also represent smaller Poisson ratios in disordered systems
by similarly increasing the shear strength [66,87]. However,
it is difficult to obtain the opposite result and decrease G or
increase Poisson’s ratio. One could potentially use negative
shear or angular stiffnesses, as seen in Fig. 2(c), but this may
create instabilities. Other unique solutions to control Poisson’s
ratio also exist. In the distinct lattice spring model [88], a local
strain tensor is calculated at the location of each point particle
to construct rotationally invariant shear springs. In the lattice
particle model, a volumetric energy term is used to derive a
multibody interaction between particles [89].

Next we consider the fracture toughness of the material,
or the maximum stress intensity factor a crack in the solid
can support before it propagates. We focus specifically on
mode I and mode II fracture toughnesses, which measure the
resistance to the propagation of a tensile opening crack (mode
I) and a shear crack (mode II). To measure mode I toughness
or KIC, we consider a square system with an elliptic void
with major and minor axes of 20 and 2, respectively, and free
boundaries. In 3D, the third dimension is periodic and thin.
All bonds crossing the ellipse are deleted. Tension is applied
perpendicular to the major axis of the ellipse by displacing
particles on the boundaries at a fixed rate until the crack grows
and the system fails. The peak stress before crack propagation
is used to calculate KIC [90]. Varying the system size, crack
length or width, and box height can change estimates of KIC

by about 10%. As λc sets the failure strain, KIC increases
linearly with λc as seen in Fig. 3, where KIC is normalized by
Young’s modulus E to remove most of the dependence on kA.
For small values of λc, no significant dependence of KIC on θc

is detected. However, at large values of λc, KIC can depend up
to 10% on θc as angular bonds break before pairwise bonds.
As this effect is relatively small, it is neglected. The speed
of crack growth is also measured by tracking the location of
broken bonds in time. In 3D, the crack front accelerates at
small times before reaching a constant speed of approximately
55% of the Rayleigh wave speed, a theoretical maximum
limit [91].

Finally, we measure the resistance to shear crack growth,
or mode II fracture toughness KIIC. Experimentally inducing
a pure mode II crack requires complex setups to suppress
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K
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E

FIG. 3. Mode I fracture toughness KIC normalized by Young’s
modulus E as a function of the critical bond stretch λc for values
of the angular stiffness kA and the approximate associated Poisson’s
ratios indicated in the legend in (a) 2D and (b) 3D

the growth of mode I cracks [92,93]. Here we force shear
crack growth by controlling which bonds break in a simple
geometry to estimate KIIC. A fully periodic system undergoes
pure shear with an elliptic void oriented 45◦ between the
tensile and compressive dimensions. In 3D, the elliptic void
extends through a thin third periodic dimension. Only bonds
along a thin region oriented in the direction of the crack, as
rendered in Fig. 4, have a finite value of λc and can break.
Then KIIC is calculated from the peak shear stress [90]. The
ratio of fracture toughnesses has a complicated dependence
on λc, kA, and θc, as seen in Fig. 5. Generally there is an
increase in KIIC/KIC with increasing θc, demonstrating that it
is possible to independently vary the two fracture toughnesses.
However, we do not further explore this calibration as there is

FIG. 4. Geometry used to induce a shear crack in 3D. Compres-
sion is applied in the horizontal dimension while extension is applied
in the vertical dimension. Only the red bonds have a finite λc.
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  λc=1.03
  λc=1.05
  λc=1.07

FIG. 5. Ratio of mode II fracture toughness KIIC to mode I frac-
ture toughness KIC as a function of the critical angle θc in (a) 2D and
(b) 3D for λc = 1.03 (circles), 1.05 (triangles), and 1.07 (squares)
and kA = 3 (blue) and 5 (red). At kA = 3, the Poisson’s ratio is
νPR ≈ 0.18 in 2D and 0.17 in 3D.

relatively limited experimental data on KIIC in brittle materials
for comparison.

C. Simulations and deformation protocol

Simulations of fragmentation are run using square or cu-
bic systems with fully periodic boundaries and side lengths
L of 1600 and 200 with approximately 4 × 106 and ap-
proximately 7 × 106 particles in 2D and 3D, respectively.
Section III B also considers smaller systems in 2D. As a
reminder, these lengths as well as all others in the text are
normalized by the diameter of particles a. For each system
size, multiple realizations are generated using different ran-
dom packings to improve statistics by averaging results across
these realizations. With the exception of Sec. III E, which
explores the effect of fracture toughness on fragmentation,
simulations use values of λc = 1.05 and θc = 10◦. In con-
trast, many different values of ka are explored throughout the
results.

After generating fully bonded initial states, constant vol-
ume shear is applied at a fixed strain rate denoted by ε̇. In 2D,
pure shear is applied by extending the x dimension at a con-
stant true strain rate of ε̇ while compressing the y dimension
by −ε̇. In 3D, triaxial compression is applied by expanding
the x and y dimensions at a rate ε̇/2 while compressing the z
dimension at a rate of −ε̇. The strain is then defined as ε ≡ ε̇t ,
where t is the elapsed time. Although this work considers only
triaxial compression, it is important to note that in 3D there is
a spectrum of shear types which can have significant impacts
on granular flow [94] and could have impacts on fracture and
fragmentation. As the simulation cell deforms, particle posi-
tions are affinely remapped. To avoid compressive dimensions
becoming too thin, Kraynik-Reinelt boundaries are used in 2D
[95] and generalized Kraynik-Reinelt boundaries are used in
3D [96,97], leveraging various implementations in LAMMPS
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TABLE I. Reproduced estimates of critical exponents in 2D at
ka = 2.5 and their definitions from Ref. [34] where ka = 0.0. In
3D, τ = 1.7 and φ = 0.7. No significant dependence on material
properties was identified in this article except in φ.

Exponent Estimate Definition

τ 1.70 ± 0.08 N (M ) ∼ M−τ

φ 0.55 ± 0.07 N (M ) ∼ εφ

γ 1.65 ± 0.1 N (M ) ∼ Lγ

α 1.7 ± 0.15 Mcut ∼ Lα, ξα

ν 0.70 ± 0.08 ξ ∼ ε̇−ν

[79,80,98]. A stress tensor is calculated using the sum of the
virial and kinetic energy tensors.

III. RESULTS AND DISCUSSION

A wide range of simulations were run to explore the impact
of strain, strain rate, system size, and material properties on
fragmentation. Due to the extra computational costs incurred
by the three-body angular interactions and the larger param-
eter space, results in this article are based on smaller system
sizes and fewer random realizations than our previous work
[34]. Therefore, we rely on our previous measures of expo-
nents taken from systems with ka = 0, summarized in Table I,
and generally do not attempt to refine estimates of exponents.
Instead, we primarily seek to identify where behavior changes
with material properties and explore new results such as the
rheology.

A. Evolution with strain

To begin, we characterize how systems fracture and frag-
ment as they shear in the low-rate limit. Results are presented
in both 2D and 3D, although the discussion focuses on two-
dimensional systems, which generally exhibit qualitatively
similar behavior to three-dimensional systems. In Fig. 6, an
example two-dimensional system is rendered at various in-
crements of strain to demonstrate the transition from a solid
material to a highly polydisperse granular state as bonds are
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1.00

0.00 0.05 0.10 0.15 0.20 0.25
Strain ε

N
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m
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iz
ed

 
J 2 3D

2D

FIG. 7. Shear stress as a function of strain in 2D (blue dashed
line) and 3D (red solid line) normalized by the peak shear stress.
In 2D, L = 1600, ka = 2.5 (νPR ∼ 0.20), and ε̇ = 10−5. In 3D, L =
200, ka = 3.0 (νPR ∼ 0.17), and ε̇ = 3 × 10−5.

broken between particles. Example stress-strain curves are
plotted in Fig. 7, where the shear stress is quantified as the
square root of the second invariant of the deviatoric stress
tensor

√
J2.

This system, as well as all others in this section, is strained
at a relatively low rate of 10−5 in 2D and 3 × 10−5 in 3D,
which are quite close to the quasistatic limit and exhibit mini-
mal finite-rate effects as further characterized in Sec. III C. In
these figures and in the majority of demonstrative results in
this text, we consider a single value of ka = 2.5 or a Poisson
ratio νPR ≈ 0.20 in 2D and ka = 3.0 or νPR ≈ 0.17 in 3D. This
choice is used as a default to illustrate general behavior. A
nonzero value is chosen to contrast previous work which only
used two-body interactions [34], while the specific value in
3D is chosen to reflect the elastic properties of boron carbide,
an important ceramic for ballistic armor [12]. Note that the
bulk modulus can be trivially adjusted to match that of boron
carbide by defining the appropriate simulation units.

At zero strain, there are are no forces between particles
and no stress in the system. With increasing strain the stress
grows linearly in Fig. 7 before eventually dropping rapidly as
the system brittlely fractures. Shortly after fracture at a strain
of 0.02 (or 2%) there are a few large system-spanning cracks
which cause failure, as seen in first panel of Fig. 6. While
these cracks may seem to have only broken the system into a

FIG. 6. Sections of a two-dimensional system with ka = 2.5 sheared at a rate of ε̇ = 10−5 to strains of 0.02, 0.5, 1.0, and 2.0 going from
left to right (or 2% to 200%). Particles are colored by the number of broken bonds going from zero (dark blue) to six (light yellow). White
regions represent voids, such as gaps in opening cracks. The inset in the first panel highlights broken fragments along a crack.
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FIG. 8. Distributions of the number of grains N as a function of the grain mass M, N (M ), measured at the indicated strain (up to 1.0 or
100%) in (a) and (c) 2D and (b) and (d) 3D using the same parameters in Fig. 7. In (c) and (d) distributions are scaled by Mτ ε−φ with τ = 1.7
in 2D and 3D and φ = 0.4 in 2D and 0.7 in 3D. Dashed lines in (a) and (b) have slopes of −τ . Dotted lines indicate estimates of Mmin = 100
(2D) and 1000 (3D) and Mmax is indicated by enlarged outlined symbols.

few fragments or grains, there is actually significant structure
and granular debris along the path of cracks, highlighted in the
figure’s inset. During simulations, we track when each bond
breaks to identify when new grains are produced. A grain is
defined as a disconnected subgraph in the bond network, i.e.,
an isolated set of bonded particles. At regular intervals, the
number of grains N of a given mass M is tallied to calculate
the distribution of grain masses N (M ). Grains smaller than
M = 3 in 2D and M = 4 in 3D are not included in plots of
N (M ).

Shortly after fracture, the system already contains grains
with masses spread over six decades as seen in distributions
N (M ) in Fig. 8(a). Furthermore, above some small threshold
Mmin ∼ 100, N (M ) resembles a power-law decay extending
up to some maximum grain size cutoff Mcut ∼ 105. Alternate
behavior in small grains M < Mmin is not surprising as frag-
mentation is ultimately limited by the size of a single particle,
which affects statistics in this limit. At larger mass scales,
the distribution curves slightly upward from the power law
before reaching a maximum grain size of Mmax ∼ 3 × 106 or
nearly half the mass of the entire system. Grains of size Mmax

are exemplified by the large unbroken components in the first
panel of Fig. 6.

As strain increases, the stress in Fig. 7 then settles around
a smaller value as the system undergoes granular flow. During
this flow regime, grains continue to fragment as demonstrated
in the other panels of Fig. 6 and the distribution shifts upward
in Fig. 8(a) as more grains of mass M < Mmax are produced.
Although it is not obvious in Fig. 8(a), Mcut grows as the
power law extends further (as further demonstrated below).
To provide the mass for this increase, N (Mmax) and Mmax

decrease as the largest fragments break up. This process con-
tinues until roughly one unit of strain where the power law
extends up to the largest grains in the system and Mcut ∼
Mmax ∼ 106. In this limit, data are consistent with a power-law
distribution N (M ) ∼ M−τ with a value of τ = 1.7, as previ-
ously measured in systems with ka = 0 [34]. The power-law
regime is highlighted in Fig. 8(c) where distributions are nor-
malized by Mτ . At larger strains, not shown, Mcut and N (M )
for M > Mmin slowly decay as grains continue to break into
smaller pieces.

In three-dimensional systems, we see qualitatively similar
behavior in Fig. 8(b). However, the distinction between Mcut

and Mmax is more pronounced and there is a clear gap that
closes with increasing strain. A power law is identifiable at
M > Mmin ∼ 103 starting at strains of ε ∼ 0.1 and reaching a
maximum span by ε = 1. The exponent is consistent with the
previous estimate of τ = 1.7 [34]. Simulations at other values
of ka were not run in 3D due to computational costs.

Under a compaction loading geometry, experiments have
found that comminution reaches a terminal state where the
grains stabilize and stop breaking [27,28], as is often assumed
in continuum models of breakage [13–16,33]. However, these
results are hard to compare to our simulations due to the fun-
damental differences in loading. A stronger comparison can
be made to shear experiments by Marone and Scholz [4] and
Coop et al. [23], where grain breakage was found to persist
to large strains before possibly reaching a steady-state limit
at strains of approximately 150% and thousands of percent
strain in the respective studies. These approximate steady-
state distributions were found to have fractal dimensions of
approximately 2.5 or 2.6, which correspond to τ of 1.83 or
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FIG. 9. Number of grains with a mass M > 100 as a function of
strain ε for the indicated values of ka in 2D. Values of ka = 0, 2.5,
5, 8, and 12 correspond to νPR ≈ 0.33, 0.20, 0.10, 0.0, and −0.11,
respectively. Dashed lines have slopes of 0.55 and 0.25.

1.87. This qualitative saturation in breakage at large strains
and the estimates of exponents are reasonably close to the
results from simulations studied here.

Compared to our previous results in larger two-
dimensional systems at lower rates at ka = 0, we note two
differences [34]. In our prior work we observed a clear
gap in the distribution for Mcut < M < Mmax for strains less
than approximately 1.0 which is not present in the two-
dimensional data seen here (but is seen in 3D). However, a
gap is also not seen in other two-dimensional data sets run in
this work at other values of ka, including ka = 0. So this is
not likely a physical change associated with the addition of
three-body interactions but rather either due to the sampling
statistics of these relatively rare grains or due to the slightly
higher strain rate in these simulations. More importantly, the
other difference is the quantitative shift upward in distribu-
tions with increasing strain. In Ref. [34] we found that this
growth was approximately proportional to strain to a power
φ = 0.55 ± 0.07 such that the number of grains grew as
N (M ) ∼ εφ for Mmin < M < Mcut. Here the data are consis-
tent with φ = 0.4 ± 0.1, as seen in Fig. 8(c), where N (M ) is
additionally normalized by εφ . This suggests that the increase
in the number of grains with ε may depend on the linear
elasticity of the system, ka or νPR. In 3D, the vertical scaling
of distributions with strain is consistent with φ = 0.7, the
value roughly estimated in Ref. [34] at ka = 0.0. However,
three-dimensional data extend over an even narrower range of
strains, leading to more uncertainty about the presence of an
actual power law and possibly requiring a larger range of ka

to detect any dependence of φ on ka.
To further investigate the strain dependence of the number

of grains in 2D, we integrate distributions N (M ) in systems
with ka ranging from zero to 12.0, or Poisson’s ratios of
νPR = 1

3 to −0.11 (well into the auxetic limit). Only counting
larger grains with masses M > Mmin, we find more grains are
generated during the initial fracture of the system at large ka

(small νPR). However, new grains are created at a faster rate
at small ka (large νPR), as seen in Fig. 9. While we cannot de-
termine whether these data reflect an actual power law due to
the limited domain of ε considered and the fact that estimates
of φ may depend on Mmin, one could feasibly measure an

FIG. 10. Rendered sections of a two-dimensional system of size
L = 1600 sheared to ε = 1.0 at a faster rate of ε̇ = 3 × 10−5 for
values of ka = 0 (left) and 12 (right) or νPR ≈ 0.33 and −0.11.

exponent φ from approximately 0.55 to 0.25 with increasing
ka (decreasing νPR), demonstrating a significant difference in
the rate of breakage in systems with different Poisson ratios.

Finally, we focus on the large-strain limit of ε = 1.0 and
explore the impact of varying ka. Poisson’s ratio clearly affects
the fragmentation process, as seen in Fig. 9, but does it affect
the final critical state of the system? Example fragmented
systems at the extreme values of ka = 0 and 12 are seen in
Fig. 10. Interestingly, there are observable differences in the
shape of grains. Grains appear more elongated with increasing
ka (decreasing νPR). However, despite the changes both in
the appearance of grains and in the evolution of N (M ) with
strain, distributions of N (M ) at ε = 1.0 are remarkably similar
and have a minimal dependence on ka, as seen in Fig. 11(a).
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FIG. 11. (a) Distributions N (M ) in two-dimensional systems
sheared to a strain of ε = 1.0 at a rate of ε̇ = 10−5 for the indicated
values of ka. The dashed line has a slope of τ = 1.7. (b) Same
distributions as in (a) but scaled by Mτ .
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FIG. 12. Distributions N (M ) in systems of the indicated size L with (a)–(c) ka = 2.5 and (d)–(f) ka = 12 sheared to a strain of ε = 1.0 at
a rate of ε̇ = 10−5 for L = 1600 and ε̇ = 3 × 10−5 for all other L: (a) and (d) raw distributions, (b) and (e) N (M ) scaled by Lγ , and (c) and
(f) a fully scaled N (M ) using Eq. (6) plotted using values of τ = 1.7, γ = 1.65, and α = 1.7. For each data set, the largest mass at each L is
enlarged and outlined to improve visibility.

Distributions all decay with M with a power law close to
τ = 1.7. One can identify a slight dependence on ka after
dividing out the expected power law [Fig. 11(b)] as N (M )Mτ

trends slightly downward with increasing ka (decreasing νPR).
However, even in the extreme case of ka = 12, one might only
measure τ as high as 1.75, which is still within the estimated
uncertainty in Ref. [34]. Additionally, this potential shift is
most noticeable in grains of mass M < 103 and measurements
of critical exponents should ideally focus on larger grains
where a shift is not as clear.

A possible explanation for a slight shift in the power law
of distributions could be that systems at different values of
ka exhibit different lower mass scaling cutoffs Mmin or dif-
ferent finite-size or finite-rate effects. In the previous work
in [34], the measured power-law exponent was found to vary
with rate, as further discussed in Sec. III C. To confirm the
measured exponent does not change with decreasing rate, we
collected data for ka = 12 at an even slower rate of 3 × 10−6

but found no significant difference. Alternatively, it is possible
that changes in the elasticity could shift the transition to the
quasistatic limit in finite-size systems, as further discussed in
Sec. III D. However, ultimately, any change in τ is still within
uncertainty and cannot be determined to be significant.

B. Finite-size effects

In smaller systems, one naturally expects fewer and smaller
grains. This is seen for two-dimensional systems in Fig. 12
at both ka = 2.5 or νPR ≈ 0.20 in Fig. 12(a) and ka = 12 or
νPR ≈ −0.11 in Fig. 12(d). Systems are sheared to a strain of
1.0 at a rate of ε̇ = 10−5 for the largest system size of L =
1600 and ε̇ = 3 × 10−5 for all other sizes. At both values of
ka, N (M ) shifts downward with decreasing linear system size
L while the upper cutoff of the power law Mcut similarly drops.

A reasonable assumption might be that the number of
grains should scale with the total mass in the system such that
N (M ) ∼ Ld , where d is the spatial dimension. However, while
the vertical shift in distributions is reasonably described by a
power law N (M ) ∼ Lγ , the exponent γ is distinctly less than

d for both values of ka as measured by collapsing distributions
in Figs. 12(b) and 12(e) using a value of γ = 1.65 ± 0.1
from previous work [34]. Notably, this implies the number
of grains grows subextensively with the size of the system.
After scaling, one can still identify a slight splay in distribu-
tions across L such that data may be better fit by γ = 1.75
for all ka studied in this work except for ka = 12.0, which
may be better fit by γ = 1.80. However, like estimates of τ ,
this determination depends on which domain is considered,
ideally focusing on the largest grains for which statistics are
weakest. Therefore, we cannot conclude this effect is signif-
icant, again noting that these results rely on overall smaller
systems at higher rates with fewer statistics than previous
work.

To capture the dependence of N (M ) on L, we construct a
finite-size scaling theory for N (M ). This process is based on
similar derivations of critical scaling theories for the magni-
tude of avalanches in the depinning and yielding transitions
[36,38,42–44,47]. We assume that Mcut ∼ Lα , where α is a
critical exponent, and that N (M ) only depends on the ratio
M/Mcut. This leads to the ansatz

NQS(M, L) = Lγ−ατ f (M/Lα ), (6)

where f (x) is a scaling function. To ensure there are no grains
larger than Mcut, f (x) must go to zero for M � Lα or x � 1.
In the opposite limit of M 	 Lα , f (x) must scale as x−τ for
x 	 1 such that NQS ∼ Lγ M−τ . Using this scaling relation,
we find distributions are reasonably collapsed using a value
of α = 1.7 in Figs. 12(c) and 12(f). Notably, this implies the
size of the largest grain also grows subextensively with the
size of the system. There is some splay in the scaled data near
the cutoff Mcut which might be due to noncritical behavior in
smaller systems or slight finite-rate effects in large systems,
as discussed in the following sections.

As it is difficult to rigorously identify the location of the
cutoff Mcut in Fig. 12 due to limited statistics of large grains,
we alternatively consider the moments of the distribution to
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FIG. 13. Mean-square grain size as a function of two-
dimensional system size L for the indicated values of ka. Data are
collected at a strain of ε = 1.0 at a rate of ε̇ = 10−5 for L = 1600
and ε̇ = 3 × 10−5 for all other sizes. The dashed line represents a
power law with exponent 2 + α with α = 1.7.

improve estimates of α and derive a scaling relation between
exponents. Calculating the nth moment, we find

〈Mn〉QS =
∫

MnNQS(M, L)dM (7)

=
∫

Lγ−ατ Mn f (M/Lα )dM. (8)

Note that this definition is not normalized by the total number
of grains. Substituting variables for x = M/Lα yields

〈Mn〉QS = Lγ+α(n+1−τ )
∫

xn f (x)dx, (9)

where the integral is dominated by the upper limit and
converges for n > τ − 1 ∼ 0.7. Since this expression is not
normalized, the lowest moment n = 1 simply equals the total
mass in the system and scales as Ld in d dimensions. This
implies a scaling relation

d = γ + α(2 − τ ). (10)

A similar scaling relation exists for exponents describing the
distribution of avalanche magnitudes in sheared disordered
systems in the yielding transition [42,43,79].

For the second moment we find

〈M2〉 ∼ Lγ+α(3−τ ) ∼ Ld+α (11)

using the scaling relation in Eq. (10). This expression is par-
ticularly useful as it isolates the exponent α. Calculating the
second moment from the same data used to produce Fig. 12,
we find 〈M2〉 grows with system size L at all values of ka

(Fig. 13). This growth is consistent with a power-law exponent
α = 1.7 measured in Ref. [34]. The value of 〈M2〉 is overpre-
dicted in the largest system size, which could imply a smaller
value of α at all ka; however, the possible deviation in α is
not larger than the ±0.15 range of uncertainty estimated in
the previous work (Table I). Furthermore, as noted before, the
largest system sizes may have slight finite-rate effects leading
to a smaller values of 〈M2〉. In the following two sections we
incorporate the scaling of 〈M2〉 with rate to account for this
possibility.
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FIG. 14. Stress ratio as a function of strain at the indicated strain
rates ε̇ in (a) 2D at L = 1600 and ka = 2.5 and (b) 3D at L = 200
and ka = 3.0.

C. Finite-rate effects

Up to now, results have focused on the low-strain-rate limit.
With increasing strain rate, systems yield at larger strains and
fracture occurs over a wider range of strain, as seen in Fig. 14.
At larger strains, the shear stress still stabilizes as the system
reaches a quasisteady state of granular flow and comminution;
however, systems stabilize around larger stress at higher rates.
This is clearly visible in two-dimensional stress-strain curves
but also occurs in 3D, although the magnitude of the effect
is smaller and is only easily visible at larger strains. As in
the quasistatic limit, the flow stress gradually decays with
increasing strain.

These changes in the mechanical response arise from the
underlying changes in the microscopic granular structure.
In Fig. 15 a dramatic change in the characteristic size of
grains with increasing strain rate is seen in snapshots of
two-dimensional systems sheared to one unit of strain. As
one would expect, at faster strain rates the system nucleates
and grows more cracks [99], causing the system to break
into smaller fragments [24,25,48,100–103]. Here we aim to
quantify how the characteristic size of grains decreases over
this broad span of strain rates.

To quantify this behavior, we again turn to distributions of
grain masses N (M ) as seen in both 2D and 3D in Fig. 16.
As the strain rate increases, the upper limit of N (M ) shrinks,
reflecting the qualitative reduction in the largest grain size
seen in Fig. 15. While N (M ) still appears to decay as a
power of M at high rates, interestingly N (M ) becomes less
steep with increasing rate. This trend becomes more apparent
after normalizing by the quasistatic power law [Figs. 16(c)
and 16(d)] as N (M )Mτ clearly rises above the predicted qua-
sistatic power law at high rates. These data could suggest
either that the exponent τ systematically depends on the
strain rate, which would be quite unusual, or that the actual
power law only emerges for rates smaller than approximately
10−4 such that higher rates exhibit some other noncritical
behavior. As the difference between exponents of two con-
secutive curves decreases with progressively decreasing rates,
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FIG. 15. Rendered sections of a fragmented two-dimensional system of size L = 1600 with ka = 2.5 sheared to a strain of ε = 1.0 at rates
of ε̇ = 10−5, 3 × 10−5, 10−4, 3 × 10−4, and 10−3 going from left to right.

the slope appears to be converging, suggesting the data are
more consistent with the latter option. However, resolving this
distinction would again require running simulations of even
larger systems at slower rates.

Regardless of the origin of this effect, it is interesting to
note that one could conceivably measure a wide range of τ

spanning from 1.7 to around 1.3 in 2D and 3D depending
on rate. This could reflect the range of exponents measured
in different experimental systems [17]. While the quasistatic
power law of N (M ) is found to be quite robust to changes
in material properties, evidencing universal behavior within
the regime of isotropic brittle materials, one could potentially
still measure different exponents at high rates. Although this
paper does not include a thorough dissection of the evolu-
tion of N (M ) with strain at high rates, we note that N (M )
evolves very differently with strain compared to the low-rate
limit discussed in Sec. III A. Specifically, at high rates the
distribution is initially steeper at small strains but becomes
less steep with increasing strain up to strains of approximately
1.0. In a system sheared at a high rate, one could therefore

potentially fit different exponents depending on the strain.
This behavior was discussed briefly in Ref. [34] for ka = 0.0,
and similar trends were identified in systems with ka �= 0.0,
although further simulations and alternate analytic techniques
like population balance modeling are required to thoroughly
explore this behavior.

With increasing strain rate, energy is added more rapidly to
the system. To confirm that energy dissipates quickly enough
and that results reflect the overdamped limit, we ran simula-
tions at the fastest rate of ε̇ = 10−3 with different damping
strengths γ between 5.0 and 500.0 where the standard value
of γ is 50.0. With changing γ , there is a systematic change in
the number of small grains M < Mmin, varying up to ±50%
relative to results at γ = 50.0. This splay converges with
increasing γ . Additionally, the minimum cutoff of the power
law Mmin increases to approximately 1000 at the smallest
value of γ = 5.0. However, there is no significant change in
the number of grains for M > Mmin. A similar power law can
be fit to N (M ) at all γ and the upper cutoff Mcut is consistent,
implying our results are representative of the overdamped
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FIG. 16. Distributions N (M ) in systems of size L = 1600 sheared to a strain of 1.0 at the indicated rates in (a) and (c) 2D with ka = 2.5
and (b) and (d) 3D with ka = 3.0. In (c) and (d) distributions are scaled by Mτ with τ = 1.7. Dashed lines in (a) and (b) have slopes of −τ .
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FIG. 17. (a) and (b) Mass distributions scaled by Mτ in two-dimensional systems of size L = 200 sheared at the indicated rates. (c) and
(d) Distributions scaled by Mτ L2 for the indicated system sizes sheared at a fixed rate of 10−4. Normalization uses a value of τ = 1.7. All
systems are sheared to ε = 1.0 and correspond to (a) and (c) ka = 2.5 and (b) and (d) ka = 12.

limit. At the second fastest rate of ε̇ = 3 × 10−4, there is
minimal dependence on γ even in the small-mass limit for
γ ∈ [5.0, 500.0]. However, it is likely that even smaller values
of γ could change results.

D. Finite-size and finite-rate effects

Having separately considered finite-size and finite-rate ef-
fects in the preceding two sections, we now consider the
combination to determine the crossover between the finite-
rate and quasistatic limits and its scaling with system size.
As before, we continue to focus on the large-strain limit of
ε = 1.0 in two-dimensional systems. In Fig. 17, normalized
distributions from a relatively small system of size L = 200
are plotted at different strain rates at ka = 2.5 [νPR ∼ 0.20,
Fig. 17(a)] and 12 [νPR ∼ −0.11, Fig. 17(b)]. Similar to
Fig. 16(c), distributions have a shallower power law and are
truncated at smaller masses at the fastest rates. However,
as the rate decreases to 10−4 and below, distributions cease
evolving, suggesting this smaller system size has already
reached the quasistatic limit, at a higher rate than simulations
of size L = 1600.

If we alternatively focus on a higher strain rate of ε̇ = 10−4

and vary the system size, we see different behavior between
larger systems, L > 400, and smaller systems, L < 400. Large
systems exhibit a trivial dependence on L as distributions sim-
ply scale extensively, N (M ) ∼ L2, and have similar cutoffs as
seen in Figs. 17(c) and 17(d). In contrast, there is some vertical
splay in distributions for small systems and the cutoff grows
with increasing L. This phenomenon is consistent with the
above finding that smaller systems transition to the quasistatic
limit at higher strain rates and is naturally anticipated. For

instance, one might expect the transition to quasistatic behav-
ior could be governed by the timescale it takes for a crack
to propagate across the system such that the crossover occurs
at a rate of ε̇ ∼ L−1 for a constant crack propagation speed.
However, as identified below, this criterion is not sufficient.

To capture the transition and quantify how it scales with L,
we hypothesize that there is an additional length scale ξ that
diverges with decreasing strain rate ε̇ with an exponent ν:

ξ ∼ ε̇−ν . (12)

Based on the findings from Fig. 17, we assume fragmentation
depends only on the smallest of the two length scales L and
ξ . At low rates where ξ > L, the system is in the quasistatic
limit such that N (M ) is described by Eq. (6) and the size of the
largest grain Mcut is set by Lα . At high rates where ξ < L, the
system is in the finite-rate limit and ξ governs behavior such
that Mcut ∼ ξα . This idea echoes results from many dynamic
critical phenomena such as avalanches in depinning and yield-
ing [39,44,79,80,104–106].

Next we propose a scaling description for N (M ) in the
finite-rate limit. From Figs. 17(c) and 17(d) we assume N (M )
primarily depends on ξ and only has a trivial dependence
on L in this limit, namely, N (M ) grows extensively as Ld

in d dimensions. A system of size L can then be divided
up into (L/ξ )d independent regions, each of size ξ d . Within
each region, the distribution of grains resembles that of a qua-
sistatic system of size L = ξ , or NQS(M, L = ξ ) from Eq. (6).
Combining the contributions from all of these regions yields
a finite-rate ansatz for N (M ) of the entire system.

NFR(M, ε̇, L) ∼ Ld ε̇ν(d−γ+ατ )h(M ε̇να ), (13)
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where h(x) is another scaling function. If x � 1, h(x) goes to
zero while if x 	 1 then h(x) ∼ x−τ such that NFR(M, ε̇) ∼
Ld ε̇ν(d−γ )M−τ . Using the scaling relation for γ in Eq. (10),
this ansatz can be reexpressed as

NFR(M, ε̇, L) ∼ Ld ε̇2ναh(M ε̇να ). (14)

Note that this derivation does not account for the observation
that distributions become more shallow at high strain rates or
that τ may possibly depend on ε̇. As the magnitude of this
deviation appears to decrease at lower strain rates in larger
systems, we postulate that it will not be significant in the large-
system low-rate limit and therefore neglect it, although further
validation is needed.

To test this theory, we again turn towards the moments of
the distribution. As in Sec. III B, one can derive an expression
for the moments of N (M ) in the finite-rate limit as

〈Mn〉FR =
∫

MnNFR(M, ε̇, L)dM (15)

=
∫

Ld ε̇2ναMnh(M ε̇να )dM. (16)

Again, substituting variables for x = M ε̇να yields

〈Mn〉FR = Ld ε̇να(1−n)
∫

xnh(x)dx, (17)

where the integral is similarly dominated by the upper limit
and converges for n > τ − 1 ∼ 0.7. For the second moment
one finds

〈M2〉FR ∼ Ld ε̇−να. (18)

Combining this with the expression for 〈M2〉QS in Eq. (11),
we can now construct a scaling ansatz for 〈M2〉 across system
sizes and rates. We assume that 〈M2〉 only depends on the
dimensionless ratio of L/ξ or Lε̇ν such that

〈M2〉 ∼ Ld+αg(ε̇L1/ν ), (19)

where g(x) is yet another scaling function. In the quasistatic
limit where x 	 1, g(x) goes to a constant to recover the
scaling in Eq. (11). In the finite-rate limit where x � 1, g(x) ∼
x−να to recover the scaling in Eq. (18).

Calculating 〈M2〉 across different system sizes and rates,
we see behavior consistent with the theory. In Fig. 18(a) in
the high-rate limit, 〈M2〉 grows as a power of decreasing rate
at all L independent of the elastic properties or ka. This growth
continues until ε̇ ∼ 3 × 10−4 where 〈M2〉 plateaus for the
smallest systems L = 100 and no longer depends on rate. A
similar crossover is then seen in progressively larger systems
at lower and lower rates as systems transition to the quasistatic
limit. Comparing different values of ka, a similar trend is seen,
although the location of the crossover and the height of the
plateau may shift. Scaling data by the system size according
to Eq. (19), data are collapsed using values of α = 1.7 and
ν = 0.7 from Ref. [34] as shown in Fig. 18(b). There is some
observable splay which may simply be due to different con-
stant prefactors (such as a vertical or horizontal shift) across
values of ka. Shifting data sets apart in Fig. 18(c) reveals that
the quality of the individual collapses is reasonable across
values of ka. Focusing on a single data set, one might estimate
a somewhat different exponent depending on the value of ka;
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FIG. 18. (a) Second moment of N (M ) normalized by Ld with
d = 2 as a function of strain rate for different two-dimensional sys-
tem sizes L (color) and values of ka (shape) as indicated by the legend
in (b). The dashed line represents a power law with an exponent −να.
(b) The same data in (a) are collapsed using the scaling relation in
Eq. (19). (c) The scaled data in (b) are plotted after shifting data
vertically across values of ka for visibility. All panels use values of
α = 1.7 and ν = 0.7.

however, these deviations are not greater than uncertainty in
exponents.

E. Impact of fracture toughness

In the previous sections we considered how changes in the
elastic properties of the material affect fragmentation. This
is accomplished by varying ka, which adjusts Poisson’s ratio
νPR. In this section, two-dimensional systems with a fixed
value of ka = 2.5 or νPR ∼ 0.20 are used to alternatively test
how fracture toughness impacts fragmentation. We consider
variations in KIC and KIIC fracture toughnesses which, as
demonstrated in Sec. II B, are controlled by the free param-
eters λc and θc, the critical stretch for a bond and the critical
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FIG. 19. Rendered sections of a two-dimensional system of size L = 1600 sheared to a strain of 1.0 at a faster rate of 3 × 10−5 with values
of ka = 2.5, θc = 10◦, and λc = 1.01, 1.015, 1.02, and 1.03 in panels going from left to right.

angle for three-body interactions, respectively. Here we focus
on the large-system-size, large-strain, and low-strain-rate lim-
its with systems of size L = 1600 sheared to a strain of 1.0 at
a rate of 10−5 to maximize the span of the power-law domain
in N (M ).

First, we consider a fixed value of θc = 10◦ and vary λc,
which varies KIC or the resistance to propagating an opening
crack. As expected, decreasing the strength of bonds leads to
more breakage as demonstrated in Fig. 19. In particular, at low
λc there are large regions of nearly fully pulverized material
broken down into individual particles separating larger intact
(although heavily damaged) grains. In the limit of very weak
bonds, it is unsurprising that large swaths of the material break
as vibrations emanating from cracks may have enough energy
to break surrounding bonds. As λc increases, the width of
these regions and the amount of visible damage in grains de-
crease. It is possible that this effect could be counteracted by
increasing the strength of damping in the system, as discussed
at the end of Sec. III C.

While there is markedly different behavior at small length
scales, to determine whether the large-scale critical statis-
tics depend on λc we evaluate grain size distributions N (M )
(Fig. 20). Although small grains with a mass of unity are not
included in Fig. 19, there is a large excess at small λc, as
expected. In contrast, there is a deficit of grains with inter-
mediate masses at small λc. For instance, at λc = 1.01, grains
with masses between approximately 5 and 104 are underrep-
resented relative to systems with λc � 1.05. The size of this
domain and the magnitude of the underrepresentation shrinks
with increasing λc before converging around λc = 1.05. De-
spite this substantial change in the statistics of small and
intermediate grains, no significant dependence on λc is present
in N (M ) at large M. This suggests that λc is irrelevant in the
large-mass limit and does not change the fundamental critical
nature of fragmentation. Alternatively, KIC only appears to
affect the lower cutoff of the power-law behavior, Mmin, and
the statistics of smaller grains.

Finally, we fix λc = 1.05 and vary θc, which is equivalent
to maintaining a constant mode I fracture toughness while
varying the mode II fracture toughness KIIC or the resistance
to propagating a shear crack. In Fig. 21, N (M ) is remarkably
robust to changes in θc. While there may be slight changes in
the statistics of small grains, the magnitude of any potential
differences is minimal and is largely masked by uncertainty in
the data. Therefore, similar to the above analyses, the critical

behavior of fragmentation does not depend on the fracture
toughness of the material in the limit of large masses.

F. Rheology

Having explored the impact of strain, system size, strain
rate, and material properties on fragmented grain size distri-
butions in the above sections, we now zoom out and consider
the macroscopic response of the system to shear. In addition to
studying the typical values of ka = 2.5 (2D) and 3.0 (3D), in
this section we also include results with ka = 0 or νPR = 1

3
in 2D and 1

4 in 3D since this option limits computational
costs (no three-body interactions) so simulations can reach
slower strain rates. Focusing on the granular flow regime after
fracture, or strains greater than 0.05 (Fig. 14), we calculate
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FIG. 20. (a) Distributions N (M ) for a two-dimensional system
of size L = 1600, ka = 2.5, and θc = 10◦ sheared to a strain of 1.0
at a rate of 10−5 with the indicated values of λc. The dashed line
represents a power law with exponent τ = 1.7. (b) Distributions are
normalized by Mτ .
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FIG. 21. (a) Distributions N (M ) for a two-dimensional system of
size L = 1600, ka = 2.5, and λc = 1.05 sheared to a strain of 1.0 at
a rate of 10−5 with the indicated values of θc in units of degrees.
The dashed line represents a power law with exponent τ = 1.7.
(b) Distributions are normalized by Mτ .

the internal friction or stress ratio μ ≡ √
J2/P, where P is

the mean pressure of the system to characterize its rheology.
For granular systems at low pressures in the hard-grain limit,
rheology is often described in terms of an inertial number

I = ε̇〈d〉
√

ρ/P, (20)

where 〈d〉 is the average grain diameter and ρ is the density
of the system [107]. In a μ(I ) model, μ grows as a function
of increasing I , as demonstrated in many works [94,108–111]
including DEM studies of aspherical [112] and polydisperse
grains [113,114].

In contrast to traditional studies of granular rheology, the
system in this article uniquely does not have a fixed average
grain size 〈d〉. Instead, 〈d〉 depends on both strain and rate.
Averaging over intervals of 0.5 (50%) strain, both the stress ra-
tio μ and the inertial number I are calculated in large systems
at different strain rates, extending down to ε̇ = 10−6 in 2D
and 3 × 10−6 in 3D at ka = 0. Results are plotted in Fig. 22.
Here μ interestingly decreases with increasing inertial number
(and strain rate) as well as increasing strain. This reduction
fundamentally reflects the fact that the system fragments into
smaller grains at higher rates (Fig. 15) and that more of the
system has broken up at larger strains (Fig. 6). Note that in
these simulations, the pressure is not held constant such that I
is calculated using an average pressure P which evolves with
strain and rate and may not reflect the hard-grain limit typi-
cally explored in DEM simulations of granular flow. However,
a confining pressure is always maintained postfailure.
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FIG. 22. Stress ratio μ as a function of the inertial number I for
systems of size (a) L = 1600 in 2D and (b) L = 200 in 3D at ka = 0.0
(solid lines) and 2.5 in 2D and 3.0 in 3D (dashed lines). Data are
averaged over the indicated strain intervals.

As observed in Fig. 14, the shear stress does actually in-
crease with strain rate; however, the pressure increases at a
faster rate, leading to the decrease in the stress ratio seen
here. In future work, it would be valuable to explore frag-
mentation under alternate loading conditions such as constant
pressure instead of constant volume. In particular, varying
the confining pressure could test the impact of cavity forma-
tion on fragmentation. Additionally, experiments of granular
breakage under shear by Xu [29] found a potential pressure
dependence on the power-law exponent τ .

At larger ka or lower νPR, stress ratios are higher as curves
shift upward. The difference is around 0.015 in both 2D and
3D. This effect likely originates from changes in the aspheri-
cal shape of grains seen in Fig. 10 as increasing asphericity of
grains is associated with greater stress ratios in flow [112], but
could also emerge from the slight differences in polydispersity
seen in Fig. 11.

One particularly intriguing feature of the rheology in
Fig. 22 is that μ appears to decay logarithmically with in-
creasing inertial number. Similar behavior is seen when μ is
plotted as a function of strain rate. Such logarithmic velocity
weakening is often an important feature in rate and state
friction models [49] and this demonstrates that it can naturally
emerge from fragmentation in sheared granular materials.
Furthermore, these findings highlight how the distribution
of grain sizes can have a significant influence on rheology,
emphasizing the need to explore rheology beyond the low-
pressure, monodisperse, and spherical limits which do not
always reflect granular material found in nature. For instance,
it is unclear whether the factor of 〈d〉 in μ(I ) rheology is an
appropriate metric for highly polydisperse granular material
such as the power-law distributed set of grains seen here.
Potentially another metric, such as

√
〈d2〉, would be more
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informative. This underlines a need to understand granular
rheology beyond narrow size distributions.

Furthermore, these data prompt questions about the nature
of the crossover between the quasistatic and finite-rate limits.
In contrast to the granular structure, quantified in terms of the
mean-square grain size in Fig. 18, there generally is no clear
saturation in the strength ratio with decreasing strain rate,
despite extending to slower rates in a similarly sized system at
ka = 0.0. While some data series may exhibit this saturation
(such as strains between 1.05 and 1.55), this may just reflect
the uncertainty in the measured stress ratios. Therefore, it is
likely that the rheology actually crosses over to the quasistatic
limit at a lower rates than the grain size distribution and is
controlled by a separate mechanism. In smaller systems, there
is a clear saturation in μ with decreasing strain rate; however,
a full finite-size analysis of the rheology is beyond the scope
of this paper.

IV. SUMMARY

This article has provided a systematic exploration of sim-
ulated fragmentation in isotropic, brittle solids under shear,
particularly focusing on the impact of material properties on
the scaling of grain size distributions in 2D. Using a sim-
ple bonded particle model with breakable three-body angular
interactions, we were able to individually control Poisson’s
ratio and mode I and mode II fracture toughnesses which are
calibrated using only three free parameters. While the rate
of production of new grains and some noncritical aspects of
fragmentation were found to depend on material properties,
all systems reached the same critical power-law distribution
of grain sizes in the quasistatic large-strain limit. Univer-
sal behavior in fragmentation has been proposed and tested
several times in the literature [18,22,26,32,33,48] and this
work provided a comprehensive extension and validation of
this idea through the breadth of material properties studied
under a wide range of conditions in 2D and by considering
the less-studied loading geometry of shear flow. Furthermore,
using a finite-size and finite-rate scaling theory proposed in
our earlier work, we demonstrated that several additional
critical exponents, summarized in Table I, were consistent
across a wide range of elastic properties. A more limited
exploration was also performed in 3D where we found sim-
ilar quasistatic and finite-rate behavior with the addition of
three-body interactions, although we did not systematically
explore finite-size effects or test a wide range of material
properties. Finally, we identified several other unique features
of a fragmenting material under shear flow including an ab-
normal rheology where the stress ratio decays with increasing
rate.

As systems fracture and fragment in shear at low strain
rates, the number of grains of a given mass depended signif-
icantly on Poisson’s ratio νPR as more grains were generated
immediately upon fracture at small νPR but the rate of sub-
sequent increase was slower in comparison to systems with
large νPR (Sec. III A). It is possible that the growth in the
number of grains with strain is described by a power law with
an exponent φ. If so, φ might decrease from approximately
0.55 at νPR = 0.25 to approximately 0.25 at νPR = −0.11.
However, this dependence on νPR appeared to be the exception

as the distribution of grain sizes otherwise demonstrated min-
imal dependence on material properties. Shortly after yield,
a power-law domain with an exponent τ was identified in
N (M ). This domain subsequently grew with strain until a
strain of approximately 1.0 (or 100%). This saturation at large
strains reflects results from experimental studies of comminu-
tion in shear [4,23]. Although there appeared to be a slight
increase in the exponent τ with decreasing νPR of about 10%,
this was less than uncertainty in measurements and could
simply be due to slightly different manifestations of finite-rate
or finite-size effects and therefore there was no detectable νPR

dependence on τ . Similarly, varying the fracture toughnesses
in Sec. III E revealed no detectable impact on τ , although the
onset of the power-law domain shifts to larger masses with
decreasing mode I fracture toughness due to a tendency for
the material to produce an excess of small grains and a dearth
of intermediate-size grains.

In the quasistatic limit, a scaling relation for finite-size
effects in N (M ) was described in Eq. (6) based on two non-
trivial exponents γ and α and tested in Sec. III B. For the first
exponent, the number of grains of a given mass M grew as
a power of the linear system size L with an exponent γ less
than d = 2 as demonstrated by directly scaling N (M ) by Lγ .
For the second exponent, the mass of grains at the upper cutoff
of the power-law regime Mcut was found to grow as a power of
L as Mcut ∼ Lα where again α < 2, implying both the number
of grains and the size of the largest grain grow subextensively.
By calculating the average grain size, we derived a scaling
relation in Eq. (10) between these exponents and τ based
on conservation of mass. Variations in νPR had no detectable
effect on any of these exponents or scalings.

Beyond the quasistatic limit, this paper also presented
a description of fragmentation at high rates in Sec. III C.
With increasing rate, fragmentation produced a finer set of
grains and the distribution N (M ) unusually became shal-
lower, possibly reflecting a changing power-law exponent.
While we could not fully determine the origin of this effect,
it is possible that this is simply an instance of noncritical
behavior at particularly high rates that may become irrele-
vant in the limit of infinitely small strain rates and infinitely
large system sizes. However, this effect is still an important
topic for further study, especially as it may relate to vari-
ations in measured values of τ in real-world materials and
experiments [17].

By combining studies of finite sizes and rates in Sec. III D,
we observed that fragmentation only depends on either the
size of the system or the rate, but not both. We proposed
that there exists a diverging length scale ξ ∼ ε̇−ν , where ν

is another exponent less than unity, and that the scaling of
N (M ) only depends on the smallest length scale, either ξ or L.
In the finite-rate limit where ξ < L, a scaling ansatz for N (M )
was derived in Eq. (14). Combining the quasistatic and finite-
rate expressions for N (M ), we then constructed a finite-size
scaling relation for the second moment in Eq. (19) which col-
lapsed data across system size and rate, yielding an estimate
of ν. This collapse was consistent across values of Poisson’s
ratio νPR.

Finally, we considered the system’s rheology in Sec. III F
as a unique example of a granular system with evolving poly-
dispersity. As grains begin to flow after fracture, the internal
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friction decays as the logarithm of increasing strain rate. Such
logarithmic weakening is an often studied topic in geophysics
and friction, and this work demonstrated how fragmenta-
tion can emergently lead to this important behavior. This
emphasizes a need for further studies of flowing polydisperse
granular materials with different grain size distributions to
characterize changes rheology.

In conclusion, we find the observed critical behavior is
remarkably robust to changes in material properties with
no detectable deviation in exponents, summarized in Ta-
ble I, with the possible exception of φ, which cannot be
concluded to be a real critical exponent due to a limited
scaling domain. However, there are still countless unanswered
questions about the physics of fragmentation. For instance,
additional studies extending analysis of finite-size effects to
three-dimensional systems are needed and variations in the
damping strength were not investigated. Alternative load-
ing geometries, in particular stress-controlled deformations at
various mean pressures, need to be studied. Low damping
strengths could introduce interesting inertial effects which
have been found to affect avalanches in the yielding transi-
tions [42,43,115] and the role of energy dissipation needs to
be better understood. In comparison to results from our recent
paper [34], the results in this text were limited to smaller
system sizes and higher strain rates due to the additional
computational complexity of controlling Poisson’s ratio. This
highlights an ongoing need to develop more efficient bond
models which can control elastic properties, in particular

efficient methods that can model higher Poisson’s ratios which
were inaccessible to this work.
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