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Transition between the stick and slip states in a simplified model of magnetic friction
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We introduce a simplified model of magnetic friction and investigate its behavior using both numerical and
analytical methods. When resistance coefficient γ is large, the movement of the system obeys the thermally
activated process. In contrast, when γ is sufficiently small, the slip and stick states behave as separate metastable
states, and the lattice velocity depends on the probability that the slip state appears. We evaluate the velocities in
both cases using several approximations and compare the results with those of numerical simulations.
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I. INTRODUCTION

The microscopic friction mechanism is an important sub-
ject of condensed-matter physics and engineering [1–4], and
various factors in this phenomenon, such as the lattice vi-
bration and motion of electrons, have been studied [5–9].
In particular, magnetic friction, the frictional force gener-
ated from the magnetic interaction between spin variables,
has been extensively studied in recent years [10–13]. To un-
derstand the mechanism of magnetic friction, many types
of theoretical models have been proposed and investigated
[14–26]. These models differ from each other in several points
such as the definition of dynamics, types of spin variables,
and shape of the contact area. Accordingly, important features
such as the relation between the frictional force and velocity
vary with the choice of model.

In contrast, there is a well-known empirical law called the
Dieterich-Ruina law for normal solid surfaces [27–30]. This
law generally has a complicated form that depends on the
hysteresis. However, in the steady state, it can be expressed
as the following simple relation:

F = A ln v + B, (1)

where A and B are constants. Note that most of the studies on
the magnetic friction ignored the elastic deformation to con-
sider only the influence of the magnetic interaction. Hence, it
is difficult to investigate the change of the true contact area
generated by the normal force. This is why the dependence
on the normal force of the frictional force is not considered
in Eq. (1). In our previous studies, we proposed models of
magnetic friction that seemed to obey Eq. (1), at least in
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the steady state [31,32]. In these models, magnetic structures
behaved as a kind of potential barrier that prevented the lattice
motion. Hence, we considered that the thermally activated
process let the system obey the Dieterich-Ruina law, as in the
case of normal solid surfaces [4].

However, even if the potential barrier exists, the frictional
force, F , does not always obey the Dieterich-Ruina law. A
well-known example is the Prandtl-Tomlinson model, which
is one of the earliest theoretical models of friction. This model
is composed of one particle moving on a sinusoidal potential
pulled by a spring, which represents the contact point between
the solid surfaces [33–36]. If the temperature, T , is sufficiently
low, then this particle is trapped by the potential and cannot
move smoothly. This point resembles the phenomenological
explanation of the Dieterich-Ruina law. However, as previous
studies have explained, frictional force F and velocity v obey
the following rule:

Fc − F ∝
[
− ln

(
v

vc

)] 2
3

, (2)

when F is smaller than a critical value, Fc, and the system
is trapped by the potential. Here vc is the value of v when
F = Fc. This means that the prevention of the lattice motion
by the potential barrier does not always result in Eq. (1). Note
that the systems similar to the Prandtl-Tomlinson model al-
ways obey Eq. (2) when the Taylor expansion of the potential
barrier exists, even if the potential is not the sinusoidal one. An
example trying to explain the discrepancy between Eqs. (1)
and (2) was proposed by Persson et al. [36]. They considered a
lubricated system and assumed that the first-order transition of
the lubricant played a significant role. Generally, it is known
that the friction process consists of two states, the stick state
where the lattice is trapped by the potential, and the slip state
where it moves smoothly. Persson et al. pointed out that the in-
ternal structure of the lubricant differs depending on whether
the system is in the stick or slip state, and inferred that the
system chooses the state with the lowest energy at any given
time. Under this assumption, the point where the state with
the lowest energy interchanges becomes the singular point of
the effective potential, as shown in Fig. 1. The existence of
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FIG. 1. The effective potential proposed by Ref. [36]. They pro-
posed that the transition between the stick and slip states occurs when
the state with the lowest energy interchanges.

this point prevents the system from obeying Eq. (2). Other
studies also related the stick-slip motion of a lubricated system
to the first-order transition of the lubricant [37–39]. Magnetic
bodies differ from these systems because they do not contain
lubricants. However, the phase transition of the magnetization
may affect the lattice motion. To understand the relation
between the lattice motion and effective potential produced
by the internal degrees of freedom of a solid, including a
magnetic structure, a comprehensive investigation using both
analytic and numerical approaches is required.

In our previous study, we succeeded in describing the be-
havior of a kind of infinite-range model in the thermodynamic
limit using a mean-field analysis [32]. However, we found
that the relaxation time of this model diverged with increasing
system size, and the actual behavior of the finite-size system in
the steady state was different from that of the thermodynamic
limit. Hence, it was important to understand the finite-size
effect of this infinite-range model. However, an analytical
discussion of this effect was difficult because this model had
a complicated form.

Here we introduce a simplified model to investigate a
finite-size system. Specifically, we consider an infinite-range
Ising model whose coupling constant J is the function of vari-
able x, which represents the shift of the lattice. In our previous
models, two magnetic bodies with different order parameters
existed [31,32]. However, for simplicity, our present model
contains only one magnetic body with one order parameter,
m. Although this model is largely simplified, it retains the
essence of the magnetic friction, where the magnetic struc-
ture prevents the lattice motion. As we will explain later, we
calculated the histogram of the state of this system and found
that the distinctions between the stick and slip states could be
classified into two types.

In the reminder of this study, we first introduce the model in
Sec. II. We then calculate its behavior in Sec. III and, finally,
summarize the study in Sec. IV. Supplementary discussions
are also included as Appendixes A, B, and C.

II. MODEL

We here consider N Ising spin variables {σi} interacting
with each other by the following Hamiltonian:

H = −J (x)

N

∑
i, j

σiσ j = −NJ (x)m2. (3)

Here x is a real value representing the shift of the lattice; m
is the magnetization per spin, m ≡ ∑

i σi/N ; and J (x) is the
periodic function of x. For simplicity, we impose a periodic
boundary condition with period 2π on x. Note that we con-
sider a model composed of one magnetic body with one order
parameter, m, whereas our previous models had two magnetic
bodies with different order parameters. If we try to consider
the situation that two magnetic bodies interact with each other,
then we should construct a model containing at least their
magnetizations ma and mb. The model containing only one
order parameter like Eq. (3) corresponds to the case that the
other parameter is fixed as mb = const by the strong inter-
nal interaction, for example. Furthermore, the ferromagnetic
order appears in the case of this model, whereas the antiferro-
magnetic one appeared in our previous studies. However, even
in this simplified model, the magnetization, m, behaves as a
potential barrier that prevents lattice motion. That is, when
m gets larger, the Hamiltonian also has the larger value and
trap the lattice motion more easily. Hence, we consider that
the essence of the magnetic friction is not lost through this
simplification. As a concrete form of J (x), two types, A and
B, are considered. Type A is a piecewise linear function given
by the following:

J (x) = J0 + J1

(
1 − 2

π
|x|

)
if − π � x � π, (4)

J (x + 2π ) = J (x), (5)

and type B is a sinusoidal function:

J (x) = J0 + J1 cos x. (6)

This model coincides with the infinite-range Ising model with
the exception that coupling constant J depends on the shift in
the system, x. In this study, we let J0 = J1 = 1. In both types
A and B models, the maximum of J (x) is J (0) = J0 + J1 = 2.
If the lattice was fixed at x = 0, then the critical temperature
of the spin variables would be given as Tc = 2J (0) = 4. In the
following, we consider the cases that T < 4 to investigate the
relation between the magnetization and lattice motion.

We introduce the time development of spin variables by the
Glauber dynamics and define one Monte Carlo step (MCS) as
the unit time. Namely, the acceptance ratio, w, of each updat-
ing of the spin variable is defined by the following equation:

w(βδE ) ≡ 1 − tanh
(

βδE
2

)
2

, (7)

where δE is the change in energy. In addition, the time de-
velopment of x under this Hamiltonian and external force
Fex are introduced. Specifically, we let x obey the following
overdamped Langevin equation:

γ N
dx

dt
= Fex − ∂H

∂x
+

√
2γ NT R(t ), (8)

where R(t ) is the white Gaussian noise, 〈R(t )R(t ′)〉 =
δ(t − t ′). Here we introduce coefficient N , considering the sit-
uation that N spins move simultaneously. Substituting Eq. (3)
and letting fex ≡ Fex/N , this equation can be transformed as
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follows:

dx

dt
= fex

γ
− 1

γ N

∂H

∂x
+

√
2T

γ N
R(t )

= fex + J ′(x)m2

γ
+

√
2T

γ N
R(t ). (9)

Considering Eq. (9), magnetization m prevents the lattice mo-
tion when J ′(x) < 0. In the steady state, the frictional force
balances the external force, fex. Hence, to investigate whether
the system obeys Eq. (1), Eq. (2), or other rules, the v- fex

relation should be considered.
In the thermodynamic limit, N → ∞, the random-force

term of Eq. (9) disappears, and the dynamics of x become
deterministic:

dx

dt
= fex + J ′(x)m2

γ
. (10)

As we already mentioned, the Hamiltonian given by Eq. (3)
has almost the same form as the normal infinite-range Ising
model. Therefore, the time development of m in N → ∞ is
given by the following [40]:

dm

dt
= −m + tanh[2βJ (x)m]. (11)

Note that m coincides with its ensemble average, 〈m〉, in this
limit, because the fluctuation of m is O(1/

√
N ). According

to the above discussions, the behavior in the thermody-
namic limit, N → ∞, can be described by two deterministic
Eqs. (10) and (11).

III. CALCULATIONS

In this section, we investigate the behavior of this system
using both numerical simulations and analytic methods. In the
simulation, x is updated by the stochastic Heun method with
time interval δt = 1/(nN ), where n is an integer. This means
that we update x every 1/n step of the Glauber dynamics.
In other words, we repeat the updating of x by Eq. (9) n
times after one updating of the spin variables. This process
is introduced because the change in x during one step of the
Glauber dynamics is large when γ is small. We let n = 20 for
γ � 0.01, and n = 5 for larger values of γ .

A. Behaviors in the thermodynamic limit

First, we discuss this system in the thermodynamic limit,
N → ∞. As we explained in Sec. II, the time development of
the system is described by Eqs. (10) and (11). We calculate
(the time average of) velocity v in the steady state by solving
these equations using the fourth-order Runge-Kutta method
with time interval δt = 10−4. Figure 2 shows the relation
between v and fex for the type-A model at T = 3 and γ =
0.0025. Here two types of initial conditions are considered,
(x, m) = (0, 0.05) and (0,1), and the velocity is averaged over
103 < t < 4 × 103. As seen in Fig. 2, there is a range where
the velocity in the steady state depends on the initial value.

We also calculated the time development of the finite-
size system using numerical simulation. In this simulation,
we chose the type-A model, let T = 3, γ = 0.0025, and

FIG. 2. Relation between (the time average of) velocity v and
external force fex of the type-A model at T = 3 and γ = 0.0025. The
red solid and blue dashed curves indicate the cases where the initial
condition is given as (x, m) = (0, 0.05) and (0,1), respectively.

fex = 0.1, and started from the perfectly ferromagnetic state
with x = 0. To obtain the data with error bars, each quan-
tity was averaged over 6400 independent trials. The result is
shown in Fig. 3(a). We also calculated the relaxation time τ

in Fig. 3(b). Here τ is defined as the time when m becomes
smaller than the threshold value, m = 0.5 [the gray dashed
line of graph (a)]. As seen in the fitting line of Fig. 3(b), τ

behaves as the exponential function of N and diverges rapidly
in the thermodynamic limit. Hence, it is natural that the sys-
tem shows dependence on the initial condition in this limit.
The divergence of the relaxation time was also observed in
the infinite-range model of our previous study [32] and made
the consideration of the finite-size system difficult. Hence, we
should investigate our present model, which is much simpler,
to understand the behavior of a finite-size system. Note that
we also performed similar calculations for the type-B model
but omitted the graphs because no qualitative differences be-
tween Figs. 2 and 3 were found.

B. Behaviors of the finite-size system

We then investigated the behavior of the finite-size sys-
tem in the steady state, mainly using numerical simulation.
In the simulation, we started from the perfectly ferromag-
netic state with x = 0 and a sufficiently weak external force,
fex, and then gradually increased fex. At each value of fex,
the first 2 × 105 MCSs were used for the relaxation, and
the next 8 × 105 MCSs were used for the measurement. We
mainly investigated the cases where T = 1.5, N = 150 and
T = 3, N = 300. The value of N at each T was chosen so that
the relaxation time became smaller than the simulation time.
To obtain the data with error bars, each quantity was averaged
over 64 independent trials.

To investigate the relation between the magnetic structure
and lattice motion, we first calculated the histograms of m
and x. To make these histograms, we divided the interval
of x into 100 parts and did not color the points where the
(relative) frequency was lower than a threshold value, 10−7.
Figure 4 shows several examples of these in the case of the
type-A model. As shown in Figs. 4(a-3) and 4(b-3), when γ
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FIG. 3. (a) Relaxation of magnetization m of the type-A model
at T = 3, γ = 0.0025, and fex = 0.1. The red open square, green
circular, blue triangular, and black closed square points represent the
data with N = 100, 200, 300, and 400, respectively. (b) Relaxation
time τ under the same condition as graph (a). Here τ is defined as
the time when m becomes smaller than the threshold value, m = 0.5
[the gray dashed line of graph (a)]. Data are plotted as the purple
square points, and the gray dash-dotted line expresses the fitting line,
ln τ = 0.0284N − 0.0141.

is large, the value of magnetization m changes continuously
with x. This means that the lattice motion and weakening of m
occur simultaneously. This process is thought to be caused by
thermal activation if fex is small. Conversely, in a case where
γ is small, two peaks are observed in the histograms [see
Figs. 4(a-1), 4(a-2), 4(b-1), and 4(b-2)]. One of these exists
near the fixed point of Eqs. (10) and (11), and the other has
the form of a band with relatively small m. These peaks are
thought to indicate the stick and slip states, respectively. This
fact means that the stick and slip states are clearly separated as
different metastable states. Hence, the change between these
states resembles the first-order phase transition, when γ is
sufficiently small. We also calculated the histograms of the
type-B model but omitted the graph because the qualitative
behavior was similar to Fig. 4. Namely, even in the type-B
model, a first-order-like transition was observed in the small-γ
system, and the thermal activation process was found in the
large-γ system. The border between these two behaviors are
discussed in Appendix A. Judging from Eq. (9), the velocity
tends to have a large value when γ is small. Hence, it is
thought that fast lattice motion prevents the slip state from
changing into the stick state, and, consequently, these states
are separated from each other. The point that the stick-slip
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FIG. 4. Histograms of the type-A model at (a) T = 1.5, N = 150
and (b) T = 3, N = 300. In each column, the three graphs have
different values of γ and fex: (a-1) γ = 0.0025, fex = 0.5; (a-2) γ =
0.04, fex = 0.52; (a-3) γ = 2, fex = 0.57; (b-1) γ = 0.0025, fex =
0.1; (b-2) γ = 0.04, fex = 0.12; and (b-3) γ = 2, fex = 0.14. Note
that we chose an appropriate value for fex to clearly see the structure
of the histogram at each γ .

motion is related to the first-order transition resembles the
inference proposed by Ref. [36]. However, the lattice motion
of our model (at a small γ ) occurs only in the slip state, while
their theory considered that the lattice moved with the stick
and slip states switching. Note that the stick and slip states
of our model do not interchange smoothly because they are
metastable states.

C. Evaluation of the effective potential under small γ

It is difficult to calculate the theoretical probabilities with
which the stick and slip states appear because the lattice
motion is a nonequilibrium phenomenon. However, when γ

is extremely small, the change in x is much faster than that
in m. In this case, it is expected that the effective free energy
under a given m could be evaluated by taking a kind of time
average over x. In this section, we evaluate the probability of
the slip state using this effective free energy.

Under the assumption of this section, the time scales of m
and x are completely separate. Hence, we should take time
average of Eq. (11) to discuss the contribution of J (x) to the
time development of m:

dm

dt
= −m + I1(m). (12)

Note that Eq. (11) itself describes the behavior of the thermo-
dynamic limit, as explained in Sec. II. However, we use this
relation for the following discussions assuming that the effect
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of the fluctuation of m on the effective free energy is small. In
Eq. (12), I1 is defined as follows:

I1(m) ≡
∫ 2π

0
tanh[2βJ (x)m]pm(x)dx, (13)

where pm(x) is the probability distribution of the Brownian
motion given by Eq. (9) under a fixed m in the steady state.

We then evaluate the effective free energy per spin, aeff (m),
using Eq. (12). To extract the contribution of the entropy, the
effective “internal energy,” ueff (m), is defined by the following
equation:

aeff (m) = ueff (m) − T s(m), (14)

where s(m) is the entropy of the system per spin, under
a given m:

s(m) = −
∑
η=±1

1 + ηm

2
ln

(
1 + ηm

2

)
. (15)

To evaluate ueff (m), we consider the time development of m in
a case where the energy of the system per spin is really given
as ueff (m) and compare it with Eq. (12).

The probability that one up (down) spin is reversed at each
step of the updating, Pu→d(Pd→u), is given by the following:

Pu→d = 1 + m

2
w[−2βu′

eff (m)] (16)

Pd→u = 1 − m

2
w[2βu′

eff (m)]. (17)

Here the change in energy is evaluated based on the fact that
reversing the up (down) spin indicates a decrease (increase) in
m by 2/N . Thus, the change in the expectation value, 〈m〉, is
expressed as follows:

〈m〉|t+ 1
N

− 〈m〉|t = 2

N
(Pd→u − Pu→d )

= 2

N

{
1 − m

2
w[2βu′

eff (m)]

− 1 + m

2
w[−2βu′

eff (m)]

}

= 1

N
{−m + tanh[−βu′

eff (m)]}. (18)

Using the assumption that N is large and m can be ap-
proximated as m 
 〈m〉, this equation can be transformed
as follows:

dm

dt
= −m + tanh[−βu′

eff (m)]. (19)

Comparing (19) with (12), we can evaluate ueff (m) as follows:

ueff (m) = −T
∫

tanh−1[I1(m)]dm. (20)

To calculate I1 in Eq. (20), we should first evaluate pm(x).
In the steady state, the Fokker-Planck equation corresponding
to Eq. (9) with a fixed m is given as follows:

0 = − ∂

∂x
{[ fex + J ′(x)m2]pm} + T

N

∂2 pm

∂x2
. (21)

The solution of this equation is given as follows:

pm(x) = eNβ[ fexx+J (x)m2]

×
{

A + B
∫ x0

x
e−Nβ[ fexξ+J (ξ )m2]dξ

}

= e−Nβuloc (x,m)

[
A + B

∫ x0

x
eNβuloc (ξ,m)dξ

]
,

(22)

where A, B, and x0 are constants and uloc is defined as follows:

uloc(x, m) ≡ − fexx − J (x)m2. (23)

Using the value of pm(x0), Eq. (22) can also be expressed as
follows:

pm(x) = e−Nβuloc (x,m)

[
eNβuloc (x0,m) pm(x0)

+ B
∫ x0

x
eNβuloc (ξ,m)dξ

]
. (24)

In particular, considering that eNβuloc (x0,m) converges to zero as
x0 becomes sufficiently large, Eq. (24) can be transformed as
follows:

pm(x) = Be−Nβuloc (x,m)
∫ ∞

x
eNβuloc (ξ,m)dξ . (25)

In the case of the type-A model, the integral of Eq. (22) can
be calculated because uloc(ξ, m) is a piecewise linear function
of ξ . We will discuss the concrete form of pm for this case in
Appendix B. Conversely, in the general cases, including the
type-B model, the exact calculation of this integral is difficult.
Hence, we evaluate the approximate value.

First, we consider a case where uloc has a local minimum,
xm. In this case, the system is thought to be in the local
equilibrium state near this point. Hence, this case is thought
to correspond to the stick state. When uloc has a continuous
derivative, xm is determined by the following equation:

∂uloc

∂x

∣∣∣∣
x=xm

= −J ′(xm)m2 − fex = 0. (26)

In the type-A model, on the other hand, the local minimum
of uloc appears at the discontinuous point of J ′(x), i.e., x = 0.
Hence xm is given by the following:

xm =
{

0 (type A),

arcsin
( fex

J1m2

)
(type B),

(27)

and exists if and only if

|m| > mth ≡
⎧⎨
⎩

√
π fex

2J1
(type A).√

fex

J1
(type B).

(28)

If N is sufficiently large, then x is located on xm with high
probability:

pm(x) 
 δ(x − xm). (29)
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Indeed, if xm exists, then the integral of Eq. (25) has a nearly
constant value in the neighborhood of xm:∫ ∞

x
eNβuloc (ξ,m)dξ ∼ eNβuloc (Xm,m). (30)

Here Xm is the smallest argument of the local maximum of
uloc, which is larger than xm. Hence, pm is proportional to
e−Nβuloc (x,m) when x 
 xm, and this function draws a sharp
peak at x = xm. Substituting Eq. (29) into Eqs. (13) and (20),
we obtain the following:

ueff (m) = −
∫

2J (xm)mdm

= uloc(xm, m) + const. (31)

The second line of Eq. (31) can be derived by the following
equation:

duloc

dm

∣∣∣∣
x=xm

= ∂uloc

∂m

∣∣∣∣
x=xm

+ ∂uloc

∂x

∣∣∣∣
x=xm

dxm

dm

= ∂uloc

∂m

∣∣∣∣
x=xm

= −2J (xm)m. (32)

Equation (32) is certified by Eq. (26) in the case of the type-B
model and by the fact that xm is constant in the case of the
type-A model.

In the slip state where |m| < mth, the integrand of Eq. (25)
decreases monotonically and rapidly. Hence, the integral can
be evaluated as follows:∫ x0

x
eNβuloc (ξ,m)dξ 
 eNβuloc (x,m)

∫ ∞

x
eNβ∂xuloc (x,m)·(ξ−x)dξ

= − eNβuloc (x,m)

Nβ∂xuloc(x, m)
. (33)

Substituting Eq. (33) into Eq. (25), we obtain the following:

pm(x) = − B′

∂xuloc(x, m)
= B′

fex + J ′(x)m2
. (34)

Here constant B′ ≡ B/(Nβ ) is determined by the normal-
ization condition. This equation indicates that the duration
of stay at each x is inversely proportional to velocity
v ∼ [ fex + J ′(x)m2]/γ .

In short, in the case of the type-B model, we use Eq. (31)
in the stick state and evaluate I1 using Eq. (34) in the slip
state. This evaluation can also be applied to the type-A model.
However, as already explained, we do not adopt it for the
type-A model because the integral of Eq. (22) is calculated
in Appendix B.

Using aeff (m), the probability density of m, P(m), is ex-
pressed as follows:

P(m) ∝ e−βNaeff (m). (35)

We compare the result of Eq. (35) and the numerical sim-
ulation to investigate the validity of the above discussions.
The results of the type-A model are shown in Fig. 5. Note
that in the histograms of this figure, we did not distinguish
the value of x. Hence, these histograms are the integration of
those calculated in Fig. 4 over x, except for the fact that the
parameters have different values. As seen in Fig. 5, the results
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FIG. 5. Histograms of m of the type-A model with different γ

values at (a) T = 1.5, N = 150, and fex = 0.5 and (b) T = 3, N =
300, and fex = 0.1. The red square, green circular, and blue triangu-
lar points represent the results of simulations at γ = 0.0025, 0.01,
0.04, respectively. The black curves show the theoretical evaluation
using Eq. (35).

of the simulation seem to approach the estimation of Eq. (35)
with decreasing γ .

Comparing Figs. 5(a) and 5(b), the point m = 0 changes
from the argument of the local minimum of P(m) to that of the
local maximum with increasing T . It results from the change
of the sign of a′′

eff (m) at m = 0. Using Eqs. (14), (15), and
(20), this quantity is calculated as follows:

a′′
eff (0) = u′′

eff (0) − T s′′(0)

= −T
I ′
1(0)

1 − I2
1 (0)

+ T (36)

According to Eq. (13), I1(0) is given as I1(0) = 0. Calculation
of I ′

1(0) is explained in Appendix C. Using the result of this
Appendix, Eq. (36) can be transformed as follows:

a′′
eff (0) = −T (2βJ0) + T = T − 2J0. (37)

Hence, when T < 2J0(= 2), a′′
eff (0) is negative and P(0) be-

comes the local minimum. In contrast, it becomes the local
maximum when T > 2J0(= 2).

We let m0 and m1 be the arguments of the local minima of
aeff (m) in the areas where m > mth and m < mth, respectively,
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FIG. 6. Definitions of m0, m1, and m2. As explained in Sec. III C,
m0 and m1 are defined as the arguments of the local minima of aeff (m)
in the areas where m > mth and m < mth, respectively. In Sec. III D,
we also introduce the value m2, which is the argument of the local
maximum in the area where mth < m < m0.

as shown in Fig. 6. Then, defining q0 and q1 as follows:

q0 ≡ e−βNaeff (m0 )
∫ ∞

−∞
e−βNa′′

eff (m0 )·(m−m0 )2
dm

∝ e−βNaeff (m0 )√
a′′

eff (m0)
, (38)

q1 ≡ e−βNaeff (m1 )
∫ ∞

−∞
e−βNa′′

eff (m1 )·(m−m1 )2
dm

∝ e−βNaeff (m1 )√
a′′

eff (m1)
, (39)

the probabilities with which the stick and slip states appear are
nearly proportional to q0 and q1, respectively. Hence, when
both of these local minima exist, the slip state appears with
probability

Pslip = q1

q0 + q1
. (40)

Note that Pslip = 0 when m1 does not exist and Pslip = 1 when
m0 does not exist. The average velocity of the slip state is
given by the following:∫ x=2π

x=0
dx
dt dt∫ x=2π

x=0 dt
= 2π∫ x=2π

x=0

(
dx
dt

)−1
dx


 2π

γ I2(m1)
, (41)

where I2(m) ≡
∫ x=2π

x=0
[ fex + J ′(x)m2]−1dx. (42)

Using Eq. (41), we obtain the expectation value of the velocity
of this system:

v = 2π

γ I2(m1)
Pslip. (43)

Note that although the velocity of the slip state given by
Eq. (41) itself has a large value under a small γ , the ensemble
average of the velocity given by Eq. (43) is small when the
slip state rarely appears. We compare the results of Eq. (43)
with those of the numerical simulation. The results of the
type-A model are shown in Fig. 7. As seen in this figure,
the estimation of Eq. (43) seems to become accurate with
decreasing γ , as is the case with the histogram of Fig. 5.

Calculations similar to those shown in Figs. 5 and 7 in the
case of the type-B model are shown in Fig. 8. As seen in this
figure, the results of the simulations seem to converge to those
of Eqs. (35) and (43) with decreasing γ , as is the case with the
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FIG. 7. v- fex relation of the type-A model with different γ values
at (a) T = 1.5 and N = 150 and (b) T = 3 and N = 300. The red
square, green circular, and blue triangular points represent the results
of simulations at γ = 0.0025, 0.01, 0.04, respectively. The red solid,
green dashed, and blue dash-dotted curves show the results of the
theoretical evaluation using Eq. (43) for each value of γ .

type-A model. As already mentioned, in the case of the type-B
model, we used Eqs. (31) and (34), the rough approximation
of Eq. (22), to evaluate aeff , whereas we used Eq. (22) itself
for the type-A model. Hence the accuracy of the theoretical
evaluation is thought to be higher for the type-A model than
for the type-B model. However, a comparison of Figs. 5, 7,
and 8 does not show this tendency. It is difficult to infer the
reason why such behavior occurs, but one possible factor is
the point that the dependence of histograms on γ is too large
to observe such tendency. Another point to note is the form
of pm for the type-A model under Eq. (34). In the case of the
type-B model, both pm at |m| = mth + 0 evaluated by Eq. (29)
and that at |m| = mth − 0 evaluated by Eq. (34) have a sharp
peak near x = π/2. On the other hand, in the type-A model,
pm is calculated as a piecewise constant function at |m| < mth

if Eq. (34) is adopted. This evaluation has an apparently dif-
ferent form from Eq. (29). It is thought that such a difference
makes the evaluation of pm and aeff near |m| = mth using
Eqs. (31) and (34) inaccurate and the improved approximation
is required for the type-A model.

D. Comparison of cases with small and large values for γ

In a case where γ is large, as we saw in Fig. 4, the
coexistence of the stick and slip states as metastable states
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FIG. 8. (a) Histograms of m at fex = 0.67 and (b) v- fex relation
of the type-B model with different γ values at T = 1.5 and N = 150.
The meanings of the points and curves are the same as those in Figs. 5
and 7.

breaks down. We evaluate the velocity of this case, assuming
that the lattice motion is caused by the thermal activation
process. Namely, we first define �aeff as the difference be-
tween the local maximum and minimum in the region where
mth < |m| � m0:

�aeff ≡ aeff (m2) − aeff (m0), (44)

and consider that the system is trapped in the stick state by
the free energy barrier given as �aeff . Note that m0 was
already defined in Sec. III C and m2 is the argument of the
local maximum in the area where mth < m � m0, as shown in
Fig. 6. Under this assumption, velocity v obeys the following
relation:

v ∝ e−βN�aeff . (45)

If external force fex is stronger than a certain value, fc, then
the magnetic structure cannot trap the lattice motion, and
Eq. (45) breaks down. The point fex = fc is expressed as
the critical value where the local maximum and minimum of
aeff disappear and �aeff cannot be defined. We calculate the
relation between − ln(v/vc) and fc − fex using Eq. (45) and
compare the results with those of the simulation. Here vc is
the value of v at fex = fc. As the value of fc, we use the result
of the theoretical evaluation even in the case of the simulation.
The results are shown in Fig. 9. As seen in this figure, the v- fex

relation shows apparently different behaviors depending on γ
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FIG. 9. Relation between − ln(v/vc ) and fc − fex in cases for (a-
1) type-A model at T = 1.5 and N = 150, (a-2) type-A model at T =
3 and N = 300, (b-1) type-B model at T = 1.5 and N = 150, and (b-
2) type-B model at T = 3 and N = 300. The red open square, green
circular, blue triangular, and purple closed square points indicate the
results of simulations at γ = 0.0025, 0.16, 2, 16, respectively, and
the black dashed lines or curves were calculated using Eq. (45). We
also plotted the proportional relation of Eq. (2), as shown by the gray
dash-dotted lines.

and is close to the results of Eq. (45) drawn as the black dashed
lines (or curves) when γ is large. The gray dash-dotted lines
of Fig. 9 indicate the proportional relation of Eq. (2). In the
case of the type-B model, these two lines are parallel to each
other, which means that the evaluation of v using Eq. (45)
obeys Eq. (2). This behavior results from the fact that Eq. (45)
premises the continuous change between the stick and slip
states. The value of ln v given by Eq. (45) is not a linear
function of fex, because m0 − m2 decreases with decreasing
fc − fex. Instead, ln v actually obeys Eq. (2) if J (x) does not
have singular points. This mechanism resembles that of the
Prandtl-Tomlinson model. (For a more detailed explanation,
see Ref. [36], for example.) In short, the lattice motion of
our model in the large-γ case is essentially the same as that
of the Prandtl-Tomlinson model, and the instantaneous phase
transition proposed by Ref. [36] does not exist. Note that in
the case of the type-A model, which has a singular point of
J (x) at x = 0, the result of Eq. (45) does not obey Eq. (2).

Finally, we calculate the quantity

R ≡ d

dfex
(ln v), (46)

to investigate the difference compared to the Dieterich-Ruina
law. This quantity becomes constant if the system obeys
Eq. (1). When v is small, it is difficult to calculate R using the
numerical differentiation of the simulation results, because the
error bars of ln v are large. Hence, we instead use the results
of approximate evaluations based on Eqs. (43) and (45). The
results of these two equations are compared in Fig. 10. Note
that the values of R calculated by these equations do not
depend on γ . As seen in Fig. 10, the results of Eq. (43), which
correspond to the small-γ case, show a plateau in the small- fex
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FIG. 10. R- fex relations of (a-1) type-A model at T = 1.5 and
N = 150, (a-2) type-A model at T = 3 and N = 300, (b-1) type-B
model at T = 1.5 and N = 150, and (b-2) type-B model at T = 3
and N = 300. The red solid curves are the results of Eq. (43), and
the black dashed curves are those of Eq. (45).

range. In our previous studies, we considered that the system
obeyed the Dieterich-Ruina law in this range. However, even
in this plateau, the value of R is not always constant. Hence,
strictly speaking, the Dieterich-Ruina law does not always
hold even in this range. It is possible that the models of our
previous studies also deviated from the Dieterich-Ruina law,
but we could not find the difference using only the v- fex

graphs, like those shown in Figs. 7 and 8(b). We briefly dis-
cuss this deviation using Eq. (43). When fex is small, the stick
state appears with high probability. It means that q0 � q1, and
consequently Eq. (43), gives the following relation:

v ∝ q0

q1
∝ eβN[aeff (m1 )−aeff (m0 )]. (47)

Here we ignored slowly varying factors. Using Eq. (47), R is
calculated as follows:

R = βN
d

dfex
[aeff (m1) − aeff (m0)]. (48)

Hence, in the small- fex range, R stays constant and Eq. (1)
holds if aeff (m0) and aeff (m1) is the linear function of fex. In
other words, deviation from Eq. (1) in this range expresses
the nonlinearities of the effective free energies, aeff (m0) and
aeff (m1), as the function of fex. Note that in the large-γ
case, the discrepancy between Eq. (1) and the actual velocity
is caused by the similar mechanism to that of the Prandtl-
Tomlinson model, as we already explained.

IV. SUMMARY

In this paper, we considered a simplified model of mag-
netic friction in which the lattice motion is prevented by the
magnetization of the system. Numerical simulations showed
that the mechanism of the lattice motion differed depending
on the resistance coefficient, γ . When γ is small, the stick
and slip states exist as metastable states separated from each
other, and the lattice velocity is determined by the probability

of the slip state. In this case, the change between these two
states resembles the first-order phase transition. As explained
in Sec. III B, this transition has a different form from the
inference of Ref. [36], which did not consider metastability.
On the other hand, when γ is large, such a coexistence of two
states is not observed, and the lattice motion is caused by the
thermal activation process. This difference affects the relation
between the lattice velocity and frictional force. As explained
in Sec. III D, although the behavior of the lattice velocity at a
small γ value under a sufficiently weak external force seems
to be close to the Dieterich-Ruina law, Eq. (1), it does not
always exactly coincide with this law.

Magnetic structures such as the magnetization are a kind
of internal structure of the lattice. Hence, it is expected that
the results of this study could be applied not only to mag-
netic friction but also to the friction of normal solid surfaces.
Such a generalization of this study could be the subject of
future work. In particular, whether the stick and slip states
are separated as metastable states or interchange with each
other smoothly should also be investigated in the case of the
usual solid surfaces. To apply our study to the realistic friction,
simplification of the model seems to become the problem. For
example, the overdamped Langevin equation assumes that the
inertial term is much smaller than the damping term. Hence,
our investigation on this equation under small damping con-
stant γ seems to be strange. However, it does not mean that
our study failed to grasp the essential behavior of the friction.
In our model, the velocity of the slip state is fast when γ is
small. Considering that the system does not have sufficient
time to change the magnetization under the fast lattice motion,
high velocity of the slip state is thought to be the direct cause
of the separation of the stick and slip states. Hence, it is
possible that such separation can be observed even though γ

itself does not have a small value. In addition, in the case of the
system which does not have the parameter corresponding to γ ,
the velocity of the slip state is thought to be the alternative
criterion which judges whether such separation exists. We
should consider these points carefully in future work.

The system size N should be also remarked. In this study,
we considered the case that N is several hundred. If N
gets larger, then the relaxation time of the system diverges
rapidly and the stochastic transition between two metastable
states cannot be observed. On the other hand, if N = 1, then
metastable states themselves do not appear because there are
no internal structures such as m. Hence, the coexistence of
the metastable stick and slip states discussed in our study can
be observed only when N is not too large nor too small. This
restriction seems to be related with the true contact area of
the solid surfaces. In the case of the friction of the normal
solid surfaces, it is known that the frictional force is generated
by the asperities, the junctions of protrusions of the surfaces.
Hence, the true contact area of the surfaces is much smaller
than the apparent one, but it is never composed of only one
atom or molecule [2]. In short, both the system we inves-
tigated in this study and the true contact area of the solid
surfaces are few-body systems, and our result is an example
that friction can have the behavior peculiar to such systems.
Considering this point, our result implies that the dependence
on the size of the contact area has an important role on the
friction.
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From the standpoint of statistical mechanics, it is also in-
teresting that the infinite-range Ising model, which shows the
second-order phase transition in the equilibrium state, shows
the first-order-like transition when it is combined with the
lattice motion. In a case where the model has the first-order
phase transition or does not have any phase transition in the
equilibrium state, whether the system behaves the same as
our present model remains unclear. This point should also be
studied in future.
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APPENDIX A: THE BORDER γc WHERE THE BEHAVIOR
OF THE SYSTEM CHANGES

As mentioned in the main text, the process of the lattice
motion of our model shows two different behaviors depend-
ing on the value of γ . Namely, the stick and slip states are
separated as the metastable states when γ is small, and such
separation is not observed when γ is large. Finding the border
γc where the behavior changes is difficult because the value
of x keeps changing in the slip state, although this border
is important. In this Appendix, we introduce a trial to find
it. Specifically, we calculate the histogram of m when x is
near the xm given by Eq. (27), the point where the system
under the stick state is most likely to be located. Hence,
this histogram is the cross section of Fig. 4, except for the
fact that the parameters have different values. Note that this
histogram is different from Fig. 5 which shows the integration
of Fig. 4. If this histogram shows two peaks, then we judge
that there is a route for the slip state that keeps the lattice
moving without changing into the stick state, and hence the
separated metastable states exist. If there is only one peak, on
the other hand, then we think that the system should become
the stick state when x 
 xm, and such separation does not
exist. Figure 11 shows the example of this histogram of the
type-A model at T = 3, N = 300, and fex = 0.15. Here we
take the data under the condition that 0 � x < 0.02π , i.e.,
x 
 xm = 0. Seeing this figure, we can confirm that the second
peak disappears in the range 0.48 � γ � 0.64, and the border
γc falls within this range. To calculate the exact value of γc,
more careful simulation is required. In addition, γc changes
its value depending on fex. The computational cost required
to draw the γc- fex curve is thought to be large.

FIG. 11. Histogram of m of the type-A model with different γ

values at T = 3, N = 300, and fex = 0.15, under the condition that
0 � x < 0.02π . The red open square, green open circular, blue trian-
gular, purple closed square, and black closed circular points represent
the data at γ = 0.16, 0.32, 0.48, 0.64, 1.0, respectively.

APPENDIX B: CALCULATION OF pm

FOR THE TYPE-A MODEL

In the case of the type-A model, using constants a1, a2, b1,
and b2, Eq. (22) is expressed as follows:

pm(x) =
{

a1 exp [Nβα−,m(x − π )] + b1 (0 � x < π ),
a2 exp (Nβα+,mx) + b2 (−π � x < 0),

(B1)

where α±,m ≡ fex ± 2J1

π
m2. (B2)

When Nβ � 1 and |m| is sufficiently smaller than mth,
pm is inversely proportional to the average velocity, [ fex +
J ′(x)m2]/γ , as in the case of the type-B model [see Eq. (34)].
Hence, b1 and b2 can be expressed as follows:

b1 = a

α−,m
, b2 = a

α+,m
, (B3)

using constant a. The continuity of pm at x = 0, π gives the
following relation:

a1e−Nβα−,mπ + a

α−,m
= a2 + a

α+,m
, (B4a)

a1 + a

α−,m
= a2e−Nβα+,mπ + a

α+,m
. (B4b)

Solving these equations, we obtain relations between con-
stants a1, a2, and a. When N is large, e−Nβα+,mπ is much
smaller than e−Nβα−,mπ . Hence, we ignore the first term on
the right-hand side of Eq. (B4b). Under this approximation,
Eq. (B1) can be rewritten as follows:

pm(x) =
{

a
(

1
α+,m

− 1
α−,m

)
exp [Nβα−,m(x − π )] + a

α−,m
(0 � x < π ),

−a
(

1
α+,m

− 1
α−,m

)
(1 − e−Nβα−,mπ ) exp (Nβα+,mx) + a

α+,m
(−π � x < 0).

(B5)

Letting a′ ≡ ae−Nβαα−,mπ , Eq. (B5) can be rewritten as follows:

pm(x) =
{

a′( 1
α+,m

− 1
α−,m

)
exp (Nβα−,mx) + a′

α−,m
eNβα−,mπ (0 � x < π ),

a′( 1
α+,m

− 1
α−,m

)
(1 − eNβα−,mπ ) exp (Nβα+,mx) + a′

α+,m
eNβα−,mπ (−π � x < 0).

(B6)
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This expression is convenient when |m| > mth. Note that pm

given by Eq. (B6) has a sharp peak at x = 0 when |m| > mth

and N is sufficiently large. Hence, this equation is not con-

tradictory to Eq. (29), although Eq. (B3) was derived from
Eq. (34). In a case where |m| = mth, which means that α−,m =
0, the form of pm is expressed by taking the limit of Eq. (B6):

pm(x) =
{

a′′( 1
Nβα+,m

+ π − x
)

(0 � x < π ),

a′′[ 1
Nβα+,m

+ π exp (Nβα+,mx)
]

(−π � x < 0),
(B7)

where a′′ ≡ Nβa′.

APPENDIX C: CALCULATION OF I′
1(0)

In this Appendix, the value of I ′
1(0) is calculated. First, we

use the following relations:

tanh[2βJ (x)m] = 2βJ (x)m + O(m2), (C1)

pm(x)=BeNβ fexx
∫ ∞

x
e−Nβ fexξ dξ + O(m2)= const + O(m2).

(C2)

Here Eq. (C2) is derived by using Eq. (25). Substituting
Eqs. (C1) and (C2) into Eq. (13), I (m) can be evaluated as

follows:

I (m) =
∫ 2π

0 2βJ (x)mdx∫ 2π

0 dx
+ O(m2)

= 2βm

∫ 2π

0 J (x)dx

2π
+ O(m2). (C3)

In both type-A and -B models, the integral appeared in the
right-hand side of Eq. (C3) is 2πJ0. Hence, this equation can
be transformed as follows:

I (m) = 2βJ0m + O(m2), (C4)

and we obtain the value of I ′(0):

I ′(0) = 2βJ0. (C5)
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