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Membrane buckling and the determination of Gaussian curvature modulus
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Biological membranes can exhibit various morphology due to the fluidity of the lipid molecules within
the monolayers. The shape transformation of membranes has been well described by the classical Helfrich
theory, which consists only a few phenomenological parameters, including the mean and the Gaussian curvature
modulus. Though various methods have been proposed to measure the mean curvature modulus, determining
the Gaussian curvature modulus remains difficult both in experiments and in simulations. In this paper we
study the buckling process of a rectangular membrane and a circular membrane subject to compressive stresses
and under different boundary conditions. We find that the buckling of a rectangular membrane takes place
continuously, while the buckling of a circular membrane can be discontinuous depending on the boundary
conditions. Furthermore, our results show that the stress-strain relationship of a buckled circular membrane
can be used to determine the Gaussian curvature modulus effectively.
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I. INTRODUCTION

Buckling, a common phenomenon observed in our daily
life [1–12], refers to the sudden change in the shape of
an elastic object under compressive loads. The research of
buckling can be dated back to as early as 1691, when Jacob
Bernoulli studied the buckling of an elastic beam [13]. In the
18th century, Leonhard Euler and Daniel Bernoulli further
developed the elastic beam theory which nowadays constitutes
an important branch of continuum mechanics, and has broad
applications in structural and mechanical engineering [14].

In recent years, buckling in fluid membranes has drawn
the attention of many physicists [15–24]. The major com-
ponents of a fluid membrane are lipid molecules, which are
typically composed of a hydrophilic polar head and two hy-
drophobic hydrocarbon tails. In an aqueous solution, such
lipid molecules assemble into a double-layer structure with
the hydrophobic tails embedded inside so as to avoid water
and the hydrophilic heads are exposed to the water outside,
which is referred to as a lipid bilayer [25]. The lipid molecules
can freely move laterally within the monolayer, a specific fea-
ture of fluid membranes different from solid shells. Therefore
the buckling of a lipid membrane exhibits novel behaviors
compared with that of an elastic shell, such as the anisotropic
tension and negative compressibility [15,16].

The thickness (∼4 nm) of a typical fluid membrane is
negligible compared with its lateral dimension. When consid-
ering the deformation of the membrane on length scales that
are even moderately larger than the thickness, the Helfrich
theory [26,27], which treats the membrane as a continuum
two-dimensional (2D) surface, has been extremely successful
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in many applications [28–34]. The theory only has a couple of
phenomenological parameters characterizing the membrane’s
property, such as the mean and the Gaussian curvature mod-
ulus κ and κ̄ , and the spontaneous curvature c0. The local
deformation of a membrane directly depends on the mean
curvature modulus κ , which makes the measurement of κ a
relatively easy assay. In experiments, κ is typically obtained
via the fluctuation spectrum of a planar membrane [35–37], or
the force spectrum to pull a membrane tether from a spherical
shape [38,39]. However, measuring the Gaussian curvature
modulus κ̄ is difficult because for a patch of membrane with
a boundary, only deformations that alter the topology or the
boundary of the patch contain information about the Gaussian
curvature modulus due to the Gauss-Bonnet theorem [40,41].
For this very reason, in cellular processes which change the
topology of the membrane, such as cell division, endocytosis,
and exocytosis, the role of the Gaussian curvature modulus κ̄

cannot be simply ignored [42–44].
Boundary conditions (BCs) are important to determine the

shape of an elastic object. For a fluid membrane patch with
an open edge, the Gaussian curvature modulus κ̄ has a con-
tribution to the boundary stress. This dependence has been
used by molecular dynamics (MD) simulations to estimate
the Gaussian curvature modulus κ̄ either via the closure of
a spherical vesicle [45,46] or via the edge fluctuations of a
planar membrane [47]. However, both methods require the
simulation of a large membrane either for a long time or with
multiple repeats, and therefore are computationally expensive.

Recently, the buckling of a planar membrane has been
suggested as a MD protocol to measure the mean curvature
modulus κ of the membrane [16]. This buckling protocol is
easy to implement, and has been proved to be robust against
the coarse graining level of the lipid models and the treat-
ment of the solvent when estimating κ [16]. Inspired by the
work, in this paper, we consider two kinds of geometries
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of membrane, i.e., a rectangular membrane and a circular
one, and respectively investigate their buckling phenomena
under a compressive stress via the Helfrich theory [26,27].
Our numerical results of the stress-strain relationship for the
rectangular membrane agree well with the theoretical pre-
dictions reported in the literature [16]. Moreover, through
investigating the circular membrane, we find that the buckling
process shows qualitatively different behaviors under distinct
BCs. The stress-strain relationship under the free-hinge BC
strongly depends on the Gaussian curvature modulus κ̄ , which
therefore provides an effective method to determine the Gaus-
sian bending rigidity of a fluid membrane through a buckling
protocol.

II. THEORETICAL MODEL

We model the rectangular and the circular membranes
as one-dimensional and axis-symmetric two-dimensional
patches, respectively. We consider two types of BCs, namely
the free-hinge BC in which the membrane is allowed to rotate
freely at the edge where compressible stresses are applied, and
the fixed-hinge BC in which the membrane angle is fixed to
be in parallel with the substrate at the edge.

A. The rectangular membrane

For the rectangular membrane which is initially laid in a
plane at the horizontal surface with a length of L0 in the x
direction and a width of Ly in the y direction, the buckling
is driven by a compressive stress fx applied at the two ends
of the membrane along the x direction. When the stress fx

exceeds a critical value, the membrane will buckle with its
shape depicted by the coordinates [X (s), Z (s)], where s is
the arc length along the x direction (Fig. 1). We assume that
the total arc length L0 of the membrane is invariant during
the buckling process and introduce ψ (s) as the angle made
between the tangential direction of the arc and the x direction.
The total energy of the membrane is written as

E = κ

2

∫
c2

1dA + fxLxLy, (1)

where the first term is the bending energy, with c1 = dψ/ds
the principal curvature along the arc direction, and dA = Lyds
the area element. The second term is the boundary energy,
where the compressive stress fx is essentially a Lagrangian
multiplier with a unit of force per unit length imposed on
the base length Lx in the x direction. Note that the Gaussian
curvature for the curved rectangular membrane is zero, and
therefore has no contribution to the total energy.

B. The circular membrane

For the circular membrane which is initially laid in a plane
with a radius of R0, the buckling is driven by a compres-
sive stress fr along the inward radial direction applied at
the perimeter of the membrane. When the stress exceeds a
critical value, the membrane will buckle with the shape of the
membrane depicted by the coordinates [R(s), Z (s)], where s
is the arc length along the meridian direction, as shown in
Fig. 2. Different from the rectangular membrane, the total arc
length S can change during buckling, but the total area A of

FIG. 1. Illustration of a rectangular membrane deformed from
(a) a planar shape, to a buckled shape under (b) free-hinge BC or
(c) fixed-hinge BC.

the membrane remains invariant, the same as in the rectangu-
lar membrane. The angle ψ (s) spans between the tangential
meridian direction and the radial direction. The total energy
of the membrane reads

F =
∫ [κ

2
(c1 + c2)2 + κ̄c1c2

]
dA + σA + frπR2

b, (2)

where we use F to denote energy for the circular membrane
instead of E for the rectangular membrane. The first integral
is the bending energy with c1 = dψ/ds and c2 = sin ψ/R the
two principal curvatures of the membrane surface, and the two
terms in the square brackets represent contributions from the
mean curvature and the Gaussian curvature, respectively. The
Lagrangian multiplier σ in the second term is to impose a
constant surface area condition for the membrane during the
buckling process, which can be interpreted as the membrane
tension. The last term is the boundary energy, where the com-
pressive stress fr is also a Lagrangian multiplier imposed on
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FIG. 2. Illustration of a circular membrane deformed from (a) a
planar circular shape, to a buckled shape under (b) free-hinge BC or
(c) fixed-hinge BC.

the base area πR2
b with Rb the base radius of the membrane

when it buckles.

C. Boundary conditions

For the free-hinge BC, we have the vanishing bending
moment at the boundary. In the case of the rectangular mem-
brane, it is expressed as the vanishing curvature c1 = 0. In the
case of the circular membrane [Fig. 2(b)], it implies that

κ (c1 + c2) + κ̄c2 = 0. (3)

Note that the Gaussian curvature modulus κ̄ appears in
Eq. (3). This is the key reason why we can use the buckling
protocol to measure κ̄ for the free-hinge BC, which will be
elaborated later.

For the fixed-hinge BC, we simply fix the membrane angle
ψ = 0 unless otherwise stated, as illustrated in Fig. 2(c) in the
case of the circular membrane.

III. RESULTS AND DISCUSSION

A. The buckling of a rectangular membrane

The buckling of a rectangular membrane with a fixed-hinge
BC has been studied both analytically and via MD simulations
in Refs. [15,16]. Here, we numerically solve the shape equa-
tions and analyze the buckling process from an energetic point
of view and incorporate the free-hinge BC into consideration.
The detailed derivations of the shape equations, as well as
the BCs, are presented in Appendix A. We numerically solve
the shape equations via the MATLAB solver bvp5c, which is
designed for boundary value problems of ordinary differential
equations. A description of how to use the solver to iteratively
obtain membrane shapes of different buckling degree is pro-
vided in Appendix C.

The planar shape is always a trivial solution to the shape
equations regardless of the stress fx and the BCs, and the
total energy Ep of the planar shape increases with the stress
fx linearly due to the boundary energy (cyan line in Fig. 3).
When the stress fx exceeds a critical value, a new branch of
solutions emerges due to membrane buckling (Fig. 3, black
dotted line). The total energy of the buckled shape is lower
than that of the planar shape, indicating that as the stress
increases to the critical point, the rectangular membrane will
experience a buckling transition, at which membrane starts
to bend with an increasing bending energy Eb at the cost of
reduced boundary energy El.

Near the critical stress, the buckled membrane remains rel-
atively planar. As the stress builds up, the membrane becomes
more and more bent (top panels in Fig. 3). In order to describe
the bending degree, we define the strain μx = (L0 − Lx)/L0

and plot the stress-strain relationship in Fig. 4. Buckling is
featured in the nonzero value of the stress fx at μx = 0. We
find that the stress required to bend the membrane to the
same strain for the fixed hinge is fourfold of that for the
free hinge. Furthermore, we compare our numerical results
with the analytical results for the fixed-hinge BC derived in
Ref. [16],

fx = κ

(
2π

L0

)2[
1 + 1

2
μx + 9

32
μ2

x + 21

128
μ3

x + O
(
μ4

x

)]
, (4)

and find good agreement between them (the red solid line and
the red dashed line in Fig. 4).

B. The buckling of a circular membrane
with zero Gaussian curvature modulus

In this section, we study the buckling process of a circular
membrane under an isotropic and compressible radial stress
fr with a unit of force per unit length. The membrane shape is
assumed to remain axisymmetric upon buckling and thus can
be depicted using its meridian profile. The shape equations, as
well as the BCs, for the axisymmetric circular membranes are
derived in Appendix B. In order to see the differences made by
κ̄ = 0 and κ̄ �= 0, we first study the condition κ̄ = 0 and show
the effect of nonzero κ̄ in the next section. It is found that the
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FIG. 3. Effect of the stress on the free energy of the rectangular membrane based on (a) a free-hinge or (b) a fixed-hinge model. Here,
S0 = L0/2.

buckling behaviors for the two types of BCs are qualitatively
different. For the sake of comparison, we introduce the area
strain μr = (A0 − Ab)/A0 to reflect the buckling degree of the
circular membrane, with A0 = πR2

0 the total surface area and
Ab = πR2

b the base area when the membrane buckles.
For the free-hinge BC, the buckling process is quite similar

to that of the rectangular membrane. With the increase of
the stress fr, a new branch of buckling solution emerges in
addition to the planar membrane [black dotted line and cyan
line in Fig. 5(a)]. The total energy of the buckled membrane,
consisting of the bending energy Fb and the boundary energy
Fl, is lower than that of the planar membrane Fp, indicating
the occurrence of a buckling transition. The membrane re-
mains almost planar near the transition point, and after that
the buckling degree continuously increases with the stress fr

[top panels in Fig. 5(a)], which is manifested as a continu-
ous stress-strain relationship in the blue curve of Fig. 6. We
analytically derive the critical stress (see Appendix E for the

FIG. 4. Stress-strain relationship of the rectangular membrane.
The dashed red curve represents the analytical result Eq. (4) reported
in Ref. [16].

detailed derivation).

f crit
r = κ

[
x(0)

1

]2

R2
0

, (5)

a result in good agreement with the numerical solution (the
magenta star in Fig. 6). For the fixed-hinge BC, the energy
profiles become complicated and two buckling branches are
found for a single stress fr. On one of the buckling branches,
the bending degree decreases with the increasing stress fr [the
purple and the blue shapes of the top panels in Fig. 5(b)].
Hereafter, we will refer to this branch as branch 1. On the
other branch, the base of the membrane is nearly closed [the
green shape of the top right panel in Fig. 5(b)]. Hereafter,
we will refer to this branch as branch 2. The total energy,
consisting of the bending energy Fb and the boundary energy
Fl, is lower in branch 2 than in branch 1. The energy of the
planar membrane intersects with branch 2 at a point such
that the membrane is nearly closed. All these results suggest
that for the fixed-hinge BC, there exists a first-order transi-
tion at the critical stress, beyond which a sudden and sharp
membrane buckling occurs. In the stress-strain relationship,
it is reflected in the sudden jump of the strain from zero to
almost 1 when the stress goes beyond the critical point (the
red curve in Fig. 6). To further understand the origin of the
first-order transition under the fixed-hinge BC, we calculate
the buckling process of a circular membrane under different
hinged angles. Note that for a nonzero hinged angle, the
membrane is already bent even at zero stress fr. It is found
that if the hinged angle is large, the total energy of the buckled
membrane continuously increases with fr (the orange line in
Fig. 7). However, for small hinged angles, a Gibbs triangle
appears in the energy profile (the magenta, the black, and the
green lines in Fig. 7), which is the characteristic of a first-order
transition. A further calculation tells us that the critical angle
distinguishing between the first-order and the second-order
transitions is around 0.257π , as indicated by the red dotted
line in Fig. 7.

034802-4



MEMBRANE BUCKLING AND THE DETERMINATION OF … PHYSICAL REVIEW E 108, 034802 (2023)

FIG. 5. Dependence of the total energy of the circular membrane with Gaussian curvature modulus κ̄/κ = 0 on the stress based on (a) free-
hinge BC and (b) fixed-hinge BC, respectively.

C. Determination of the Gaussian curvature modulus via
circular membrane buckling with a free-hinge BC

In this section, we study the effect of the Gaussian cur-
vature modulus κ̄ on the buckling process of a circular
membrane under the free-hinge BC condition Eq. (3), in
which κ̄ explicitly appears. By virtue of the fact that the Gaus-
sian curvature modulus κ̄ only contributes to the boundary
bending moment, it makes no difference on the membrane
shape equations, and therefore has no impact on the buckling
process under the fixed-hinge BC in which ψ = 0 has no
dependence on κ̄ .

In Fig. 8, we show the total energy F = Fb + Fl of a buck-
led membrane as a function of the stress fr with different
Gaussian curvature moduli under the free-hinge BC. It is
found that the energy of the planar membrane intersects with
the energy of the buckled membrane at two stresses [cyan
lines in Figs. 8(a)–8(c)]. After crossing the smaller stress

FIG. 6. Stress-strain relationship of the buckled circular mem-
brane with κ̄/κ = 0. The magenta star indicates the analytical result
for the critical buckling stress given by Eq. (5).

point, the energy of the planar membrane remains lower than
that of the buckled one until it reaches the larger stress point,
indicating that the buckling actually occurs at the larger stress
point. Furthermore, the strain at the buckling point is nonzero,
which implies a discontinuous transition. It is found that
the critical stress f crit

r and its corresponding strain μcrit
r both

increase with the absolute value of the Gaussian curvature
modulus |κ̄/κ|, as shown in Fig. 8(d).

In principle, the Gaussian bending modulus can be deter-
mined from Fig. 8(d) if we can measure the critical buckling
stress f crit

r and the corresponding critical strain μcrit
r for a

circular membrane under the free-hinge BC from MD sim-
ulations. However, the precision of the measurement will be
limited by the single variable measurement. To overcome
this issue, we find out that the stress-strain relationships for
different Gaussian curvature moduli are quite different, as
shown in Fig. 9. Calibrating the stress-strain curves with this
figure provides a more robust way to estimate the Gaussian
curvature modulus κ̄ . To elaborate the idea, we consider a
typical MD simulation of a membrane patch with 1000 lipid

FIG. 7. Effect of the stress on the total energy of the circular
membrane under the fixed-hinge BC for different hinged angles.
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FIG. 8. Dependence of the free energy of the circular membrane on the stress under the free-hinge condition with three different Gaussian
curvatures (a) κ̄/κ = −0.4, (b) κ̄/κ = −0.8, and (c) κ̄/κ = −1.0. (d) The critical stress f crit

r (red curve) and its corresponding strain μcrit
r

(green curve) as a function of Gaussian curvature κ̄/κ under the free-hinge condition, respectively.

molecules [48–51]. Assuming each lipid occupies an area of
0.5 nm2 [52], the total surface area of the patch is 500 nm2

and the radius of the circular membrane R0 = 12.6 nm. As-
suming that the mean curvature modulus κ is known, e.g.,
κ = 40 kBT , from the rectangular membrane buckling simu-
lations, our aim is to determine the ratio of κ̄/κ as accurately

FIG. 9. The stress-strain relationship of the circular membrane
with different Gaussian curvature moduli. The solid part represents
the stress-strain relation beyond the critical stress such that the
buckled shape is stable, and the dashed part represents the stress-
strain relation below the critical stress, where the buckled shape is
metastable and the planar shape is stable.

as possible from the stress-strain relationship of the buckled
circular membrane. The stress applied at the boundary of
the patch can be precisely regulated in a MD simulation by
tuning the forces acting on the lipid molecules at the boundary.
However, the strain, i.e., the base radius of the membrane
patch Rb, needs to be read out from the simulation and it
has an uncertainty due to thermal fluctuations. In Fig. 10,
we show the calculated base radius Rb as a function of the
ratio κ̄/κ at three different stresses. Imagine in a hypothetical
simulation, the stress is tuned at fr = 6.9 pN/nm and the cir-
cular membrane is buckled and compressed to a base radius of
Rb = 6 ± 1 nm. We can then read out the ratio κ̄/κ = −0.38,
and the confidence interval is [−0.56,−0.17], as illustrated
in Fig. 10. Note that when the stress is small, buckling only
occurs for small values of |κ̄/κ|, as shown by the solid part of
the green curve ( fr = 6.3 pN/nm) in Fig. 10. In order to im-
prove the accuracy, we can measure the base radius at multiple
stresses and the confidence interval would be the joint set of
each readout. For instance, raising the stress up to 7.9 pN/nm
would give another measurement of the base radius, from
which the average value and the confidence interval of κ̄/κ

can be read out from the red curve in Fig. 10. Compared with
measuring the fluctuation spectrum at the edge, obtaining the
stress-strain relationship is more straightforward. We specu-
late the method is also robust against the coarse graining level
of the lipid models and the treatment of the solvent based on
its performance in the measurement of the mean curvature
modulus κ [16]. A test of the method with MD simulations
will be included in one of our future works.
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FIG. 10. The base radius as a function of the ratio κ̄/κ at dif-
ferent stresses for a hypothetical MD simulation. The membrane
patch is assumed to have a surface area of 500 nm2 and has a mean
curvature modulus of κ = 40kBT . For each curve, the solid/dashed
part represents the region where the applied stress is greater/less than
the critical buckling stress, respectively. The horizontal solid line
indicates the measured value of Rb = 6 nm in a hypothetical sim-
ulation and the two horizontal dashed lines indicate the uncertainty
of the measurement. The vertical solid line indicates the predicted
value of the ratio κ̄/κ = −0.38 and the vertical dashed lines indicate
the confidence interval of the prediction.

IV. DISCUSSION AND CONCLUSION

One of the aims of this paper is to investigate the role of
the Gaussian curvature modulus κ̄ in the buckling process of
a membrane. It is best manifested in the buckling process of
a circular membrane under free-hinge BC, which exhibits a
continuous transition for zero κ̄ (shown in Sec. III B), but a
discontinuous transition for nonzero κ̄ (shown in Sec. III C).
Furthermore, the stress-strain curves for membranes with dif-
ferent nonzero Gaussian curvature moduli κ̄ differ in two
aspects: (i) The critical stress and the corresponding critical
strain are different. A more negative κ̄ leads to a larger critical
stress f crit

r and critical strain μcrit
r [Fig. 8(d)]. (ii) Beyond the

critical stress, the stress-strain curves are also quantitatively
different (Fig. 9). The differences can be exploited to accu-
rately quantify the Gaussian curvature moduli κ̄ . A possible
drawback of the method is that when the Gaussian curvature
modulus is very negative (κ̄/κ ≈ −1), the base radius Rb can
be very small when buckling takes place. For instance, the
buckled base radius Rb < 2 nm if κ̄/κ = −0.9 in the hypo-
thetical simulation, as illustrated in the red curve of Fig. 10.
In this case, the MD simulation of buckling might be difficult
to achieve as the membrane is almost in closure at the base.

In summary, we investigate, respectively, the buckling of
a rectangular membrane and a circular membrane under two
BCs. It is found that for an initially planar rectangular mem-
brane, when the stress from two sides is increasingly loaded,
buckling occurs continuously under both free-hinge and fixed-
hinge BCs. But for the initially planar circular membrane, the
buckling behavior depends on its boundary condition, as well
as the Gaussian curvature moduli. For the fixed-hinge BC,
there exists a first-order buckling transition if the hinged angle
is small, regardless of the Gaussian curvature modulus κ̄ . For
the free-hinge BC, with the increase of stress, buckling takes
place continuously for zero κ̄ and discontinuously for nonzero
κ̄ . Finally, we find an effective method to determine the

Gaussian curvature modulus by calibrating the stress-strain
relationship of the circular membrane under the free-hinge BC
with different Gaussian curvature moduli.
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APPENDIX A: SHAPE EQUATIONS AND BOUNDARY
CONDITIONS FOR RECTANGULAR MEMBRANES

For the rectangular membrane, one can obtain its principal
curvature c1 = ψ̇ . The elastic energy E in Eq. (1) then can
be written as E = κLy

∫ L0/2
0 Lds, with its Lagrangian function

given by

L = 1
2 ψ̇2 + f̄x cos ψ + γ (Ẋ − cos ψ ) + η(Ż + sin ψ ),

(A1)
where f̄x = fx/κ , ψ̇ and Ẋ denote their derivatives with re-
spect to the arc length s, and γ and η are the Lagrangian
multipliers that enforce the geometric relations

Ẋ = cos ψ, Ż = − sin ψ. (A2)

A variation of the functional E gives

δE

κLy
=

∫ L0/2

0
ds

{[
∂L
∂ψ

− d

ds

∂L
∂ψ̇

]
δψ +

[
∂L
∂X

− d

ds

∂L
∂Ẋ

]
δX

+
[
∂L
∂Z

− d

ds

∂L
∂Ż

]
δZ + ∂L

∂γ
δγ + ∂L

∂η
δη

}

− Hδs

∣∣∣∣
L0/2

0

+ ∂L
∂ψ̇

δψ

∣∣∣∣
L0/2

0

+ ∂L
∂Ẋ

δX

∣∣∣∣
L0/2

0

+ ∂L
∂Ż

δZ

∣∣∣∣
L0/2

0

,

(A3)

where H ≡ −L + ψ̇∂L/∂ψ̇ + Ẋ∂L/∂Ẋ + Ż∂L/∂Ż is the
Hamiltonian function given by

H = 1
2 ψ̇2 − f̄x cos ψ + γ cos ψ − η sin ψ. (A4)

Having the bulk terms of Eq. (A3) vanish leads to the shape
equations

ψ̈ = ψ̇ + γ sin ψ + η cos ψ − f̄x sin ψ, (A5)

γ̇ = 0, (A6)

η̇ = 0. (A7)

Having the boundary terms in Eq. (A3) vanish, one can
obtain the BCs. In particular, at the membrane tip where
s = 0, we have four BCs: ψ (0) = 0, X (0) = 0, γ (0) = f̄x −
[ψ̇ (0)]2/2, and η(0) = 0. At the membrane base where s =
L0/2, we have three BCs: Z (L0/2) = 0, X (L0/2) = Lx/2, and
ψ (L0/2) = 0 for the fixed-hinge BC or ψ̇ (L0/2) = 0 for the
free-hinge BC.

In summary, Eqs. (A2) and (A5)–(A7) constitute the full
set of shape equations for rectangular membranes. They can
be converted to six first-order ordinary differential equations.
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Together with the unknown Lagrangian multiplier f̄x and the
seven BCs, we solve the problem with the bvp5c solver in
MATLAB that is designed for solving the boundary value prob-
lems of ordinary differential equations.

APPENDIX B: SHAPE EQUATIONS AND BOUNDARY
CONDITIONS FOR CIRCULAR MEMBRANES

For the circular membrane, the meridian coordinates R(s)
and Z (s) satisfy the geometric relations via

Ṙ = cos ψ, Ż = − sin ψ. (B1)

The elastic energy F in Eq. (2) can be expressed as F =
2πκ

∫ S
0 Lds, with its Lagrangian function given by

L = R

2

(
ψ̇ + sin ψ

R

)2

+ κ̄ψ̇ (sin ψ )/κ + σ̄R + f̄rR cos ψ

+ γ (Ṙ − cos ψ ) + η(Ż + sin ψ ), (B2)

where σ̄ = σ/κ , f̄r = fr/κ , and γ (s) and η(s) are Lagrangian
multipliers to enforce the geometric relations in Eq. (B1). The
total arc length S is an unknown parameter to be solved with
shape equations. A variation of the functional F reads

δF

2πκ
=

∫ S

0
ds

{[
∂L
∂ψ

− d

ds

∂L
∂ψ̇

]
δψ +

[
∂L
∂R

− d

ds

∂L
∂Ṙ

]
δR

+
[
∂L
∂Z

− d

ds

∂L
∂Ż

]
δZ + ∂L

∂γ
δγ + ∂L

∂η
δη

}

− Hδs

∣∣∣∣
S

0

+ ∂L
∂ψ̇

δψ

∣∣∣∣
S

0

+ ∂L
∂Ṙ

δR

∣∣∣∣
S

0

+ ∂L
∂Ż

δZ

∣∣∣∣
S

0

, (B3)

where the Hamiltonian function H ≡ −L + ψ̇∂L/∂ψ̇ +
Ṙ∂L/∂Ṙ + Ż∂L/∂Ż can be expressed as

H = R

2

[
ψ̇2 −

(
sin ψ

R

)2
]

− σ̄R − f̄rR cos ψ

+ γ cos ψ − η sin ψ = 0. (B4)

If we have the bulk terms of Eq. (B3) vanish, we obtain the
following shape equations,

ψ̈ = sin ψ cos ψ

R2
− ψ̇

R
cos ψ + γ

R
sin ψ

+ η

R
cos ψ − f̄r sin ψ, (B5)

γ̇ = 1

2
ψ̇2 − sin2 ψ

2R2
+ σ̄ + f̄r cos ψ, (B6)

η̇ = 0. (B7)

The BCs can be obtained by setting the boundary terms in
Eq. (B3) to be zero. In particular, at the membrane tip s =
0, we have four BCs: ψ (0) = 0, R(0) = 0, γ (0) = 0, and
η(0) = 0. At the membrane base s = S, we have three BCs:
Z (S) = 0, R(S) = Rb, ψ (S) = 0 for the fixed-hinge BC or
κ (ψ̇ + sin ψ/R) + κ̄ sin ψ/R = 0 for the free-hinge BC. In
addition, we need to impose the incompressibility condition

2π

∫ S

0
rds = πR2

0. (B8)

In summary, Eqs. (B1) and (B5)–(B7) make up the full
set of shape equations for circular membranes. They can be
converted to six first-order ordinary differential equations.
Together with the two unknown parameter f̄r and S, as well
as the seven BCs and the incomprehensibility constraint (B8),
we can solve the problem with the MATLAB solver bvp5c.

APPENDIX C: DESCRIPTION OF THE NUMERICAL
METHOD

We use the bvp5c solver in MATLAB to solve the boundary
value problem composed by the shape equations and the BCs
provided in Appendixes A and B. The bvp5c solver is based
on a finite-difference method that implements the four-stage
Lobatto IIIa formula [53]. When using the solver, in addition
to providing the shape equations and the BCs, we also need
to pass the function with an initial guess of the solution. We
adopt an iterative strategy to get membrane shapes with differ-
ent buckling degrees by starting with an almost planar shape.
In the case of rectangular membranes, the planar shape means
that Lx ≈ L0 or μx ≈ 0. In the case of circular membranes, it
corresponds to a large Rb that is almost the maximum value
limited by the surface area of the patch. Once we obtain the
first solution for the large Lx or Rb, we iteratively reduce the
value of Lx or Rb in small increments, and use the solution
of the previous step as the initial guess for the current step. In
this way, we obtain solutions of the shape equations of various
strains. The stress is obtained from the unknown parameter
solved by the bvp5c solver.

APPENDIX D: ACCURACY TEST
OF THE NUMERICAL METHODS

In order to verify the accuracy of our numerical solutions
to the membrane shape equations, we compare our numerical
results with the analytical results provided in Ref. [16] for a
rectangular membrane with a fixed-hinge BC. The analytical
expression of the membrane shape reads

X (s) = 2λE[am[s/λ, m], m] − s, (D1a)

Z (s) = 2λ
√

m(1 − cn[s/λ, m]), (D1b)

where λ = √
κ/ fx and m = sin2(ψi/2) [16]. Here, s ∈ [0, L0]

is the arc length from one end to the other end, am[s/λ, m] is
the amplitude of Jacobian elliptic function, E[am[s/λ, m], m]
is the incomplete elliptic integral of the second kind,
cn[s/λ, m] is the Jacobian elliptic function, and ψi is the angle
of the point on the rectangular membrane where the curvature
disappears dψ/ds = 0, in other words, the inflection point.
We find good agreement between our numerical results and
the analytical expression (the cyan solid line and the magenta
dashed line as shown in Fig. 11), thus proving the accuracy of
our method at least in this particular problem.

APPENDIX E: ANALYTICAL RESULTS FOR THE
CRITICAL BUCKLING STRESS OF A CIRCULAR

MEMBRANE UNDER THE FREE-HINGE
BOUNDARY CONDITION

For an almost planar membrane, the angle ψ � 1. Under
this approximation, we can get the linearized shape equation

R2ψ ′′ + Rψ ′ − (R2σ̄ + 1)ψ = 0, (E1)
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FIG. 11. Membrane shape of our numerical results (solid cyan
curve) compared with the analytical results of Ref. [16] (dashed
magenta curve). Here, we choose ψi = π/2 and m = sin2(ψi/2) =
0.5. The corresponding strain μx for the numerical solution
can be obtained via the expression μx ≡ (L0 − Lx)/L0 = 2(1 −
E[m]/K[m]) = 0.54, where E[m] is the complete elliptic integral of
the second kind, and K[m] is the complete elliptic integral of the first
kind.

where we have converted the function ψ (s) to ψ (R) with the
prime denoting the derivative with respect to R. The equa-
tion has a physically meaningful solution

ψ (R) = C1J1(R
√−σ̄ ), (E2)

only if σ̄ < 0. Here, C1 is an arbitrary constant and J1(x)
denotes the first kind of Bessel function. The free-hinge BC
requires that the following equation,

ψ ′ + ψ

R
= 0, (E3)

holds at R = Rb. Substituting Eq. (E2) into (E3), we obtain

J0(Rb
√−σ̄ ) = 0. (E4)

In order to get the first buckling mode, we let Rb
√−σ̄ = x(0)

1 ,
the first zero value of the Bessel function J0(x). The resulting
membrane tension reads

σ̄ = − 1

R2
b

[
x(0)

1

]2
. (E5)

The critical stress at which buckling occurs is essentially the
negative tension in Eq. (E5) and has the base radius Rb = R0.
In this way, we obtain Eq. (5).
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