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Current reversal in polar flock at order-disorder interface
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We studied a system of polar self-propelled particles (SPPs) on a thin rectangular channel designed into
three regions of order-disorder-order. The division of the three regions is made on the basis of the noise SPPs
experience in the respective regions. The noise in the two wide regions is chosen lower than the critical noise
of order-disorder transition and noise in the middle region or interface is higher than the critical noise. This
makes the geometry of the system analogous to the Josephson junction (JJ) in solid-state physics. Keeping all
other parameters fixed, we study the properties of the moving SPPs in the bulk as well as along the interface for
different widths of the junction. On increasing interface width, the system shows an order-to-disorder transition
from coherent moving SPPs in the whole system to the interrupted current for large interface width. Surprisingly,
inside the interface, we observed the current reversal for intermediate widths of the interface. Such current
reversal is due to the strong randomness present inside the interface, which makes the wall of the interface
reflecting. Hence, our study gives new interesting collective properties of SPPs at the interface which can be
useful to design switching devices using active agents.
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I. INTRODUCTION

The emergence of collective motion [1–6] and global or-
dering [7–12] among the various living or nonliving systems,
are well-known phenomena. Each particle shows systematic
motion at the cost of its internal energy. All individuals in
a group synchronize themselves to show different behav-
ioral state, exhibiting a host of interesting properties like
pattern formation [13], nonequilibrium phase transition [8],
large density fluctuation [14–16], enhance dynamics [17–26],
motility-induced phase separation [27–31], etc. Interestingly,
different real biological systems are encountered with differ-
ent kinds of confined geometry [32–36]. Confinement and
boundary play significant roles in a variety of biological sys-
tems [32], sheared system [37], and other places like fluid
dynamics. A boundary can induce many interesting phe-
nomena like, spontaneous flow inside the channel [38], and
another classic example includes Rayleigh-Benard convection
in the fluid [39,40]. There are a variety of practical appli-
cations based on confined geometry like mass transport in
nanofluids to enhance the microfluidic devices [41,42], geo-
physical applications, etc.

There are few studies where researchers have seen the
behavior of SPPs at the interface of two different substrate
media. Most of the previous studies involve the media of
two dissimilar fluids [43–46]. For example, Dirichlet et al.
[47] observed that catalytic active Brownian microswimmer
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at different solid-liquid interfaces shows inhomogeneity in
the particle speed with respect to the orientation of catalytic
substrate at different interfaces. Another well-known conven-
tional example of an interface between superconductor and
insulator with boundary is Josephson junction (JJ) in solid-
state physics [48–52].

Motivated with the JJ in the solid state, here in this article,
we will discuss the collective properties of SPPs by designing
a setup analogous to JJ. We have modeled a system of polar
SPPs with alignment interaction through a thin rectangular
narrow channel. Further, the thin channel is divided into three
regions wherein two opposite regions, SPPs move coherently.
In the middle region, SPPs diffuse randomly. Although the
comparison between our setup and the Josephson junction is
not very common since the superconducting phenomena are
macroscopically quantum in nature, we still designed an anal-
ogous model system for the collection of SPPs and observed
the properties of it.

We also studied the case where a small external field is
introduced along the long axis of the system, which gives a
directional bias for particle alignment. The system is studied
for different widths of the intermediate disorder region with
and without bias (perturbation). On tuning the width of the
disorder region, SPPs with perturbation show a nonequilib-
rium phase transition, whereas without perturbation, it shows
a weak dependence on the interface width. Further, at the junc-
tion, particles get reflected from its walls, and we observed
the current reversal. This leads some of the SPPs to reorient
in the opposite direction and hence contributes to a negative
current. The mechanism of reflection due to the interface is
microscopically different from the reflection from the hard
wall or physical obstacles [53], but on the macroscale, the
interaction of an incoming wave of particles in both the cases
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FIG. 1. We show a model picture of the system obtained from the
simulation in which different color shows the particle’s orientation θ

(∈ [0, 2π ]). The region II is the interface (junction) with disorder
region, whereas the region to the left and right of the interface (I and
III) is the ordered region. Noise strength in region II is ηII = 0.7, and
in regions I, III ηI = ηIII = 0.3. d is the width of the interface. The
two vertical lines in the middle indicate the boundary of the interface.
The W and L are the short and long dimensions of the system. The
axis for the two directions of the system is drawn on the left. The
asymmetrical geometry of our system becomes evident through the
positioning of ticks along the X and Y axis. The periodic boundary
condition is used in both directions.

are alike. Finally, we are discussing how the model used here
can be utilized for sorting a binary mixture of particles of
opposite chirality.

The rest of the manuscript is divided as follows; we have
discussed the details of the model in Sec. II. The results are
discussed in Sec. III, one possible application in Sec. IV, and
the conclusion of the paper with summary is discussed in
Sec. V.

II. MODEL

We consider a collection of polar self-propelled particles
(SPPs) moving on a two-dimensional substrate on a rectangu-
lar narrow channel with periodic boundary conditions (PBC)
in both directions. The short and long axes of the channel are
denoted by W and L, respectively, as shown in Fig. 1. Particles
interact through a short-range alignment interaction within a
small interaction radius R0 [8]. Moreover, the strength of inter-
action of each SPP is the same. The system is partitioned into
three regions: the two regions on the left and right represent
the ordered region, and the section in the middle represents
the disordered region. The middle disordered region is termed
as junction or interface, and the width d of the interface is
our tuning parameter. The width of the junction is varied from
d = (0–20). In three regions, each particle is defined by its
position ri(t ) and orientation θi(t ) at time t and they move
along the direction of their orientation with a fixed speed
v0 = 0.5. The position and orientation updates of a particle
are given by

ri(t + �t ) = ri(t ) + v0ni�t, (1)

ni(t + �t ) =
∑

j∈R0
n j (t ) + ηi,kNi(t )ξi(t )

wi(t )
, (2)

where �t = 1.0 is the unit-time step and ni = (cos θi, sin θi )
is the unit direction vector of the ith particle. In Eq. (2), the
first term on the right-hand side represents the short-range
alignment interaction inside the interaction radius (R0) of the
ith particle. The second term ξi(t ) = [cos(φi(t ), sin(φi(t ))]

on the right-hand side of Eq. (2) denotes the vector noise,
which measures the error made by the particle, following its
neighbors. φi is uniform random angle ∈ (0, 2π ), Ni(t ) denote
the number of neighbors within the interaction radius of the
ith particle at time t . Further, ηi,k (k = I , II , and III) (ηI =
ηIII = 0.3 and ηII = 0.7) shows the strength of the random-
ness present in the system for the three regions. We choose the
mentioned values of noise because, for the clean polar SPPs
interacting through Vicsek type alignment interaction with
vector noise, the order-disorder transition occurs at η ∼ 0.6
(for the same set of parameters used here) [14,54]. wi(t ) is
the normalization factor which reduces the right-hand side of
the Eq. (2) to a unit vector. We named the model above as the
system without perturbation (WOP).

We also introduced an external perturbation along the long
axis of the channel. It gives a directional bias for the SPPs
motion; hence, the orientation update equation will become

ni(t + �t ) =
∑

j∈R0
n j (t ) + h0np + ηkNi(t )ξi(t )

wi(t )
, (3)

where h0 is the strength of the external field and is kept fixed
to a small value with direction np = (1, 0). Using Eq. (3), the
model is referred to as system with perturbation (WP). Fur-
ther, the number density of SPPs is defined by ρ = N

L×W = 1.0,
where N is the total number of particles in the system. All
the particles are allowed to move throughout the system, and
they experience the noise of different regions accordingly. We
let the system evolve from a random homogeneous state of
density and orientation of particles. All the results discussed
below are in the steady state, and the total time step of the
simulation is taken 106. One simulation step is counted after
the update of all the particles once. Numerical details and
parameters are chosen as R0 = 1.0, L = 200, W = 5, and h0

is varied from 2% to 6% of the strength of alignment. A
total of 20 to 200 independent realizations are used for better
statistics.

III. RESULTS

A. Global ordering and junction width (d)

First, we study the effect of junction width d on the global
orientation in the whole system of size L × W = 200 × 5.
Ordering in the system is characterized by the orientation
order parameter,

	(t ) = 1

N

∣∣∣∣∣

N∑

i=1

ni(t )

∣∣∣∣∣. (4)

In the ordered state, i.e., when the majority of particles
are moving in the same direction, then 	 will be closer to
1, and of the order of 1√

N
for a random disordered state.

First, we show the variation of 	 = 〈	(t )〉, where 〈..〉 means
average over time in the steady state and over 20 independent
realizations. We first study the system WOP. In Fig. 2(a), we
plot 	 versus junction width d and found that with an increase
in d , 	 shows small decay, which is further confirmed by
the orientation probability distribution function (PDF) P(	)
in Fig. 2(b). To understand the small decay of 	 with width d ,
we have shown the snapshots for two different junction widths
d = 2 and 18 in Figs. 2(c) and 2(d), respectively. The position
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FIG. 2. All the plots (a)–(d) shown here for WOP. (a) Plot of
global orientation order parameter 	 vs width of the disorder region
d . Panel (a) shows the global order parameter distribution P(	) for
different widths of the junction d . Different colored break lines are
for d = 4 (black), d = 8 (red), d = 12 (green) and d = 18 (blue).
(b) Probability distribution of particles angle, P(θ ) for (d = 0) and
different widths of interface. Panels (c, d) show the snapshots of
the system for widths d = 5 and d = 18, respectively. Color of each
particle represents its orientation θ (∈ [0, 2π ]) according to the color
bar. L × W = 200 × 5 and ρ = 1.0. Note that the aspect ratio of the
box shown in panels (c, d) is not the same as the actual aspect ratio
of the system. Hence, tics on both axes are important. This is true for
all the color plots shown later.

of the particles are represented by circles, and their color
represents the orientation of the particles. In general, the SPPs
form the ordered band inside the ordered region as shown
by the dense moving SPPs along the channel in Fig. 2(b)
(from the right direction). The size of the ordered band
or cluster depends on the chosen set of system parameters
[14,55]. For the typical choice of parameters in this work, it is
approximately 10.

In the snapshots shown in Figs. 2(c) and 2(d) and anima-
tions in SM1_I [56] and SM1_II [56], the cluster of particles,
which look like a band is actually a manifestation of the very
small transverse Y dimension of the system. Hence, what
seems like a band in our figures and animations is basically
a cluster of size greater than the transverse dimension of
the system. The direction of motion of the ordered cluster
is the same as reported in previous literature [14]. To quantify
the direction of an ordered cluster, in Fig. 2(b) we show the

probability distribution of the particles angle P(θ ), averaged
over 200 ensembles for different widths (d = 0–18) of the
interface. For zero interface d = 0, the distribution is broad
with some structures due to periodic boundary conditions in
both directions. For small interface widths d � 5, the P(θ )
starts to develop multiple minor peaks. For larger interface
widths d � 8, the particles start to avoid the interface, and
it encourages the dynamics of particles in ±Y direction, and
the probability distribution starts to develop peaks at π/2
and 3π/2. But due to the presence of finite noise, a small
X -component is also present, and hence a moving cluster
possesses a nonzero velocity in the X -direction, and they will
encounter the interface.

Now we discuss the interaction of a moving cluster with
the interface. For small widths: the width of the interface is
smaller than the size of the cluster, and the SPP passes the
interface before it experiences the disorder present inside the
interface [as shown in Fig. 2(c)]. Hence, the global order pa-
rameter retains a high value ∼0.8, and the direction of moving
SPPs remain unaffected after interaction with the interface
[shown by the almost clear common orientation of all particles
in the system in Fig. 2(c)].

As we increase the width of the interface to a size larger
than that of the particle cluster, an interesting phenomenon oc-
curs during the interaction. Before the cluster can completely
pass through the interface, it encounters disturbances at the
interface, causing the front of the cluster to randomize. This
randomization affects the particles at the back as well, leading
to a partial reorientation of the cluster before passing through,
as depicted in Fig. 3(a)(I–II). The entire process appears akin
to a reflection due to the presence of the interface, as shown in
Fig. 3(a)(III–IV). While a portion of the cluster successfully
emerges from the other side, contributing to the forward mov-
ing current, a finite fraction of particles experience reflection
from the interface walls, as observed in Fig. 3(a)(V–VI).

To better understand this behavior, we analyze one-
dimensional density, ρ(x), and the X component of velocity,
〈vx(x)〉, averaged over the transverse direction, as presented
in Figs. 3(b) and 3(c), respectively. Initially, as shown in (I)
and (II), the band approaches the interface with a positive
〈vx(x)〉. However, upon entering the interface, the cluster
experiences significant fluctuations in 〈vx(x)〉 around zero,
indicating randomization and resulting in the splitting of the
band. Eventually, one part of the band reverses its direction
and emerges from the interface, showing distinct characteris-
tics of reflection. The interaction between the moving cluster
and the interface is effectively demonstrated through an an-
imation in SM1_I [56] using the same parameter values as
depicted in Fig. 3. The interface acts like a partially reflecting
wall, compelling the self-propelled particles (SPPs) to avoid
the junction and exhibit intriguing behavior during the pro-
cess. In the snapshots illustrated in Fig. 3(a), as well as in
the corresponding system animation labeled as SM1_I [56], a
cluster of particles exhibits movement in the +ve X direction,
converging upon the interface from the left side. In the particle
orientation probability distribution depicted in Fig. 2(b), we
assert that particle motion, including that of the cluster, is
unbiased along the X direction for the case WOP. To sub-
stantiate our claim, we have included an additional animation
employing the identical parameter values as those presented in
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FIG. 3. The figure depicts the reflection of a particle cluster from the interface in the WOP case for interface width, d = 14. The chosen
times highlight a dense cluster (band) of particles moving towards the interface, clearly visible in subplot (I) and discernible through the color
bar. Subsequent plots in panels (a)–(c), each with six subplots (I–VI), showcases the evolution of various quantities at specific times: t = 2122,
2163, 2204, 2223, 2253, and 2271, respectively. In each subplot of panel (a), particle orientation angle θ is represented by the color of particles,
as shown in the color bar. Subplots in panel (b) display the one-dimensional density 〈ρ(x)〉 averaged over the transverse direction, while
subplots in panel (c) exhibit the coarse-grained one-dimensional X− component of velocity 〈vx (x)〉 of particles averaged over the transverse
direction. Throughout all subplots of panel (a), two vertical black lines mark the position of the interface. Additionally, the tick labels along
the X and Y directions of the system reveal significant anisotropy in the system’s geometry. In panels (b, c), black vertical dashed lines
indicate the interface’s position along the X -direction. The interface’s width is denoted by d = 14, and all other parameters remain consistent
with those in Fig. 2.
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Fig. 3, denoted as SM1_II [56], which portrays the interaction
of particles with the interface and showcases the phenomenon
of reflection from the interface. Notably, in this animation,
the cluster demonstrates motion in the −ve X direction, ap-
proaching the interface from the right side. This presentation
effectively underscores our conclusion that the occurrence of
reflection from the interface remains consistent, irrespective
of the direction from which the cluster approaches.

The current reversal from the interface appears due to
the sudden temperature difference in our present model. It
is simply due to the interaction of an incoming wave of
particles with the interface. When an incoming wavefront
experiences an abrupt change in thermal noise, the front of
the wave gets randomized, and that information very soon
passes to the particles at the back of the wave. They start
to reorient in different directions, and by orienting in the
direction opposite to the direction of motion of the wavefront,
they have a better probability of leaving the interface soon
and forming another cluster moving in the opposite direction.
The whole mechanism acts like a reflection from the inter-
face. This mechanism is microscopically different from the
reflection due to a physical obstacle; if we place an obstacle
in the direction of a moving particle, as a result of interaction
with the obstacle, the particle experiences a torque due to the
walls of the obstacle and the direction of the particle gets
reoriented. This is true for a single particle. However, if a
wave interacts with the walls of the obstacle, then a fraction of
particles of the wave get reoriented due to the interaction with
the wall and then slowly accumulate more and more particles
with them and leading to the formation of a wave moving in
opposite direction and mechanism is like reflection. Hence,
we argue that, although the mechanism of reflection due to the
interface is microscopically different from the reflection from
the hard wall or physical obstacles [53], on the macroscale,
the interaction of an incoming wave of particles in both the
cases are similar.

The periodic boundary condition gives rise to multiple
instances of the reflection process, and in the long run, par-
ticles start avoiding the interface. Hence, their orientation
develops contributions in Y direction represented by P(θ ) plot
for d = 8 and 12 in Fig. 2(b). As shown in the snapshots
Fig. 3(a)(V–VI), the orientation of particles are not along the
θ = (0, π , or 2π ). This reduces their frequency of entering
the interface. This results that mostly the SPPs are moving in
the ordered region only, and we find weak dependence of the
global order parameter on the width d .

Further, we have studied the system WP. The perturbation
is introduced in such a way that the flock is biased to move
along the +ve direction of the long axis (x axis). Interest-
ingly, we have found that global orientation order parameter
	 decay sharply with an increase in the junction width d as
shown in Fig. 4(a), Which has been confirmed by plotting
the probability distribution function (PDF) P(	) for different
junction widths d as shown in the inset of Fig. 4(a).

Figures 4(b) and 4(c) show the snapshots for two different
junction widths d = 5 and 18. Due to a finite perturbation
along the +ve X direction, a moving flock can easily enter
inside the junction from the left wall. For lower widths of
the junction, the flock does not experience any hurdle and
passes coherently, resulting in higher values of 	. Moreover,

FIG. 4. All the plots (a)–(c) shown here for WP (h0 = 2%).
(a) The plot of global orientation order parameter 	 vs width of the
disorder region d . Panel (a) plot shows the global order parameter
distribution P(	) for different widths of the junction d . Different col-
ored break lines are for d = 4 (black), d = 8 (red), d = 12 (green),
and d = 18 (blue). Color of each particle represents its orientation
θ (∈ [0, 2π ]) according to the color bar. Plots (b) and (c) show the
snapshots of the system for width d = 5 and d = 18, respectively.
The other details of the parameters are the same as in Fig. 2.

for higher junction widths, we find a dense cluster of SPPs
inside the junction with random orientations, resulting in the
decrease of the value of 	. The same can be explained by the
plot of the probability distribution of the fraction of particles
P( f ) inside the junction as shown in Fig. 8(b). This is very
different from what we observed for system WOP as shown
in Figs. 2(d) and 3, where the boundary of the interface acts
like partially reflecting walls. But for the system WP, due to
a directional bias, the moving band of SPPs is forced to enter
inside the interface. Inside the interface, the strength of the
external perturbation is not strong enough to help them to
pass. But it resists their orientation in the opposite direction.
It leads to the accumulation of particles inside the junction as
shown in Fig. 4(c) and results to the small order parameter for
large junction width d .

In Figs. 5(a)–5(c) (snapshots, one-dimensional density
ρ(x) and 〈vx(x)〉, respectively), we illustrate the interac-
tion of a moving band with the interface at different
times. Initially, the band exhibits positive 〈vx(x)〉, indi-
cating the band is moving towards the interface for the
current position of the band as shown in Figs. 5(a)–5(c)
(I–II). However, upon encountering the interface, the band ex-
periences fluctuations from the interface Figs. 5(a)–5(c)(III–
IV), which tends to randomize the cluster. Despite strong
randomness within the interface, the driving force along +X
prevents a significant negative 〈vx(x)〉. As a consequence of
the interplay between the driving force and the intense ran-
domness, the particles remain entrapped within the interface
for a prolonged period and come out of the other side of
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FIG. 5. This figure illustrates the absence of reflection from the interface in WP case for interface width, d = 14. The first subplots, (I), in
panels (a)–(c) show a cluster approaching the interface. Consecutive snapshots show the evolution of various quantities at later times, t = 2670,
2710, 2740, 2770, 2800, and 2830, respectively, from (I–VI). In each subplot of panel (a), the particle orientation angle is represented by their
colors, as shown in the color bar. Subplots in panel (b) display the 〈ρ(x)〉, while subplots in panel (c) exhibit 〈vx (x)〉. All other parameters and
details remain consistent with those in Figs. 2 and 3.
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FIG. 6. Plots (a)–(c) show the time variation of event current 	xd along the long axis with increasing width d . (d) Event current distribution
P(	xd ). Panel (e) shows the X -orientation current autocorrelation for three junction width d . Black, red, and green colors show the results for
junction widths d = 4, 8, and 12, respectively. The other parameters are the same as in Fig. 2

the interface with a positive value of 〈vx(x)〉 as shown in
Figs. 5(a)–5(c)(V–VI). Thus, no clear reflection of particles
from the interface is observed here. The details of the interac-
tion of a band with the interface for system WP are shown in
SM2 [56].

B. Current inside the junction

1. Junction current

In this section, we discuss the junction current within the
junction along the long X axis as well as Y axis with the
variation of the junction width d for WOP. The junction cur-
rent is calculated when at least 25% particles of the whole
system are within the junction, and we named this current
as event current. The event current in the junction along X
and Y directions is defined by 	xd (t ) = 1

N1

∑N1
i nxi, 	yd =

1
N1

∑N1
i nyi. The nxi, nyi, and N1 represent the components of

the velocity vector along the long and short axis, and the
total number of particles within the junction, respectively. In
Figs. 6(a)–6(c), we show the time series of 	xd for different
values of junction width d . We observe, with increased d ,
the amplitude of 	xd decreases and also positive and nega-
tive current changes in a periodic fashion with the decreased
period. Here current is carried by the particles along +ve and
−ve X direction; we call them positive and negative currents,
respectively. Further, in Fig. 6(d) we show the current proba-
bility distribution function P(	xd ) of 	xd . It clearly suggests
that with the increase in the width of the junction, there is
a clear signature of the current reversal. Also, in Fig. 6(e)
we plot the current-current autocorrelation function (CACF)
C(	xd )(t ) = 〈	xd (t0) · 	xd (t + t0)〉, where 〈..〉 represents the
average over many ensembles and reference time t0. The
autocorrelation function decay sharply by increasing junction
width d . Hence, we find that in the channel, the current along
the long axis alternates from +ve to −ve on tuning the width

d . Our claim regarding the current reversal phenomena is a
very interesting property of the flock at the junction. For small
widths d < 8, a coherent flock enters into the junction and
crosses without significant deviation. For intermediate widths
8 � d � 16, we observed that once coherent moving SPPs en-
ter the junction, it faces randomness inside the junction. Since
inside the junction, all the directions are equally probable, but
the flock prefers to move in +ve or −ve; X direction, which
leads to a quicker escape from the disorder region. Further
SPPs try to come out from the junction and perform back and
forth oscillations within the junction. These oscillations are
termed as alternating event current. Interestingly this oscilla-
tion is more prominent for the intermediate junction widths
8 � d � 16. For small widths of the junction, the length of
a moving band of SPPs is of the order or larger than the
width of the interface, and SPPs can easily pass through it
with small disturbance; hence the X current 	xd shows small
oscillations with time and no negative current. But as we in-
crease the width of the interface, when the size of the interface
is larger than the size of the ordered band, then for some
distance, the moving band of SPPs is able to penetrate (which
is analogous to the penetration depth in solid state) and then
experience randomness. This leads to a fraction of particles
from the moving band reversing its direction of motion and
we experience a negative current, and hence negative 	xd as
shown in Figs. 6(b) and 6(c). Increasing the interface width,
the frequency of alternating current increases, which leads to
the sharper decay of the CACF C(	xd )(t ) shown in Fig. 6(e).
This leads to the phenomena of current reversal inside the
junction. For widths d > 20, moving SPPs experience more
and more reflection and are unable to enter inside the junction
and get reflected from the wall itself; hence, we have a weak
junction current. Due to that, the magnitude of the junction
current 	xd decreases with increasing d .

Furthermore, in Figs. 7(a)–7(c), we show the junction cur-
rent in Y direction 	yd and current PDF P(	yd ) along the
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FIG. 7. Plots (a)–(c) show the time variation of orientation event current 	yd along the short axis with increasing width d . (d) Orientation
event current distribution P(	yd ). Black, red, and green colors show the junction width d = 4, 8, and 12, respectively. The other parameters
are the same as in Fig. 2

small axis versus junction width d . We observe the oscillations
in 	yd too, but the timescale of oscillations is much larger
than those for 	xd and are not due to the current reversal in Y
direction. Such periodicity is further confirmed by the current
distribution P(	yd ) is shown in Fig. 7(d).

C. Fraction of particles inside the junction

Until now, we have discussed the orientation of moving
SPPs inside the junction. We also find interesting results for
the fraction of particles inside the junction f (t ) = N (t )

N . Here
N (t ) is the number of particles inside the junction at time
t . We compared the probability distribution function (PDF) of
f (t ) for the systems WOP and WP. The PDF, P( f ), is obtained
by calculating the normalized distribution of the fraction of
particles inside the junction, and then PDF is averaged over
different independent realizations.

In Figs. 8(a)–8(d) we show the plot of P( f ) versus f for
different junction widths (d = 4–20) for different strengths
of perturbations 0% (WOP), 2%, 4%, and 6%, respectively.
For all the cases the, tail of the distribution extends on in-
creasing width of the interface d , due to the increased area
of the interface and hence more number of particles inside
the junction. For all junction widths, the PDF is a power law
with slope f −1.25 for system WOP [as shown by log - log plot
in the main plot of Fig. 8(a)]. It suggests the probability of
finding all possible values of f for system WOP. The inset
Fig. 8(a) shows the same plot on log -y scale to compare that
the distribution is clearly a power law and not an exponential.
For the system WP, the distribution clearly has a deviation
from power law and shows a clear peak for f close to 1 as
shown in Figs. 8(b)–8(d). The height of the peak increases
on increasing width d . For larger widths and small perturba-
tion (2%) [Fig. 8(b)], a macroscopic fraction of particles if
present inside the junction. The appearance of a peak close
to f � 1 is visible more clearly in the inset plot of Fig. 8(b),
which is shown on the log -y scale. As we increase the per-

turbation further, the peak at larger f starts to weaken, and
distribution flattens for intermediate f ′s. It starts to appear
more exponential in nature for larger perturbations �4% as
shown in the insets of Figs. 8(c) and 8(d), which are drawn
on log -y scale. The exponential nature of the tail of the
distribution represents a critical fraction of particles inside
the junction. For 6% perturbation [Fig. 8(d) (main figure)],
the distribution shows a power law decay with power f −1

for moderate f ′s. It suggests a moderate fraction of particles
inside the junction.

Here we summarize the behavior of the density of particles
inside the junction. Adding a finite perturbation eases the
SPPs to get into the interface. For weak perturbation, although
perturbation is enough for SPPs to enter the junction, but not
sufficient for them to overcome the randomness present there.
This lead to the accumulation of particles inside the junction,
and P( f ) shows a peak at f � 1. As we increase the pertur-
bation, it guides the quicker entry of SPPs to the junction,
but now perturbation is comparable to the randomness present
inside, which results in the flattening of the P( f ) � f −1 for
higher perturbations.

Until now, we discussed the effect of the model introduced
here on the properties of SPPs. Now we come to one good
application of our model. In Sec. IV, we give an example
showing how the junction can be used for sorting two types
of particles with different chirality.

IV. JUNCTION AS A PARTICLE SORTER

In this section, we propose that such geometry of the sys-
tem for the case WOP can also be used for the sorting of
two types of particles. As described earlier and clearly visible
in the animation SM1_I [56] and SM1_II [56], for low and
intermediate junction widths, a part of the incoming cluster
of particles crosses the junction, and some of the particles
get reflected from the walls. Due to the periodic boundary
condition, with time, a cluster splits into many smaller clusters
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FIG. 8. Probability distribution, P( f ), inside the junction: Plot (a) is for WOP case and plots (b), (c), (d) are for WP case with perturbation
strength (h0) 2%, 4%, and 6%, respectively, on log-log scale. Colors black, red, green, blue, and yellow correspond to d = 4, 8, 12, 16, and
20, respectively. Insets show the plot of P( f ) vs f in log -y scale. In plot (a), the dashed line (cyan) is the power law with exponent 1.25, and
in plot (d) dashed line (magenta) is the power law with exponent 1. Other parameters are the same as in Fig. 2

and starts to develop preferential motion in the Y direction, as
shown by P(θ ) plot in Fig. 2(b) for d = 8 and 12.

This motivated us to think: What will happen if we place
a mixture of two different types of particles in the system?
To investigate that, we considered a mixture of two types
of particles (1 and 2) with left and right chiral, respectively.
Both types of particles are distributed with random orientation
and position in the system. We expect the particles with left
chirality will prefer to be reflected from the left wall, and
right chirality will have the ease to transmit the interface for
an incoming cluster coming from the region I and vice versa.

The difference in chirality is introduced by their response
to the random vector noise φ ∈ (−1.1π,+0.9π ) for the first
type and φ ∈ (−0.9π,+1.1π ) for the second type. Hence,
one type of particle has noise with a mean −0.1π , and the
noise has a mean 0.1π for the second type.

Also, the strength of alignment interaction is much stronger
for particles of its own type compared to the other type
(1.0 and 0.5, respectively). We begin with an initially ho-
mogeneous mixture of two types of particles. The results
reveal that over time, the particles undergo phase separa-
tion, leading to the formation of distinct clusters. In Fig. 9,
we present the phase separation process for an interface of
width d = 12, showing steady-state snapshots in Fig. 9(a)
and the one-dimensional density, 〈ρ(x)〉, of the two parti-
cle types in Fig. 9(b), represented by red and blue colors,
respectively. Subplots (I–VIII) correspond to progressively

increasing time intervals. In subplot Figs. 9(a) and 9(b)(I–
III), the particles are dispersed to some degree, indicat-
ing the presence of a demixed phase. However, as time
progresses, the particles begin to phase separate, forming
bands on two sides of the interface, as demonstrated in
Figs. 9(a) and 9(b)(IV). Once the phase separation occurs, the
system maintains this configuration for some time as depicted
in Figs. 9(a) and 9(b)(V–VI), after which the bands start to dis-
perse [Figs. 9(a) and 9(b)(VII–VIII)], ultimately leading to the
formation of the mixed state once again. This cyclic process of
mixing-demixing-mixing continues, resulting in an intriguing
dynamic interplay of the particle clusters within the mixture.

To characterize this phenomenon, we define the phase sep-
aration order parameter as

p(d ) = 1

N

N∑

i=1

∣∣∣∣
N1(i) − N2(i)

N1(i) + N2(i)

∣∣∣∣, (5)

where N1,2(i) are the number of particles of type 1 or 2
in the neighbourhood of ith particle. p has a value close
to 1 if the same types of particles are together or when
they are demixed and close to zero for a perfectly mixed
situation. In Fig. 9(c)(I–IV), we present time series data
for p(d ), illustrating four distinct interface widths: d = 5,
8, 14, and 18, respectively. This visual representation effec-
tively elucidates the observed patterns of mixing, demixing,
and subsequent mixing between the two types of particles
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FIG. 9. This figure illustrates the phase separation of two types of particles with different chirality for a width parameter d = 12, presented
as snapshots in panel (a), and the one-dimensional density averaged, 〈ρ(x)〉, over the transverse direction, as shown in panel (b). The subplots
(I–VIII) in panels (a) and (b) display the system’s evolution at subsequent times: t = 2440, 2850, 3000, 3370, 3650, 3935, 4100, 4500,
respectively. In subplots (I–VIII) of panel (a), particles of two different chirality are depicted with distinct colors (red and blue). The two
vertical black lines indicate the interface between the two phases. Additionally, the tick labels along both axes highlight the strong asymmetry
in the geometry of the system. In subplots (I–VIII) of panel (b), two different colors are used to represent the two different types of particles,
consistent with panel (a). Black vertical dashed lines are utilized to indicate the position of the interface along the long direction only; subplots
(I–IV) in panel (d) present time series data of the phase separation order parameter, denoted as p(d ), for four specific values of d: 5, 8, 14, and
18, all obtained from a single ensemble. All other system details remain the same as in Fig. 3.
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FIG. 10. Plot of phase separation order parameter P(d ) vs inter-
face width d . Other parameters are the same as in Fig. 2

within the system. For smaller values of d = 5, the demixing
between the two particle types is weak, resulting in shorter
periods of time spent in the demixed state. Consequently,
the system exhibits more frequent mixing-demixing events,
as evident in Fig. 9(c)(I). As we increase the value of d ,
as shown in Fig. 9(c)(II–III), the particles demonstrate more
substantial demixing behavior, leading to a reduction in the
frequency of mixing-demixing events. However, when d is
further increased, as observed in Fig. 9(c)(IV), the particles
tend to phase separate less frequently, and it is hard to get
the complete demixing. Our observations unveil an intriguing
behavior within the range of interface widths (10, 15), where
the two types of particles exhibit maximal phase separation,
indicating a strong preference for spending more time in a
demixed state than a mixed state.

While Fig. 9(c) clearly shows a decrease in the frequency
of mixing-demixing events with increasing d for the inter-
mediate range of d values. Whereas for large d values, the
periodicity of mixing and demixing event weakens, and the
periodic nature of the time series of p(d ) is no longer present.

To quantify how the particles’ propensity for phase sep-
aration changes with varying interface width d , we present
the plot of P(d ) = 〈p(d )〉 as a function of junction width
d in Fig. 10. Where 〈..〉 stands for average over time in
steady state as well as independent realizations. The plot of
P(d ) against d clearly exhibits a peak at approximately d ≈
14. This peak aligns precisely with our earlier observation
of maximal phase separation occurring within the range of
d = 12–15. Beyond this peak, P(d ) decreases, suggesting
less prominent demixing of the two particle types, which
further supports our findings. We performed additional tests
with two other choices of random noise: φ ∈ (−1.2π,+0.8π )
and φ ∈ (−0.8π,+1.2π ) for the two types of particles, and
remarkably, we obtained consistent results. Notably, the range
of d where we observe maximum phase separation also co-
incides with the range where a transition to switching current
inside the interface occurs. These collective findings provide
valuable insights into the behavior of the system, highlighting
the significance of the interface width and its impact on the
demixing process and the occurrence of switching current
behavior within the interface.

V. SUMMARY AND DISCUSSION

We have studied the properties of the collection of polar
self-propelled particles moving on a two dimensional rectan-
gular channel along an order-disorder interface with periodic
boundary conditions in both directions. The interaction among
the particles is taken as Vicsek type viz; particles move with
constant speed and interact through short range alignment
interaction. Inside the junction or disorder region, particles
experience a high noise disorder state, and outside, they are in
the ordered state. The width of the junction is adjusted by the
junction width d . The model is motivated by the Josephson
junction, an analogous equilibrium system in the solid state
[49]. We studied the system for the two cases: (i) system
WOP, where we do not impose any biased direction for mov-
ing SPPs, and (ii) system WP where a small external biased
direction of motion along the long axis of the channel is intro-
duced. Interestingly, the flock experiences more disturbance at
wider junctions in the system WP in comparison to the system
WOP. On increasing the width of the junction, the system
WOP shows a very small change in the global orientation
of particles, whereas the system WP shows a transition from
an ordered to a disordered state. At the junction, we have
found the current reversal for a range of intermediate widths
of the junction. The current reversal is due to the reflection of
particles from the walls of the interface. Such reflection is the
response of a moving cluster when it experiences an abrupt
change in thermal noise. The mechanism of reflection from
the interface due to thermal noise is microscopically different
from the reflection of particles from the hard walls of the
obstacles in their path. But the result of the two reflection
mechanisms is the same and leads to the reflection of an
incoming cluster from the interface [53].

Further, we also modeled a binary mixture of the particles
of two different types of chirality. We find that the two types of
particles show macroscopic phase separation for the interme-
diate widths of the interface. Hence, such geometry can also
be used for the sorting of different types of particles.

Interestingly, the study for SPPs at the interface has not
been explored, although similar setups have been explored
in experiments and theory for magnetic devices showing in-
teresting properties [57,58]. A detailed comparison of our
results obtained here with these studies is our future work.
In our present study, an incoming particle experiences an
abrupt temperature change, and we feel that such a change in
temperature is responsible for the reversal in current. Whether
a similar mechanism will be applicable to the case when we
introduce a continuous thermal gradient or phoretic flow is an
interesting project. On the basis of our present results on the
abrupt thermal noise, we expect that for the phoretic flows, an
incoming flock might penetrate to some distance and then can
experience reflection or current reversal.

We believe that the results presented here can be tested
in experiments by designing such a system. Our study also
provides new scopes in active matter systems where particles
experience different environments along their move.

The results presented here can be useful to understand
the manufacturing of s variety of practical devices using
biological agents: mechanical circuits, switching devices,
geophysical sensors, etc.
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