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Lane formation of colloidal particles driven in parallel by gravity
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We investigate the lane formation in nonequilibrium systems of colloidal particles moving in parallel that are
driven by the force of gravity. For this setup, an experimental implementation of a channel on a slope can be
conceptualized. We employ the Brownian dynamics algorithm and confine the repulsive particles with hard walls
based on the solution of the Smoluchowski equation in the half space. A difference of the driving force acting
on the colloids could be achieved by using two spherical particle types with differing diameters but equal mass
density. First, we investigate how a difference in the channel slope affects the lane formation of the systems, after
which we analyze the lanes that formed. We find that the large particles push the small particles to the walls,
resulting in exclusively small particle lanes at the walls. This contrasts the equilibrium state, where depletion
forces push the larger particles to the walls. Additionally, we have a closer look at the mechanisms by which
the lanes form. Finally, we find system parameter values that foster lane formation to lay the foundation for an
experimental realization of our proposed setup. To round this off, we give an exemplary calculation of the slope
angle needed to get the experimental system into a state of lane order. With the examination of lane order in
systems that are driven in parallel, we hope to deepen our understanding of nonequilibrium order phenomena.
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I. INTRODUCTION

In systems of individuals that move with different speeds,
spontaneous order formation can occur. One of these nonequi-
librium order phenomena is called lane formation, where
the individuals align into parallel streams of different veloc-
ities. Systems in which lane order can be observed include
pedestrians [1–3], ants [4], molecular motors [5,6], and bac-
teria [7]. In this ordered state, the transport efficiency of the
individual rises significantly [4–6]. In confined systems, a
lane order can even be mandatory to exhibit any transport at
all [1,2].

Nonequilibrium order phenomena are to this day not un-
derstood well enough [8]. A commonly used tool to gain
more insight into these phenomena are colloidal systems.
Such phenomena include collective behavior [9–12] and band
formation [13], as well as the previously mentioned lane
formation [14,15]. The formation of lanes was found in coun-
terdriven systems with electric fields [16–18], gas models,
dipolar systems [19], ionic mixtures, plasmas [20,21], and
systems of attractive particles [22]. The influence of hydro-
dynamic interactions on the stability of lanes was investigated
as well [23,24].

While most simulations and experiments with colloidal
particles have been performed on counterdriven particles, to
our knowledge, so far it has not been shown whether colloids
moving in parallel can exhibit lane formation, as well. To
achieve a separation into lanes, it is mandatory to have a dif-
ference of particle transport [13,15]. We obtain this difference
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by using the force of gravity as the driving force and two
particle types with differing diameters. With the assumption
of equal mass density of the particles, the driving force is then
proportional to the mass of the respective particle.

In this work we investigate the emergence of lanes and fea-
tures thereof in these systems. We found that the lanes, which
form with an increase in driving force, always consist of small
particles at the walls. During the formation of lanes, the large
particles push their small counterparts to the wall, hence our
naming this the “funneling effect.” In contrast to this, in sys-
tems where no driving force is applied, mostly large particles
inhabit the space close to the walls because of entropic deple-
tion forces [25]. This marks a significant qualitative difference
between equilibrium and nonequilibrium states. We also have
a closer look at the lane formation mechanism, as well as a set
of system parameters that facilitate lane formation. Finally,
we calculate the slope angle needed to reach critical lane
formation in an exemplary experimental system.

This work is structured as follows: first, we explain the
numerical model we employed in Sec. II, then follows an
explanation of the observables used to quantify our findings
in Sec. III. In Sec. IV we then show and discuss our findings,
in particular the lane formation in general, the funneling effect
of the small particles, and an analysis of the formed lanes, as
well as the onset of lane formation and parameter sets that
facilitate it. Here we convert the numerically yielded values
to the experimental setup. Last, we close with a conclusion in
Sec. V.

II. MODEL

In this work we performed simulations without hydrody-
namic interactions for quasi-two-dimensional systems (i.e.,
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FIG. 1. (a) Top view of the random starting configuration. (b) Il-
lustration of the setup. A channel with particles of two different
diameters is placed on a slope with the angle β. The downhill slope
force then acts as the driving force for the system. The small particles
are shown in red and the large particles in blue.

three-dimensional systems in which movement is restricted
to the plane). For this, we employed the Brownian dynamics
algorithm to solve the overdamped Langevin equation.

According to Ref. [26], the positions of the particles are
updated with

ri(t + δt ) = ri(t ) + Dδt

kBT
F[r j (t )] +

√
2DδtR(t ),

with δt the length of the time step, kBT the unit of the thermal
energy, D the microscopic diffusion constant of a sphere,
and F[r j (t )] the forces acting on particle i, consisting of the
interaction with all particles j and the driving force. R(t )
consists of standard normally distributed random numbers in
the x and y directions. They satisfy the conditions 〈Rk (t )〉 = 0
and 〈Rk (t )Rl (t )〉 = δkl , with k, l ∈ {x, y}.

The particles interact via the Weeks-Chandler-Andersen
potential

V (ri, j ) =
{

4ε
[( deff

ri, j

)12 − ( deff
ri, j

)6] + ε, r � 6
√

2deff

0, r >
6
√

2deff ,

where ε is the interaction strength (which we set to unity for
simplicity), ri, j the center-to-center distance, and deff = di+d j

2
the effective diameter between two particles i and j, with di

and d j the diameters of said particles. The centers of masses
of both particle types are confined to a quasi-two-dimensional
linear channel with hard walls in the y direction and periodic
boundaries in the x direction. To simulate hard, reflecting
walls, we employ the method described in Ref. [27], where
particle positions which would overlap with the walls are
redrawn according to the solution of the Smoluchowski equa-
tion in the half space. Before each simulation, all particles are
placed randomly inside the channel [see Fig. 1(a)]. We set up
our system as a channel on a slope, filled with small and large
particles. An illustration of this setup is shown in Fig. 1(b),
where the small particles are shown in red and the large ones
in blue. To improve readability, we use red and blue for the

small and large particles, respectively, consistently throughout
this work. From the start of a simulation, a driving force acts
on the particles in the x direction. This force is the force of
gravity

Fsl = Fsmall d3
sl , (1)

where sl ∈ {small, large} and the force acting on the small
particles Fsmall can be varied freely. With the particle diame-
ters dsmall = σ and dlarge = aσ , the difference in driving force
scales as

�F = Flarge − Fsmall = (a3 − 1)Fsmall. (2)

The following five parameters were varied: the channel
length L in the x direction and width W in the y direction,
the driving force Fsmall (which corresponds to the slope angle),
the area fraction φ = Aparticles/Achannel, and the diameter ratio
a. For every simulation, we used the same amount of particles
for both types.

In these simulations the length σ , energy kBT , and diffu-
sion constant D0 of a sphere of diameter σ are used as reduced
units. In the following, all quantities will be given in multiples
of these units, as well as derived units, such as the diffusion
time τD = σ 2/D0, which describes the average time in which
a particle of diameter σ diffuses over a distance σ .

III. OBSERVABLES

In order to quantitatively analyze the order of the systems,
we utilize the following quantities. The order parameter 	lane

describes the degree of lane order in the drive direction, and
we then count the lanes with a lane identification algorithm.
We introduce the plug formation order parameter 	plug, which
is a measure of the nonuniformity of the local particle density.
Additionally, a neighboring cluster algorithm is used to ana-
lyze the most populated cluster sizes.

A. Lane formation parameter �lane

The lane formation parameter is modeled after Ref. [9].
For a given time step and a particle i, a tube of width wt =
ρ− 1

2 is constructed. This width represents the average particle
distance in the disordered system, where ρ is the total particle
density, and the tube stretches across the whole length of the
channel. An illustration of this tube is shown in Fig. 2. For
every particle j within this tube, it is then checked whether it
is of the same or the opposite particle type. If particle j is of
the same particle type, a counter ni,+ is incremented by unity,
and if j is of the opposite particle type, ni,− is incremented.
With these counters, the order parameter of the ith particle
can be calculated by

ϕlane,i =
∣∣∣∣ni,+ − ni,−
ni,+ + ni,−

∣∣∣∣.
This process is then repeated for every particle i, and the
results can be averaged to obtain the lane formation parameter

	lane = 1

N

N∑
i=1

ϕlane,i,

where N is the total particle number. For a randomly dis-
tributed configuration 	lane yields the value zero, while in a
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FIG. 2. Illustration of the tube that is used for the calculation of
φlane,i. The small particles are shown in red and the large ones in blue.
Particle i is marked in black and belongs to the small particles. The
channel wall is shown in gray, and the tube of width wt is marked in
black.

system of perfect lanes it approaches unity. Since the lane for-
mation order parameter increases in a sigmoid shape [compare
Fig. 4(c) and Sec. S1 from the Supplemental Material [28]]
for every parameter set presented in our work, we used the
following fit to approach our data:

	lane(F ) = p1

2

[
tanh

(
F − p2

p3

)
+ 1

]
+ p4, (3)

where p1 up to p4 are fit parameters. This fit is chosen sim-
ilarly to the one in Ref. [13]. We consider a system to have

FIG. 3. Scheme of the lane identification. In the left part, a small
section of a channel is shown with the small and large particles in
red and blue, respectively. To the right, a histogram over the channel
width of the local area density is shown. This area density is calcu-
lated for the whole channel length. The histogram is calculated only
for the time step shown, while the solid line represents the average
over the last quarter of this simulation (250 snapshots). This average
is used for the actual lane identification calculation. The dotted lines
represent the area density thresholds φeq,sl . The colors are matched
with the left part of the figure, and the channel walls are shown in
gray.

reached critical lane order when this order parameter reaches
a value of 	lane,cr = 0.5. The corresponding force necessary
to reach this state is denoted as the critical force Fsmall,cr

and is read off the fit at this point. An uncertainty of the
critical force can be obtained via the standard rules of error
propagation [29].

B. Lane identification

To count the amount and analyze the widths of the lanes
for a given time step, we calculated the particle density in the
y direction. For this, the channel gets divided into bins of size
wbin,lane = 0.1. In each of these bins n the local particle area
density gets calculated separately for both particle types:

φsl,n = Aparts,sl,n

Abin
= nsl,nπ

d2
sl
4

wbin,laneL
, (4)

with Aparts,sl,n the area occupied by the particles of type sl
in bin n, Abin the area of a bin, and nsl,n the number of
particles of type sl in bin n. Bin n will then be assigned to
the particle type with the larger area density. For nsl,lane bins
of the same type that are adjacent to one another, the lane
width can be calculated as nsl,lanewbin,lane. The area densities
calculated in Eq. (4) are averaged over the last quarter of the
simulation. Additionally, a threshold area density of φeq,sl =
Nsl,totπd2

sl/(4LW ) (with Nsl,tot the total amount of particles of
type sl) is introduced. If the larger area density of a certain bin
does not exceed the threshold density of its particle type φeq,sl ,
it will not be counted towards the lane widths or amounts.
Figure 3 shows this calculation schematically.

C. Plug formation parameter �plug

The plug formation parameter was introduced as a measure
of the nonuniformity of the particle density in the channel.
Hereby, the channel is divided both in the x and y directions
into nbin square bins. For ease of calculation, the side length
of the bins lbin is chosen so that L and W are integer multiples
thereof:

L = nbin,xlbin, nbin,x ∈ N,

W = nbin,ylbin, nbin,y ∈ N,

nbin = nbin,xnbin,y.

This parameter is similar to the band formation parameter in
Ref. [13], but the radial bins are replaced with square ones.
In contrast to Eq. (4), in each of these bins we calculate the
combined area fraction of both the small and large particles

φn = π
(
nsmall,n

1
4 + nlarge,n

a2

4

)
l2
bin

,

with nsmall,n and nlarge,n the number of large and small particles
in bin n, respectively.

With all area fractions computed, the mean area fraction
can then be calculated as

M =
nbin∑
i=n

φn

nbin
,
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FIG. 4. Lane formation in a linear channel with width W = 50, area fraction φ = 0.30 and diameter ratio a = 2.0. While at a larger driving
force of (a) Fsmall = 60 the channel can be found in a very ordered state, a lower driving force of (b) Fsmall = 20 does not yet exhibit complete
order. Panel (c) shows the course of the lane order parameter 	lane over the driving force Fsmall. The blue circles represent the data points that
are averaged over 20 simulations each. The error bars for these data are multiplied by a factor of 10 for readability. The orange line is the fit to
these data presented in Eq. (3), and the gray cross is the critical force obtained by this fit. The error bar for the critical force is magnified by a
factor of 5.

with which we computed the variance as

S2 =
nbin∑
i=n

(M − φn)2

nbin
.

Last, the plug formation parameter is calculated as the ratio
between the variance and the mean squared:

	plug = S2

M2
.

A vanishing order parameter corresponds to a state where the
particles are equally distributed between the bins and a value
of unity to a state where half the bins are empty and the other
half is equally occupied by the particles. A value of nbin can
be reached only when all particles are in a singular bin.

D. Cluster algorithm

We employed a neighboring cluster algorithm to determine
the size of clusters inside the channels. For this, we computed
the pairwise distances ri, j between particles of one particle
type sl . A cluster was then defined to consist of particles
with distances smaller than a cutoff distance ri, j < rclus,sl . As
the cutoff we chose the average particle distance for a single
particle type in the ordered system. For this, we first compute
the particle density per type ρsl = Nsl/Aparts,sl , where Nsl is the
total particle amount of type sl and Alanes,sl the total area of the
lanes of the same particle type. We calculated this area with
the help of our results in Fig. 6 with Alanes,sl = nlanes,slwlanes,sl

for a given channel width (W = 50 in Sec. IV D). Finally,
the cutoff distance can be obtained via rclus,sl = ρ− 1

2 . We
define the cluster size as the amount of particles in a cluster.
Afterward, we count the amount of particles that belong to a
certain cluster size (where, e.g., two clusters of size 50 would
amount to 100 particles). The most populated cluster size is
then the one that contains the most particles. This algorithm
was run for both particle types sl separately.

IV. RESULTS AND DISCUSSION

Starting from a random configuration, all of our simula-
tions were run for 100τD. In Sec. S2 of the Supplemental
Material [28], we conclude that these simulation times are
sufficient for the order parameter 	lane to settle into a plateau.
Most simulations were run with a time step of δt = 5 ×
10−5τD. Similarly to Ref. [30], if forces acting on the par-
ticles exceeded Fmax = dsl Dsl kBT/(10δt ), the simulation had
to be interrupted for reasons of numerical stability. This was
mostly the case for systems that formed plugs. For these
simulations, the length of the time step was reduced up to
δt = 1 × 10−6τD. The driving forces sampled to obtain the
critical forces were in a range of Fsmall ∈ [0, 100] in steps of
�Fsmall = 10. Additionally, if not stated otherwise, a number
of 20 simulations was conducted for each parameter set. We
found this amount to be sufficient after some testing, which
will become apparent during the course of this work. These
systems proved to show not much discrepancy in their steady
states, as is evident by the small errors shown in, e.g., Fig. 4(c)
(the error bars had to be scaled by a factor of 10 to improve
readability).

A. Lane formation and critical force

By applying the driving force described in Eq. (1) onto
the particles, we observed the formation of lanes. Figure 4(a)
shows such a conformation. This particular simulation was
performed with a channel width of W = 50, an area fraction
of φ = 0.30, and a diameter ratio of a = 2.0, and at a driving
force of the small particles of Fsmall = 60. (This area fraction
was chosen because we found the systems to be most prone to
lane formation with this value, which we show in Sec. IV E 1.)
In this case, the driving force of the large particles equates
to Flarge = a3Fsmall = 480. The small (red) and large (blue)
particles separate into streams parallel to the drive direction.
Hereby, the separated lanes move at different speeds, where
the large particle lanes move at a velocity roughly fourfold
that of the small particle lanes (compare Sec. S4 of the Sup-
plemental Material [28]). Since the same amount of small and

034607-4



LANE FORMATION OF COLLOIDAL PARTICLES DRIVEN … PHYSICAL REVIEW E 108, 034607 (2023)

FIG. 5. (a) Particle density vs particle distance to the wall of the
systems with W = 50. The red and blue curves represent the small
and large particles, respectively. The solid lines show the equilibrium
system (Fsmall = 0), and the dashed lines the system with a driving
force of Fsmall = 100. These data were obtained by determining and
averaging the particle densities at both the bottom and the top walls
for all 20 different simulations. (b) The funneling effect in detail,
where a large particle pushes a small particle to the wall, resulting
in small particle boundary lanes. When a large particle (depicted in
blue) overtakes a small particle (red), and both particles are close to
the wall, the large particle will act as a funnel for the small particle.
The gray bar at the top represents the wall, and the black arrows
are the driving forces (not to scale). The dashed black line connects
the centers of the two particles, and the orange arrows indicate the
repulsive force that results from the particles moving closer than rcut .

large particles was chosen for these simulations, we can see
that the large particles occupy a larger area than the small
particles. Additionally, the lanes at the walls consist only of
small particles. In contrast, Fig. 4(b) shows a system at a force
of Fsmall = 20, where order has not yet completely arisen. At
the walls, we observe well-defined lanes consisting of the
small particles, while we can also see lanes rather clearly in
the bottom half of the channel. In the large particle lane in
the top half, however, a few small particles are spread in the
empty spaces’ decreasing order.

Figure 4(c) depicts the order parameter 	lane in depen-
dence on the driving force Fsmall. These values were obtained
by averaging over the last quarter of all 20 simulations.
When no driving force is applied, the systems stay in an
unordered state with 	lane = 0. After a small increase in the
driving force, an immediate increase in order can be observed.
At Fsmall = 20 the critical order parameter 	lane,crit = 0.5 is

FIG. 6. (a) Amount and (b) width of lanes formed in the steady
state in dependence on the channel width. The red circles and blue
diamonds represent the small and large particles, respectively. With a
widening of the channel, all amounts and widths increase, while for
very thin channels only one configuration exists of two small particle
boundary lanes and one large particle middle lane.

already surpassed [compare Fig. 4(b)], and at around Fsmall =
40 the parameter curve reaches a plateau. In the region of
the largest increase in order parameter, we can see a larger
error in the data points. This occurs since we are close to
the critical force, where the most change in order occurs and
systems are not settled into an ordered or unordered state.
In the plateau region, the error decreases again. It should be
noted that the error bars of the data points are scaled by a
factor of 10 to improve readability. The actual error bars are
remarkably small and would disappear inside the data points
themselves (compare Sec. S1 of the Supplemental Material
[28]). With the fit described in Eq. (3), which was already used
in Ref. [13], we can approximate the course of the data points.
We obtained the critical force for this system, which is where
this fit surpasses a value of 	lane,crit = 0.5, as Fsmall,crit = 17.9.

B. Funneling effect at the channel walls

In an equilibrium mixture of small and large particles,
depletion forces describe a phenomenon where the large parti-
cles get pushed towards the walls of the system. This happens
because the excluded volume for a small particle decreases
when the large particles are closer to the walls, therefore
increasing the entropy of the system [25]. In the ordered sys-
tems, however, it becomes apparent that the boundary lanes,
i.e., the lanes at the channel walls, consist solely of the small
particles. Figure 5(a) depicts the particle density for small
(red) and large (blue) particles in dependence on the distance
from the wall for the equilibrium (solid lines) as well as the
nonequilibrium (dashed lines) state. The particle density was
averaged over the last quarter of the simulation (250 time
steps), all 20 simulations and also both the top and bottom
wall. The distance z is the distance between the particle
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surface and the wall. In the equilibrium state (solid lines),
we find that very close to the wall the large particles exhibit
a higher particle density compared to the smaller particles,
which is likely due to the depletion forces in our system. This
effect subsides very quickly towards the center of the channel,
where the particle densities of both particle types become
almost identical. In the nonequilibrium state (dashed lines) we
observe this reverse drastically. Instead of a slight increase of
the large particle density we see that the large particle density
is very close to zero, while the small particle density is much
higher than in the equilibrium state. This of course stems from
the solely small particle boundary lanes.

We can explain this dramatic difference between equilib-
rium and nonequilibrium by closely looking at a large and
a small particle that are both in proximity to the channel
wall. Figure 5(b) depicts such a scenario schematically, and
in Movie M1 of the Supplemental Material [28] we follow a
small particle at the wall through the channel. When we look
at the interaction between the two particles, the large particle
acts like a funnel for the small particle. Since the centers of
the particles are used to calculate the mutual repulsion, the
resulting force vector of the small particle points partially into
the wall while the force vector of the large particle points
away from the wall. This interaction occurs only when the
differently sized particles get pushed against each other from
the driving force. Since high driving forces stabilize any lanes
that form, these boundary lanes also survive in the longer time
frame of a complete simulation (100τD). All simulations at the
highest driving force of Fsmall = 100 ended in a state where the
boundary lanes were populated by small particles.

C. Lane widths and amounts

Figures 6(a) and 6(b) show the amount and width of the
lanes formed at the highest driving force of Fsmall = 100. The
values result from averaging over the last quarter of the 20
simulations with different starting configurations.

It is apparent that the amount of the lanes nlanes increases
with the channel width. The two curves for the small particles
(red circles) and the large particles (blue diamonds) increase
completely synchronously, as well as their respective errors.
This is because the small particles always occupy the bound-
ary lanes, which means there is always exactly one additional
small particle lane (nlanes,small − nlanes,large = 1; see Sec. IV B).
For very thin channels, the systems only exhibit one configu-
ration, i.e., two lanes of small particles at the edges and one
large particle lane in the middle. This results in the flat curve
for low channel widths and a vanishing error. By widening the
channels, however, we can see a steady increase in nlanes.

In Fig. 6(b) one can see that the lane width wlanes

does not increase as continuously as the number of lanes.
While for very thin channels the lane width of the large
particles increases quite sharply, the curves flatten rather
quickly for wider channels. Since for a given channel W =∑

sl wlanes,sl nlanes,sl has to hold (if one does not account for the
area density threshold φeq,sl from Sec. III B, which excludes
some bins), this of course fits well with a steadily increasing
number of lanes. If the width of the lanes stays constant over
all channel widths, the number of lanes would necessarily
have to increase. The large increase at low channel widths

can be explained with the opposite scenario: The number of
lanes stays at a similar value for a few data points, which
means that the width of those lanes has to increase. Since the
large particles exhibit only one possible lane in the thinnest
channels, that lane has to widen faster than the lanes of the
small particles. Since our systems were designed with the
same number of small and large particles nsmall = nlarge, the
total area occupied by the large particles is fourfold the area
of the small particles with a diameter ratio of a = 2.0. This
results in the fact that the large particle lanes are wider than the
small particle lanes, where the ratio between the two curves
seems to level off at approximately two. After being very low
at small channel widths, the error increases very rapidly and
remains at a similarly large value for the course of the plots
starting from W ≈ 15. This means that there is no single stable
width that a lane prefers to fall into. This is because at such
high driving forces, once a lane is formed, it is very unlikely
to merge with another lane of the same particle type.

D. Onset of lane formation

We conducted a set of 20 short simulations with a simula-
tion length of 7.5τD, channel width W = 50 and area fraction
φ = 0.30. There we found that lanes form via a mechanism
where small chains of particles develop, enlarging in drive
direction by moving into the “slipstreams” of one another,
where they form very thin lanes. These thin lanes then push
each other aside, creating slanted lane boundaries of higher
local particle density and leaving empty spaces behind. When
this process is finished and the particles inside a lane are
allowed to diffuse in the y direction, the stable lane state
is reached with a more uniform particle density again. Fig-
ure 7(a) shows a state with emerging clusters. We can see that,
at a first glance, the configuration looks rather well distributed,
although locally there are a few small chains of the same par-
ticle type. A particle can move more freely in drive direction if
it moves behind a particle of the same particle type. The lanes
found in Ref. [18] look quite similar to these short chains.
In contrast to our lanes, their lanes have reached the steady
state, however. These smaller clusters then combine to form
longer and slightly wider chains, which could be described
as lanes that don’t span the whole channel length. They then
further combine by pushing lanes of the opposite type aside,
creating large boundaries that span across the channel at an
angle. Such a configuration can be seen in Fig. 7(b). Finally,
when the short and thin lanes are combined, the steady state
with lanes spanning across the whole channel is reached [com-
pare Fig. 4(a)]. Each particle in this state can move in the
slipstream of another particle of the same particle type (which
is supported by the periodic boundaries) and a stable state is
reached. This whole process can also be observed in Movie
M2 of the Supplemental Material [28].

To support our findings, we looked at the plug formation
order parameter 	plug described in Sec. III C, the most popu-
lated cluster size from Sec. III D and also at the mean absolute
fluctuations perpendicular to drive direction 〈|vy|〉 over time.
The fluctuations are calculated by dividing the particle dis-
placement by the time step.

Figure 8(a) shows the cluster size populated by the most
particles as a measure of cluster size over time. (Note that
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FIG. 7. Snapshots of the formation of lanes, taken at (a) t = 0.1125τD and (b) t = 0.75τD. This calculation was performed with a channel
width W = 50 and an area fraction φ = 0.30.

noninteger values can be reached because the values are av-
eraged over 20 simulations.) We can see that the red and
blue data show very similar curves. From their shared starting
point, the most probable cluster sizes increase quite quickly to
their maximum values. This maximum value is marked with
the dashed purple line across the three plots. The fact that
the curve shows a maximum can be attributed to the slanted
particle boundaries from Fig. 7(b) that push particles of the
same particle type closely together. When these particles are
allowed to diffuse in the lanes that form in the last step, the
cluster size decreases to a stable value, signifying that the
system reached the steady state. The fact that the two cluster
size curves coincide this well can be attributed to the choice
of the cluster cutoff presented in Sec. III D.

The parameter 	plug in Fig. 8(b) is a measure of the nonuni-
formity of the local particle density. The side length of the
quadratic bins was chosen to be lbin = 5. At the start of the
simulation the particles are very homogeneously distributed,
therefore, the value of 	plug remains low. After applying the
driving forces, it, however, increases very rapidly, almost ver-
tically. This vertical jump appears because in the very short
time frame, and no collisions between the small and large
particles occur. Therefore, the faster large particles get closer
to the small particles without any particles pushing each other
aside. The curve then keeps increasing at a slower pace until
it reaches its peak at roughly 1τD. This peak symbolizes the
point with the most apparent lane boundaries and is marked
with the dotted vertical black line. After the particles are all
pushed into their respective lanes, the parameter decreases
again, which shows that a steady state is reached. In both
Figs. 8(a) and 8(b) the maximum values represented by the
dotted black and the dashed purple line occur at similar points
in time. This indicates a strong correlation between the two,
which can be attributed to the emergence of lane formation by
slanted particle boundaries.

In the steady state, the particles are confined to their respec-
tive lanes. Therefore, not a lot of movement in the direction
perpendicular to drive direction can be observed. In contrast
to this, during the lane formation process, Fig. 8(c) shows a

great deal of vertical movement of both particle types. Since
the particles need to get pushed from the disordered state into
lanes, we see large values for the average absolute vertical
fluctuations 〈|vy|〉 at the start of the simulation. For both
particle types, these values reach a stable state at roughly 1τD.
The difference in values of the small and large particles can
be attributed to the difference of the diffusion coefficients
Dsl = kBT/(3πηdsl ), which are dependent on the particle
diameter dsl .

The process of forming lanes happens rather quickly, at
times of roughly 1τD. In systems with a lower driving force or
different system parameters, e.g., with a longer channel or a
higher particle density, we suspect this process to slow down.
It remains to be examined exactly how much this process is
affected by a change of parameters. However, we see this
as additional indication that our chosen simulation times are
sufficient.

E. Lane facilitating parameter sets

By changing the system parameters such as the channel
width or length, or the particle density, the formation of
lanes can be facilitated. Fortunately, the sigmoid course of
the lane formation parameter 	lane is consistent through dif-
ferent parameter sets and systems (compare Sec. S1 of the
Supplemental Material [28]). This means that we can easily
compare the critical force Fsmall,crit of these systems to evaluate
their tendency to reach a state of lane order. Hereby, a lower
critical force indicates that a system has a higher tendency
to reach an ordered state. While we obtained an optimal value
for the area fraction and the width of the channel, we found an
increasing diameter ratio to always facilitate lane formation. A
finite-size study of the channel length can be found in Sec. S3
of the Supplemental Material [28]. Here we show that for an
area fraction of φ = 0.30, an elongation of the channel above
L = 300 would not change the tendency towards lane forma-
tion. The common parameters chosen for these simulations
were a channel length and width of L = 300 and W = 20, an
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FIG. 8. Lane formation onset over time. (a) The cluster size
occupied by the most particles over time. Red and blue data points
show small and large particle clusters, respectively. The red and blue
lines are running averages over the data points that act as guides to
the eye. The dashed vertical purple line represents the maxima of
the data. During the formation of lanes, clusters of particles form
that get resolved to a certain degree in the stable state. (b) The plug
formation parameter 	plug over time, represented by the black line.
The vertical dotted black line represents the maximum of the average
curve. Before lanes can form from clusters, particles move in verti-
cal direction via slanted lane boundaries, which increases the plug
formation parameter. (c) Average absolute vertical fluctuations 〈|vy|〉
over time. The red and blue curve represent the data for small and
large particles, respectively. During the lane formation process, the
particles have to move greatly in the vertical direction. When lanes
are formed, the particles can settle in at stable vertical fluctuations.

area fraction of φ = 0.30, and a particle diameter of a = 2.0,
if not stated otherwise.

1. Dependence on the area fraction and channel width

The area fraction of the channels is defined as

φ = Aparts

Achannel
=

1
4πnsmall + πnlarge

LW
,

with Aparts the area of the particles, Achannel the area of the
channel, and nsmall and nlarge the particle numbers of the small
and large particles, respectively. Both particle types were kept
to the same amount in all our simulations.

Figure 9(a) shows Fsmall,crit in dependence on the area frac-
tion. The tendency towards lane formation first increases in
the range from φ = 0.10 to 0.30, after which it decreases

FIG. 9. (a) Fsmall,crit over φ. The gray crosses represent the data
points with their respective error bars and the orange line is a
quadratic fit to these data. The larger errors at the edges arise from a
subset of the simulations resulting in states with no lanes. (b) Fsmall,crit

over W . The gray crosses represent the data points with their respec-
tive error bars, and the gray line acts as a guide to the eye. The
large value for the thinnest channels can be explained by the lack
of particles to fill three complete lanes, while the slightly higher
values of the plateau for the wide channels lead to the assumption
of a lane-stabilizing effect of the channel walls.

again for channels with more particles. This leads to the
conclusion that there is a sweet spot where lane formation
is most favorable. The lowest value for the critical force was
reached at an area fraction of φ = 0.35 with Fsmall,crit = 15.0.
The quadratic fit that was applied to approach the data points
exhibits a minimum for φ ≈ 0.32 with a value of Fsmall,crit =
14.3. For this reason, an area fraction of φ = 0.30 was chosen
for most simulations. In the systems with a low area fraction,
the channels consist of an insufficient amount of particles to
form lanes that span across the whole channel. This means
that it becomes much more likely for particles to move into the
“slipstream” of a particle of a different type, which decreases
	lane. A cutout of a snapshot of such a system can be seen
in the bottom inset in Fig. 9(a). The order of these systems is
therefore not as consistently at the same value, which results
in their larger error bars. On the other side of the plot, one
can see much larger error bars for the systems of large area
fractions. Since some of the simulations with this parameter
set form plugged steady states (compare top inset in Fig. 9),
their lane formation parameter decreases significantly, which
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FIG. 10. Log-log plot of the Fcrit,small dependence on the particle
diameter ratio a. The gray crosses represent the data points with their
respective error bars, and the orange line is a power-law fit to these
data.

in turn increases the critical force and its error. This curve
progression of the critical force with a minimum is consistent
with the reentrance effect found in Ref. [14]. It should be
noted that the values we obtained for large area fractions
should be taken with a grain of salt. In Sec. S3 of the Sup-
plemental Material [28], we discuss that with an increase of
the area fraction from φ = 0.30 to 0.50, an elongation of the
channel does indeed lead to an increase of the critical force.
This leads us to the assumption that the increase of the critical
force beyond φ = 0.30 would be steeper for higher channel
lengths.

The dependence on the channel width is shown in Fig. 9(b).
Very thin channels exhibit a very large critical force. This
can be explained because the channels are so thin that there
are barely enough particles to form three lanes [compare top
left inset in Fig. 6(a)]. A minimum of the critical force curve
can be found at W ≈ 15. The critical force for wider channels
increases and seems to hit a plateau for the limit of infinitely
wide channels. This implies the existence of lane-stabilizing
effects introduced by the hard walls, which also fits the snap-
shot in Fig. 4 where the lanes closer to the walls show higher
lane order.

2. Dependence on the particle diameter

By changing the diameter ratio a, we can influence the
driving force difference �F without changing Fsmall. Equa-
tion (2) shows that for an increasing diameter ratio, we can
expect the tendency towards lane formation to increase. Fig-
ure 10 shows the dependence of the critical force Fcrit,small on
a in a log-log plot. As expected, the tendency towards lane
formation increases with a growing diameter ratio. We found
a power-law fit of

Fcrit,small(a) = p5a−4 (5)

to describe the data fairly well.
The Péclet number Pe is a quantity describing the ratio

between particle transport and diffusion. With the mean ve-
locity 〈v〉 ≈ 〈v〉D = Dsl F/(kBT ), where 〈v〉D is the mean drift

velocity of a free particle, we find for the Péclet number

Pesl = dsl〈v〉
Dsl

= dsl F

kBT
,

with the chosen reduced units kBT and dsmall = σ equaling
unity. (We discuss in Sec. S4 in the Supplemental Material
[28] that for very large forces, the assumption of particles
moving with the mean free drift velocity 〈v〉 ≈ 〈v〉D of a free
particle holds. For forces around the critical point, however,
we can expect discrepancies of up to 30%.) We can then write
for the difference in Péclet number of the two particle species

�Pe = dlargeFlarge − dsmallFsmall

= Fsmall(a
4 − 1). (6)

We can see that in Eq. (5), as well as in Eq. (6), the critical
force Fcrit,small has an a−4 dependence. This shows us that the
critical point is closely related to the Péclet number difference.

3. Exemplary value calculation for the experimental setup

For an experimental implementation, we want to demon-
strate an exemplary calculation that translates the values from
reduced units to SI units. For this calculation, we again neglect
hydrodynamic interactions and all friction between the parti-
cles and the walls or the floor. We conduct this calculation
for the system parameters that proved to be most prone to
lane formation, i.e., the parameter set with the lowest critical
force. These values are the channel width of W = 15 and the
area fraction of φ = 0.30. Since an increase of the diameter
ratio would always ease lane formation (within reasonable
limits), we settle for a value of a = 2.0. For this parameter
set, we yielded the critical force Fsmall,cr ≈ 15. We addition-
ally need to assume some experimental system values. These
values were selected in accordance to Ref. [31]. For the tem-
perature, we chose room temperature T = 293 K, the mass
density of silica ρm,SiO2 = 2.65 g/cm3, and the water as sol-
vent ρm,H2O = 1.00 g/cm3, and the size of the small particles
as dsmall,exp = 4 µm.

With this, we can calculate the force in SI units correspond-
ing to the numerically yielded Fsmall,cr:

Fexp = Fsmall,cr
kBT

dsmall,exp
= 1.52 × 10−14 N.

Since we need to account for buoyancy, the downward
force acting on a small particle equates to Fz = π/6 ×
d3

small,exp(ρm,SiO2 − ρm,H2O)g = 5.42 × 10−13 N with g the
gravitational constant. With the equation for the downhill-
slope force Fds = Fz sin(β ) and β the angle of the slope [see
Fig. 1(b)], we can calculate the angle that needs to be set for
the experimental setup to achieve the driving force Fexp:

Fds = Fz sin(β )
!= Fexp,

β = arcsin

(
Fexp

Fz

)
,

β = 1.02◦.

This calculation is highly sensitive to the particle diam-
eter dsmall,exp, since it appears in the arcsin function as a
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factor of d−4
small,exp. With small particles with half the diameter

dsmall,exp = 2 µm, the angle increases to 26.6◦.

V. CONCLUSION

In this work we investigated the lane formation of sim-
ulated colloids that are driven by gravity. A difference in
driving force between the two particle types was achieved by
a difference in their diameters.

We observed a phenomenon at the hard walls of the chan-
nel, which we call the funneling effect. When two particles
move in proximity to a wall, the difference in their diameters
leads to a difference in distance of their respective centers
to the wall. Because of this, the small particle can wedge
between the large particle and the wall, pushing the large
particle out towards the center of the channel. As a result,
we found the edges of the channels to always be occupied by
small particles. This is a stark contrast to equilibrium systems
where entropic depletion forces push the large particles to the
walls rather than the small ones [25].

Quantitative analysis of the lane amount and width shows
that with an increase of the channel width, more and wider
lanes form. The difference between small and large particle
lanes was also found to be constant at unity as a direct result
of the funneling effect. We found the lanes to be stable during
our simulation time of 100τD once they formed. However, it
would be very interesting to see if lanes might switch or merge
in the infinite time limit.

The onset of lane formation was shown to consist of several
steps. At first, particles of the same type form short chains in
drive direction. These shorter chains then combine to lengthen
and widen. At a certain point, those longer clusters cannot
pass through clusters of the opposite particle type anymore
because of their considerable length and width. In this next
step, the particles need to form slanted boundaries between
the elongated clusters, in which the particles can move per-
pendicularly to drive direction to combine with other clusters
into lanes of the same particle type.

Additionally, we scanned the parameter space consisting
of area fraction, channel width, and particle diameter for a
parameter set ideal for lane formation. For the area fraction,
we found that the critical force follows a quadratic curve,

with a minimum at φ ≈ 0.30. At very high area fractions, a
subset of the simulations showed a plugged state, increasing
the critical force. An ideal channel width could be reached
at W ≈ 15, where the stabilizing effect of the channel walls
reaches its maximum. At very low channel widths, it becomes
harder for the particles to form lanes because of their low
amount and the very thin and perfect lanes that need to form.
With an increase in channel width past the minimum, lanes
form less easily, and in the wide channel limit the curve of
the critical forces seems to reach a plateau. Since with our
force model the diameter ratio a directly influences the driving
force difference �F , we cannot directly examine the influence
of the diameter ratio on lane formation. With our model in
mind, however, we could show that the critical force curve fol-
lows a simple p5a−4 dependence, i.e., with an increase of the
diameter ratio lanes form more easily. This makes it closely
related to the difference in Péclet number, which follows the
relation �Pe = Fsmall(a4 − 1).

We expect that this model of force difference could be
implemented in experiments with a mix of differently sized
particles on a slope. The angle at which the channel is tilted
would directly influence the driving force. We were able
to calculate a rough estimate of the angle needed for the
slope with the parameter set we found most well suited for
lane formation. Since hydrodynamic interactions, which we
neglected in our work, counteract the formation of lanes (com-
pare Ref. [24]), we suspect our estimates to be too low. We,
however, expect that the parameter study we conducted will
facilitate the search for lanes in experiments. Additionally, an
experimental setup with a seesaw motion could be envisaged,
which could lead to much longer observation times. The com-
putational counterpart could prove an intriguing subject for a
follow-up work with our model.
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