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Simply solvable model capturing the approach to statistical self-similarity
for the diffusive coarsening of bubbles, droplets, and grains
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Aqueous foams and a wide range of related systems are believed to coarsen by diffusion between neighboring
domains into a statistically self-similar scaling state, after the decay of initial transients, such that dimensionless
domain size and shape distributions become time independent and the average grows as a power law. Partial
integrodifferential equations for the time evolution of the size distribution for such phase separating systems
can be formulated for arbitrary initial conditions, but these are cumbersome for analyzing data on nonscaling
state preparations. Here we show that essential features of the approach to the scaling state are captured by an
exactly-solvable ordinary differential equation for the evolution of the average bubble size. The key ingredient is
to characterize the bubble size distribution approximately, using the average size of all bubbles and the average
size of the critical bubbles, which instantaneously neither grow nor shrink. The difference between these two
averages serves as a proxy for the width of the size distribution. Solution of our model shows that behavior is
controlled by a signed length δ that is proportional to the width of the initial distribution relative to that in the
scaling state. In particular, δ is negative if the initial preparation is too monodisperse, and is positive if it is too
polydisperse. To test our approach, we compare with data for quasi-two dimensional dry foams created with
three different initial amounts of polydispersity. This allows us to readily identify the critical radius from the
average area of six-sided bubbles, whose growth rate is zero by the von Neumann law. The growth of the average
and critical radii agree quite well with exact solution, though the most monodisperse sample crosses over to
the scaling state faster than expected. A simpler approximate solution of our model performs equally well. Our
approach is applicable to 3d foams, which we demonstrate by re-analyzing prior data, as well as to froths of
dilute droplets and to phase separation kinetics for more general systems such as emulsions, binary mixtures,
and alloys.
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I. INTRODUCTION

Two-phase systems consisting of compact domains,
whether dense or dilute, tend to evolve with time due to the
surface tension energy of the interface between the discrete
domains and the continuous interstitial medium. Even in cases
where direct domain-domain coalescence is forbidden, do-
main sizes can still evolve by diffusion of their material across
the interstitial medium. With time, smaller domains shrink
while larger domains grow and this gives a continual lowering
of the total interfacial area—as befits a process driven by
surface tension. This is variously called Ostwald ripening or
diffusive coarsening and occurs whether either of the phases is
liquid, solid, amorphous, crystalline, macroscopic, nanomet-
ric, two-dimensional, or three-dimensional. Historically, the
pioneering theoretical works by Mullins [1], von Neumann
[2], Lifshitz and Slyozov [3], and Wagner [4] were presented
in the context of grain growth for metallic alloys. But they
apply equally well to bubbles or droplets in a liquid where
the microstructure is well understood [5–8]. Furthermore, the
case of dry foams, where the bubbles essentially fill space,
is ideal for the general study of collective effects in densely
packed systems because the single-bubbled growth laws are

known exactly in two [1,2] and three dimensions [9] in terms
of the geometry of individual bubbles.

While the pioneering papers and reviews cited above focus
primarily on individual-domain growth laws and behavior in
the statistically self-similar scaling state, usually in the context
of specific systems, our focus here is on the decay of transient
memory of the initial preparation as the system approaches
scaling. Prior studies are primarily by experiment or simu-
lation [10–20] because treatment of the full-size distribution
requires a numerical solution of partial integrodifferential
equations. As of yet, there is no ready means to analyze
the decay of transients on approach to scaling. Here, we
demonstrate how to do so by accounting for the domain-size
distribution approximately—in terms of only the average and
critical domain sizes.

To begin, we review prior models and then lay out the
ingredients needed for our approach. After deriving relatively
simple ordinary differential average coarsening equations,
we present perturbative and exact solutions. Then we re-
port on experimental tests of the ingredients of our model
and its predictions using quasi-two-dimensional dry foams of
bubbles squashed between parallel plates. Lastly, bolstered
by this success, we use our simple perturbative solutions
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to reanalyze prior data on three-dimensional foams from
Refs. [17,20,21].

II. PRIOR MODELS

To be concrete, we couch discussions in the context of
aqueous foams, which coarsen by the diffusion of gas across
the liquid between neighboring bubbles of different pressures
[22–24]. The d-dimensional volume of a gas bubble in an
isotropic environment grows or shrinks at rate given by Fick’s
law as dRd

i /dt = D∇ϕRd−1
i , where Ri is the radius of bubble

i, d is dimensionality, D is gas diffusivity, ∇ϕ is the con-
centration gradient of dissolved gas in the continuous liquid
phase at the bubble’s surface, Rd−1

i is the bubble’s surface
area, and numerical prefactors are suppressed. The concen-
tration gradient is set by ∇ϕ = H�P/L, where H is Henry’s
constant, �P is a pressure difference reflecting the width of
the size distribution, and L is a length scale. The former may
be taken from Laplace’s law as �P = σ (1/Rc − 1/Ri ), where
σ is surface tension and Rc is the critical radius of bubbles that
neither grow nor shrink. The characteristic length scale for the
concentration gradient is L = Ri for dilute droplets in a very
wet froth and is L = � for compressed bubbles separated by
soap films of thickness � in a very dry foam. Altogether, in any
dimension, the growth laws for individual bubbles are thus of
the form

dRi

dt
=

{
αw

Ri

(
1

Rc
− 1

Ri

)
wet froth

α
(

1
Rc

− 1
Ri

)
dry foam,

(1a)

(1b)

where αw and α are material constants for the two cases.
Equation (1a) is a key ingredient in the Lifshitz–Slyozov–
Wagner treatment of grain growth [3,4]. It can be considered
exact for the evolution of very dilute spherical droplets of
alloy, gas, liquid, etc. Equation (1b) is similarly a key in-
gredient in Lemlich’s treatment of coarsening foams [5,6],
where the critical radius is Rc = 〈R2〉/〈R〉. It is approximate
for individual bubbles, in comparison with the exact d = 3
expression [9] and the exact d = 2 von Neumann law that the
rate of area change for a bubble i with ni sides is dAi/dt =
Ko(ni − 6) [1,2]. For the latter, note that substituting Ai ≈ πR2

i
and ni ≈ 6Ri/Rc (Desch’s law that perimeter is proportional to
side number [25,26]) gives dRi/dt ≈ (3/π )Ko(1/Rc − 1/Ri ).
Equations (1) have been widely used for disparate systems;
e.g. see Refs/[7,8,11]. Supplemented with a mass conser-
vation condition, they allow prediction of the evolution of
the bubble size distribution. The resulting partial integrodif-
ferential equations are cumbersome and require a numerical
solution, in general. But, as emphasized by Mullins [27], the
distributions tend toward a scaling state of statistical self-
similarity such that the shape is time independent when scaled
by the average. For the case of dry 2D foams in the scaling
state, the average growth rate can be expressed several ways
in terms of different moments of the bubble size and side-
number distributions [see Eqs. (8), (14), and (15) of Ref. [28];
e.g., the first of these is d〈A〉/dt = 2Ko[〈A〉2/〈A2〉][〈〈n〉〉 − 6]
where 〈〈n〉〉 ≈ 6.8 is the area-weighted average side number].

In the self-similar scaling state, the critical radius Rc as
well as all combinations of moments of the size distribution
with units of length must all be proportional to the average

bubble radius 〈R〉. Equations (1) then imply d〈R〉/dt ∝
1/〈R〉2 in the wet limit and d〈R〉/dt ∝ 1/〈R〉 in the dry limit.
These give the familiar asymptotic power laws 〈R(t )〉 ∼ t1/3

and 〈R(t )〉 ∼ t1/2, respectively. Note that this growth in aver-
age radii is accompanied by a decrease in the total number of
bubbles and a reduction of total interfacial surface free energy
of the system, which drives the process.

III. AVERAGE COARSENING EQUATIONS

While Eqs. (1) are for individual bubbles, we now suppose
a similar form holds for the average bubble radius, 〈R〉, which
for convenience we henceforth denote more simply by R. In
particular, we take

dR

dt
=

{ aw

R

(
1

Rc
− s

R

)
froth

a
(

1
Rc

− s
R

)
foam,

(2a)

(2b)

where aw and a are material constants, slightly different from
αw and α, and s is a number that we introduce as a potential
fitting parameter because 〈1/R〉 �= 1/〈R〉 and also because
bubbles also have a distribution of nonspherical shapes. The
value of s is expected to be close to one for narrow size
and shape distributions. Since Rc is proportional to R in the
scaling state, we further suppose that their time derivatives
are proportionate at all times,

dRc

dt
= m

dR

dt
, (3)

where m is a dimensionless proportionality constant. While an
individual bubble of radius Ri = Rc would neither grow nor
shrink, here Rc is the variable for an average property of the
distribution for which dRc/dt > 0 holds. In effect, we account
for a key property of the size distribution by the value of Rc

relative to R; such a treatment is necessarily approximate and
cannot capture the difference in behavior for distributions that
happen to have the same average and critical radii. With these
caveats, note that Eqs. (2) and (3) imply d (Rc − mR)/dt = 0.
As coarsening proceeds, the critical and average radii hence
grow in linear relation

Rc(t ) = m[R(t ) − Ro] + Rco, (4)

where Ro = R(to) and Rco = Rc(to) are the average and critical
radii at time to. Therefore, the assumptions underlying this
simplified approach could be tested, and the value of m could
be found from experimental or simulation data by plotting
Rc parametrically versus R and fitting to a line. Furthermore,
Eq. (4) may be substituted into Eqs. (2), giving

dR

dt
=

{ aw

R

[
1

m(R−Ro)+Rco
− s

R

]
froth

a
[

1
m(R−Ro)+Rco

− s
R

]
foam

(5a)

(5b)

as ordinary differential average coarsening equations for the
evolution of the average radius R(t ) alone, decoupled from the
critical radius Rc(t ). Besides materials-dependent rate factors,
aw or a, the evolution of R(t ) depends on the two dimension-
less parameters m and s, and on initial conditions through Ro

and Rco. In effect, there are thus five distinct constants in the
model.
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IV. SOLUTION OF THE AVERAGE COARSENING
EQUATION FOR DRY FOAM

For later comparison with exact solution, it’s helpful to
consider a couple benchmarks. First and most simply, if the
sample is prepared in the scaling state, i.e., with Rco = mRo,
then the right-hand sides of Eqs. (5) are powers of 1/R and
the solutions are powers of t + τ , where τ is an integration
constant. Matching to the initial conditions, R(to) = Ro, the
predicted scaling-state solutions are thus the familiar power
laws

R(t ) =
⎧⎨
⎩

[
D(t − to) + Ro

3
] 1

3 froth[
D(t − to) + Ro

2
] 1

2 foam,

(6a)

(6b)

where the quantity D is given by

D =
{

3 a
m (1 − ms) froth

2 a
m (1 − ms) foam

(7a)

(7b)

and has units of a diffusion coefficient for dry foams. For both
cases, the corresponding critical radii are given by Eq. (4) as
Rc(t ) = mR(t ).

If the sample is prepared close the scaling state, so the
transient difference of Rc(t ) from mR(t ) is small compared

to R(t ), then we can find a perturbative solution where the
leading difference from the scaling state is an additive con-
stant δ. In particular, if

R(t ) =
⎧⎨
⎩

[
D(t − to) + (Ro − δ)3

] 1
3 + δ froth[

D(t − to) + (Ro − δ)2
] 1

2 + δ foam

(8a)

(8b)

are inserted into the left- and right-hand sides of the average
coarsening equations, and expanded in δ, then equality holds
to O(δ2) if the length scale δ is taken as

δ =
{Ro−Rco/m

2(1−ms) froth
Ro−Rco/m

1−ms foam.

(9a)

(9b)

As a quick check, note that δ vanishes and Eqs. (6) are recov-
ered if the sample is prepared in the scaling state. Note too
that δ is negative if the initial preparation is too monodisperse
and positive if it is too polydisperse. Thus, δ emerges from
the model as a signed length scale correlated to the width of
the initial size distribution relative to that in the self-similar
scaling state.

For a general initial sample preparation, the exact solution
of Eqs. (5) can be found for time versus radius by separating
variables, integrating, and matching initial conditions. For the
dry foam case, this gives

t − to = (R − Ro)[m(1 − ms)R − m(1 + ms)Ro + 2Rco]

2a(1 − ms)2
+ s(mRo − Rco)2

a(1 − ms)3
ln

[
(1 − ms)R + s(mRo − Rco)

Ro − sRco

]
(10)

= RoRco(R − Ro)

a(Ro − sRco)
+ (mR2

o − sRco
2)(R − Ro)2

2a(Ro − sRco)2
+ s(mRo − Rco)2(R − Ro)3

3a(Ro − sRco)3
+ O((R − Ro)4), (11)

where the first equation is exact and the second is its expan-
sion in R around Ro. As a first check on the exact result,
it approaches the scaling state t = R2/[2a(1/m − s)] at very
late times, where t � to and R � Ro. As a second check,
expansion of the exact result to first order in Rco around mRo is
equivalent to simply dropping the log term; this gives the per-
turbative approximate solution of Eq. (8b). The perturbative
solution is also obtained by expanding the exact result in 1/R
for any initial conditions; thus, Eq. (8b) can always be used
to analyze data at late enough times even for far-from-scaling
initial preparations. For the wet-froth limit of dilute bubbles,
the exact solution of Eq. (5a) could be similarly computed and
expanded.

The predicted growth of the average radius for foams with
different initial preparations is shown in Fig. 1(a), where
Eq. (10) is plotted for several Rco values with arbitrary choices
of s = 1 and m = 0.8, such that the scaling-state preparation is
Rco/Ro = 0.8. Note that Eq. (10) can be made dimensionless
by multiplying each side by a/R2

o, so the left-hand side is
a(t − to)/R2

o and so on the right-hand side all factors of R
and Rco are divided by Ro. Thus, we plot R(t )/Ro versus
a(t − to)/R2

o and need specify only the values of Rco/Ro, m,
and s—but not to, Ro or a. For foams that are initially too
polydisperse, with Rco/Ro < m, the average radius approaches
the scaling state from above and the early-time growth is
faster for larger polydispersity. For foams that are initially

too monodisperse, with Rco/Ro > m, the average radius ap-
proaches the scaling state from below. And the initial growth
is slower, approaching zero, for foam preparations that are
progressively more monodisperse, Rco → Ro/s from below,
since the pressure difference between neighboring bubbles be-
gins small. This whole phenomenology agrees with intuition,
and is reminiscent of observations in Refs. [13–15,17,20]. The
trends also appear to coincide with the average bubble growth
for our own experiments, shown in Fig. 1(b) and described
below.

As an aside, it should be pointed out that the average coars-
ening equations cannot account for the evolution of a spatially
varying initial size distribution, such as a single large bubble
in an otherwise monodisperse but finite lattice or a disordered
sample where the average bubble size varies with position. It
also cannot account for evolution that does not reach a scaling
state, such as a single large bubble in otherwise monodisperse
but infinite lattice or a perfectly ordered bidisperse lattice.

V. EXPERIMENTS

Quasi-2D dry foams consisting of gas bubbles squashed
between clear plates are ideal for testing our model for several
reasons. First, they can be prepared with different initial bub-
ble size and side-number distributions. Second, bubble areas
can be extracted from images and circle-equivalent radii can
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FIG. 1. Average bubble radius versus time (a) predicted by
Eq. (10) for various parameters, as labeled, and (b) observed in
experiment for three differently prepared quasi-2D foam samples, as
described in the text and pictured at time to = 30 min in Fig. 2. The
error bars are smaller than the symbol sizes.

be defined as Ri = √
Ai/π . Third, the average critical radius

can be found from the areas of the ni = 6 sided bubbles be-
cause, according to von Neumann’s law dAi/dt = Ko(ni − 6)
[1,2], they neither grow nor shrink.

Our samples are made and measured as follows. The foam-
ing solution is 80% deionized water and 20% Dawn Ultra
Concentrated Dish Detergent. The sample cell consists of
two 1.91-cm-thick acrylic plates separated by a spacing of
0.24 cm and sealed with two concentric o-rings, the inner
of which has a 23 cm diameter, as in Refs. [28–31]. There is
a trough surrounding the field of view, which is entirely filled
with foaming solution. Then the cell is flushed with nitrogen
and sealed. For the usual initial preparation, following prior
works, the entire cell is vigorously shaken to produce bubbles
that are homogeneously small compared to the gap between
the plates. For the too-mono preparation, nitrogen is bubbled
into the solution in the cell prior to sealing. This gives bubbles
that are larger and more monodisperse than desired. So, the
sample is stirred a bit roughly with an enclosed magnetic disk
to break up some of the hexagonal regions of bubbles. For the
too-poly preparation, the cell is shaken but not very vigorously
so the foam is spatially nonuniform—in some regions, the
bubbles are small compared to the gap while in others the
bubbles are larger. After a couple hours, these regions are
gently stirred together with the enclosed magnetic mixer. For

the latter two cases, mixing introduces smaller than gap-sized
bubbles, which increases the polydispersity for both foams.

After preparation, the sample cell is placed 0.5 m above
a Porta-Trace light box and 2 m below a Nikon D850 cam-
era with a Nikkor AF-S 300mm 1:2.8D lens and allowed
to coarsen undisturbed. Images are then acquired every 30
minutes for at least 7 days. We only analyze images after the
foams evolve into a quasi-2D state and the bubbles are large
compared to the gap. Images are binarized, skeletonized, and
passed through a watershedding algorithm. From the water-
shed images, we collect areas and number of sides for each
bubble once the the sample has coarsened enough to become
quasi-2D. For the too-poly sample, this happens about 7.5
hours after production; this defines to, which we take to be
to = 30 min since this is the time between images. The other
samples require different amounts of time to become quasi-
2D. Therefore, to better compare, their time bases are shifted
by an additive constant so all three samples have approxi-
mately the same initial circle-equivalent average radius, Ro =
R(to) ≈ 2.45 mm at to. Zoomed-in images of some bubbles for
all three samples at to = 30 min are collected in Fig. 2. There,
the critical n = 6 sided bubbles are highlighted in color. The
too-mono sample clearly has a larger area fraction of critical
bubbles, which are more similar in size. The too-poly sample
has broader distribution of sizes than the usual sample, but this
is not as obvious.

Before fitting the R(t ) data in Fig. 1(b) to Eq. (10), we
perform some important checks and auxiliary measurements.
First, we verify that all three samples approach the same
scaling state. Indeed, Fig. 1(b) shows that the average radii
for the different preparations all converge at late times and
grow thereafter, consistent with R ∼ t1/2 scaling. Further-
more, Fig. 3 shows the time evolution of three statistical
measures of the bubble size and side-number distributions.
This includes the average side number 〈n〉, which equals
6 for an infinite sample by the Plateau and Euler laws
[22–24,32,33]; the area-weighted average side number 〈〈n〉〉,
whose difference from 6 controls the average coarsening rate
in the scaling state [28,34]; and the dimensionless second
moment of the bubble area distribution 〈A2〉/〈A〉2, which also
affects the average coarsening rate. The latter two start at
different values for all three samples, but converge together
at late times—thus demonstrating that a common scaling state
has been reached. At the very latest times, however, all mea-
sures begin to deviate from a constant value. This happens for
〈n〉, too, which falls below 6 as indicative of finite-size effects
no longer having a large number of bubbles in the sample. As a
related check, we verify that the side number distributions are
different for the three preparations at early times, as shown
by the solid bars in Fig. 4. At late times, consistent with
an approach to a statistically self-similarity scaling state, the
distributions become equal to within statistical uncertainty;
these are averaged together and shown in Fig. 4.

The last and perhaps most crucial check is to investigate
the validity of a key assumption of the model, namely, Eqs. (3)
and (4) presume that as the critical radius Rc(t ) grows, it re-
mains linear in the average radius R(t ). Thus, in Fig. 5, we plot
the average circle-equivalent radius of the six-sided bubbles
parametrically versus the average circle-equivalent radius of
all bubbles. There, indeed, we find a linear relationship, with

034606-4



SIMPLY SOLVABLE MODEL CAPTURING THE APPROACH … PHYSICAL REVIEW E 108, 034606 (2023)

A A A A1 cm5 mm5 mm5 mm

(a) too poly, 30 min (b) usual, 30 min (c) too mono, 30 min (d) scaling, 2000 min

FIG. 2. (a)–(c) Images of foams with different initial preparations, corresponding to to = 30 min in Fig. 1, and (d) a foam in the self-similar
scaling state much later. The critical six-sided bubbles are shaded. Those with more sides grow, while those with fewer sides shrink. All images
are 10 × 20〈A〉 in size, with the root mean bubble area

√〈A〉 used as scale bar.

a common slope, m, as assumed. Simultaneous fits to the three
different sample preparations gives m = 1.01 ± 0.01, as illus-
trated by an offset dashed line with this slope. The uncertainty
in m spans acceptable values for fits over the whole range as
well as restrictions to R < 7 mm and R > 5 mm.

Now we are well-positioned to compare the prediction of
Eq. (10) with data for the growth of the average bubble radii,
R(t ), for the three preparations (Fig. 6). Since the initial aver-
age Ro and critical Rco radii are known at time to = 30 min,
and since m = 1.01 ± 0.01 is fixed from Fig. 5, the only
unknown parameters of the model are s and a. To find these,
we simultaneously fit to R(t ) data for all three sample prepara-
tions. This gives s = 0.954 ± 0.009 and a = 0.123 ± 0.006,
which combine with m to give D = 0.009 ± 0.003 mm2/min

2 ΤA2 A 2

6

7

3

1

usual
too mono

too poly

n

n

(b)

(a)

t (min)
10 102 103 104

FIG. 3. Time dependence of (a) area-weighted average side num-
ber 〈〈n〉〉 and average side number 〈n〉, plus (b) second moment
divided by the average area squared. Symbols indicate data from
foam samples with different initial conditions, as labeled. The black
dashed lines show either 〈n〉 = 6 or the time average of usual data
for 〈〈n〉〉 and 〈A2〉/〈A〉2.

from Eq. (7b) as well as δ values from Eq. (9b) shown in the
figure. The uncertainties in these quantities reflect both the
error from the fit as well as the span of values coming from
the range of m = 1.01 ± 0.01. The resulting fits, shown as
dashed curves in Fig. 6, agree well with the data. However,
close inspection reveals a small systematic discrepancy. This
is largest for the too-mono sample, which crosses over to the
scaling form faster than the model predicts.

Note that dropping the log term of Eq. (10), i.e., plot-
ting the perturbative solution Eq. (8b) using D and δ values
given, respectively, by Eqs. (7b) and (9b) with the above
parameters, gives agreement that is essentially unchanged
(dotted curves in Fig. 6). An alternative analysis is thus to
do simultaneous fits to the perturbative solution; this gives
D = 0.0084 ± 0.0004 mm2/min, which is consistent with the
above results but has smaller uncertainty than from propa-
gating the uncertainties in m and s. The fitting values for δ
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FIG. 4. (a) Side number distribution and (b) area-weighted side
number distribution for the three foam preparations. The narrow solid
bars represent the three preparations at initial time to, while the wider
outline represents their late time scaling-state average.
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FIG. 5. The average radius of critical n = 6 sided bubbles versus
the average radius of all bubbles in the coarsening foams, plotted
parametrically during evolution from to = 30 min to the end of the
experiment at t ≈ 104 min. The different symbols indicate different
initial preparations. The three data sets are fit to a line Rc = mR + b,
giving m = 1.01 ± 0.01 as a simultaneous fit parameter and different
values of b for each data set.

are 0.09 ± 0.03 mm and −0.79 ± 0.06 mm for the too-poly
and too-mono cases, respectively, are similarly consistent with
the results computed from fits to the full form. Thus, the
perturbative solutions are a good approximation to the full
solution, consistent with the expected sign of δ and with |δ|
being fairly small compared to Ro.
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FIG. 6. Average radius versus time for foams prepared with
different initial conditions, as labeled. The symbols represent exper-
imental data. The dashed curves show fits to Eq. (10) where s and
a are used as simultaneous fit parameters. The values of Ro and Rco

are fixed separately for each data set, while m = 1.01 is fixed from
the analysis shown in Fig. 5. The dotted curves result from dropping
the log term in the fitting function, giving δ values from Eq. (9b) as
shown in the plots.
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FIG. 7. Average measures of bubble diameter in a shaving cream,
extracted from Fig. 3 of Ref. [21] and based on diffusing-wave spec-
troscopy (DWS) and diffuse transmission spectroscopy (DTS) probes
of bulk behavior. The dashed curves are fits to Eq. (12) with fixed
exponent β = 0.45. The solid curves are fits to Eq. (13), which gives
exponent values indistinguishable from β = 1/2. This is consistent
with the dry foam limit and a nonscaling state initial preparation that
is too polydisperse.

As an aside, note that average coarsening rate is con-
trolled by D ∝ (1 − ms), which is small because m and s are
both close to one. This is perhaps analogous to the relation
d〈A〉/dt ∝ [〈〈n〉〉 − 6] noted earlier for ideal dry 2D foams,
which is small because the area-weighted average side number
is close to the average side number.

VI. PRIOR DATA REVISITED

In this last section, we demonstrate use of our model
for analyzing systems with transients or apparent late-time
power-law growth falling between the known extremes of
β = 1/2 and β = 1/3. For foams, Refs. [35–38] concern the
systematic variation of β with liquid content. In such cases it
is common practice to deduce an empirical coarsening expo-
nent, β, for example, by fitting average radii or diameter data
to a function of form

R(t ) = [
D(t − to) + R1/β

o

]β
. (12)

This assumes—without justification—that the system was
prepared in a scaling regime, i.e., that there are no con-
founding effects due to the decay of unknown transients. For
example, Fig. 3 of Ref. [21] shows two measures of an average
diameter for a shaving cream with 8% liquid that appears to
approach β = 0.45 ± 0.05 at late times. It’s unclear whether
this is consistent with β = 1/2 or if the shaving cream is
outside the dry limit and has a nontrivial effective exponent
that is truly less than one-half. We now have a tool to study
this. First, diameter data were digitized from Ref. [21] and fit
to Eq. (12) with β = 0.45 fixed according to the reported late-
time power-law behavior. The fits, shown by dashed curves in
Fig. 7 are good at late times but not very satisfactory at early
times. The same data are now fit to a form similar to Eqs. (8)
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FIG. 8. Bubble size data digitized from (a) Ref. [17] and
(b) Ref. [20]. The solid curves are fits to Eq. (8b), which accounts
for transients, and dashed curves are fits to the scaling form Eq. (6b),
which assumed that the foams are in the scaling state.

but with a variable exponent:

R(t ) = [D(t − to) + (Ro − δ)1/β ]β + δ. (13)

We take to = 1 min and adjust the other three parameters to
match the data. The fits, shown by solid curves in Fig. 7, are
more satisfactory over the whole range of data. These give
positive δ values of 7.1 ± 0.6 μm for both samples, which is
almost four times smaller than the diameter at time to and im-
plies that the initial preparation is slightly more polydisperse
than the scaling state. Furthermore, the resulting effective ex-
ponents are 0.52 ± 0.08 for the diffusing-wave spectroscopy
measure and 0.51 ± 0.05 for the diffuse transmission spec-
troscopy measure. These β values are consistent with the dry
limit expectation. In fact, when the fits to Eq. (13) are repeated
with fixed β = 1/2, the resulting curves are indistinguishable
from those shown. For all these reasons, we conclude that the
Ref. [21] shaving cream is consistent with the usual dry limit
power law but having an initial polydispersity that is initially
slightly greater than that in the long time scaling state.

A similar demonstration is made in Fig. 8, which shows (a)
x-ray tomography data for a 3D dry foam [17] and (b) surface
image data for a shaving cream at three different temperatures
[20]. These two papers specifically conclude that the systems
reach a long time scaling regime with β = 1/2. So, we fit to
the Eq. (8b) approximate solution of our average coarsening
equation to test how well it captures the transients. For these
fits, we fix to to the minimum of the x axis and we fit for
D, Ro, δ. As seen in Fig. 8, all four fits to our model are
outstanding (solid curves). By contrast, fits to Eq. (6b) for
D and Ro, assuming a self-similar scaling state preparation,
all show systematic deviation from the data (dashed curves).
Though our model has one more fitting parameter, and hence
can be expected to fit better, this analysis lends support to both
the authors’ conclusions as well as the validity of our model.

VII. CONCLUSION

In summary, by approximating the full domain size dis-
tribution in terms of the average and critical radii, we
constructed a model for average growth that is both intuitive
and solvable. For the dry foam case of nearly space-filling
domains, we showed that it is supported by specially designed
experimental tests as well as by comparisons with prior data
for the decay of transients from the initial state toward a long
time scaling state. For the wet froth case of dilute bubbles,
we showed that the approximate perturbative solution has the
same form, i.e., Eq. (13) but with β = 1/3 rather than β =
1/2. This equation features an important new length scale,
δ, which emerges as a measure of the width of the initial
domain size distribution relative to that in the scaling state.
Both δ and β could now be treated as adjustable parameters
for empirical data analysis, as demonstrated in Fig. 7. We hope
these contributions will be helpful for analyzing coarsening
behavior in disparate systems by providing a simple means
to account for the possibly confounding effects of unknown
transients due to nonscaling state preparations. It would be
interesting if our model could be derived, or if bounds on
its accuracy could be set, from the partial integrodifferential
equations for the wet [3,4] and dry [4,5] limits.
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