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Separation of interacting active particles in an asymmetric channel
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We study the diffusive behavior of interacting active particles (self-propelled) with mass m in an asymmetric
channel. The particles are subjected to an external oscillatory force along the length of the channel. In this
setup, particles may exhibit rectification. In the absence of interaction, the mean velocity 〈v〉 of the particles
shows a maximum at moderate m values. It means that particles of moderate m have higher velocities than
the others. However, by incorporating short-range interaction between the particles, 〈v〉 exhibits an additional
peak at lower m values, indicating that particles of lower and moderate m can be separated simultaneously from
the rest. Furthermore, by tuning the interaction strength, the self-propelled velocity, and the parameters of the
oscillatory force, one can selectively separate the particles of lower m, moderate m, or both. Empirical relations
for estimating the optimal mass as a function of these parameters are proposed. These findings are beneficial for
separating the particles of selective m from the rest of the particles.
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I. INTRODUCTION

Microorganisms self-propel in a fluid environment, and
synthetic active particles use their environment’s free energy
to convert it into sustained motion. The processes behind
such an active motion have been widely investigated [1–8].
A new field known as active matter has been emerging,
focusing on the physical features of propulsion, processes,
and motility-induced collective behavior of more identical
entities. Recently, more attention has been directed toward
considering inertia’s influence on active particle movement.
Active particles differ from passive particles in their degree
of freedom. Passive particles move randomly due to thermal
fluctuations, whereas active particles move persistently and
autonomously due to internal driving forces. Consequently,
active particles collectively exhibit peculiar behaviors differ-
ent from passive particles. Biological and synthetic active
agents often function in thick fluids where inertia usually is
not significant. However, there are cases where inertia can-
not be ignored. Lately, researchers have been focusing more
on understanding how inertia influences the movement of
active particles [9,10]. This interplay between active forces
and particle inertia can lead to intriguing behaviors and col-
lective effects in certain systems [11–13]. Furthermore, the
complex interactions among the active particles can signifi-
cantly influence the behavior of active matter systems, leading
to various patterns and structures [1,2,4,6]. The interactions
between the active particles are complex and arise due to
various processes, e.g., mechanical collisions, hydrodynamic
interactions, and lubrication forces.

When active or passive particles move in confined struc-
tures such as porous media [14], microfluidic channels [15],
and living tissues [16], the geometry of the channel controls
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their diffusive behavior. These confined geometries create an
entropic barrier that can affect particle diffusion. This unique
property makes them useful for various applications such
as chemical processing, separation techniques, and catalysis.
This has led to the development of efficient filtering materials,
targeted drug delivery systems, and laboratory-on-a-chip de-
vices for chemical analysis and medical diagnostics. Overall,
the potential applications of confined geometries are vast and
continue to be explored as research in this field progresses
[17–19]. For instance, industrial, biomedical, and clinical ap-
plications rely on separating and sorting small particles, e.g.,
wastewater purification, blood sample preparation, and dis-
ease diagnosis [20].

Separation techniques in research often hinge on the re-
sponse of particles to external stimuli such as gradients or
fields [21]. The behavior of these particles, whether they drift
or diffuse, is influenced by various factors, including mass,
size, shape, and charge. One can effectively separate and
study individual particles by understanding and manipulating
these properties. There is an overwhelming need to separate
mesoscopic particles from mixtures in laboratory research and
industrial applications according to their physical character-
istics [17,22–24]. Separating mesoscopic constituents, such
as malignant tumor cells or nanoparticles, can be challenging
due to their small size and similarity to other particles. Conse-
quently, innovative methods have emerged in the biomedical
and technological domains to tackle these obstacles head-on,
including developing micro-fabricated sieves or membranes,
centrifugation, filtration, and microfluidics. However, these
methods can be limited by factors such as the complexity of
the sample, the need for high throughput, and the sensitivity
of the particles to the separation conditions. Research in this
area continues to be an active realm of study to develop more
efficient and effective methods for separating mesoscopic
particles. In mesoscopic particle separation, the emphasis
on mass-based separation takes precedence over size-based
methods due to its ability to discern specific particles
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FIG. 1. Schematic illustration of a 2D asymmetric channel, de-
scribed by Eq. (3), with the periodicity L confining the motion of an
active Brownian particle of mass M. The particle propels with a self-
propelled velocity v0 = F0/η and is subjected to oscillatory force
F (t ). Equation (5) describes the interaction between the particles.

according to their mass. This approach yields crucial insights
into the potential involvement of these particles in disease
initiation and propagation, as supported by notable studies
[25–28]. For example, in cancer research, the mass of cancer
cells can be different from healthy ones, and this difference in
mass can be used to identify and isolate cancer cells [29] for
further study. Mass-based separation methods can detect and
isolate specific proteins or pathogens in a sample associated
with a specific disease.

This work aims to study a mechanism for separating in-
teracting active particles diffusing in an asymmetric channel
in the presence of an oscillatory force [30–32]. Separating
particles based on their response to external force is a com-
plex process involving multiple factors. We are interested
in understanding how the reflection boundary conditions at
the channel walls, particle interaction, and channel aspect
ratio influence the separation of active Brownian particles in
this constrained environment. With this study, one can gain
a deeper understanding of the separation process of active
particles and develop new effective methods for particle sep-
aration. This article is organized as follows. In Sec. II, we
introduce the Langevin model to describe the dynamics of
the active particles in a two-dimensional asymmetric channel.
The transport characteristics of active particles as a function
of the interaction strength, the channel parameters, and the
external oscillatory force are discussed in Sec. III. Sections IV
and V are devoted to the discussion and the main conclusions,
respectively.

II. MODEL

Consider the dynamics of an active Brownian particle of
mass M suspended in a thermal bath and constrained by a two-
dimensional (2D) asymmetric triangular channel, as shown in
Fig. 1. An oscillatory force is applied on the particle along the
length of the channel, i.e., the x direction. In the presence of
interaction between the particles, the dynamics of the particle
is described by the Langevin equations as

M
d2�r
dt2

= −η
d�r
dt

+ F0n̂ + �Fint + F (t )x̂ +
√

ηkBT �ξ (t ), (1)

d�θ
dt

=
√

ηkBT �χ (t ), (2)

where �r is the position vector of the particle in 2D, orientation
of the particle n̂ = (cos θ, sin θ ), θ is the angle relative to the
x axis, v0 is the self-propelled velocity of the particle with the
corresponding active force F0 = η v0, η is the friction coeffi-
cient, kB is the Boltzmann constant, and T is the temperature
of the surrounding medium. The oscillatory force is described
by �F (t ) = A sin(�t ) x̂, where A is amplitude and � is driving
frequency. The thermal fluctuations due to the coupling of
the particle with the surrounding medium are modeled by
a zero-mean Gaussian white noise �ξ (t ) and �χ (t ), obeying
the fluctuation-dissipation relation 〈ξi(t )ξ j (t ′)〉 = 2δi j δ(t −
t ′) for i, j = x, y [similarly for χ (t )]. Note that in this study
we have considered the strength of noise functions to be the
same for the translational and rotational thermal fluctuations
for simplicity. However, they may generally be different de-
pending on the system under consideration.

A two-dimensional asymmetric and spatially periodic
channel is described by its half-width as

wu(x) =
{
wmin, x = 0,

wmax − (wmax − wmin) x
L , 0 < x � L,

(3)

where wmax and wmin are the maximum and minimum half-
widths of the channel, respectively, and L represents the
periodicity of the channel. The ratio of these widths defines
the dimensionless aspect ratio given by

ε = wmin

wmax
, 0 < ε � 1. (4)

The upper wall of the channel is defined as wu(x) = −wl (x)
due to the symmetry about the channel direction (x axis). As
a result, 2w(x) = wu(x) − wl (x) gives the local width of the
channel. The dynamics of the self-propelled particle at the
channel walls are modeled as follows. The particles cannot
pass through the rigid walls of the channel. However, they are
free to rotate and slide within the channel. The translational
velocity �̇r is elastically reflected, and the rotational angle θ

is unchanged during the collision (sliding reflecting boundary
condition) [33–35].

The short-range interaction force on a particle i due to its
neighbors can be calculated using the lubrication theory [36]
as �Fint = ∑

j (i �= j σi j (cos αi j x̂ + sin αi j ŷ)/di j , where the sum
is taken over all its nearest neighbours, σi j is the interaction
strength between the particles i and j, di j is the corresponding
distance between the particles, αi j is the angle that di j makes
with the channel axis (x axis), and x̂ and ŷ are the unit vectors
along the x and y directions, respectively. Note that σi j > 0 (or
σi j < 0) means the particles are repelling (or attracting) each
other. However, in the limit of the low density of the particles,
this interaction force can be approximated as (see Refs. [33])

�Fint = K (cos α x̂ + sin α ŷ), (5)

where K denotes the strength of the interaction force on a
particle due to its neighbors and α is a random variable that
can have values between 0 to 2π . Equation (5) is like the
mean force acting on a particle due to its neighbous. In the
following, Eq. (5) is considered for the particle interaction.

To have a dimensionless description, we scale all
lengths by the periodicity of the channel L and time by
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τ = ηL2/(kBT ), which represents the typical diffusion time
[37]. The dimensionless Langevin equation reads

m
d2�r
dt2

= −d�r
dt

+ f0 n̂ + �fint + f (t ) x̂ + �ξ (t ), (6)

d�θ
dt

= �χ (t ), (7)

where m = τ0/τ = MkBT/(η2L2), and τ0 = M/η is the typi-
cal time of velocity relaxation for the active Brownian particle.
As a result, the dimensionless mass m is impacted by the
particle’s physical mass M and the friction coefficient η, ther-
mal energy kBT , and channel periodicity L. f = F0L/(kBT )
is the dimensionless active force. a = AL/(kBT ) and ω =
�τ are the dimensionless amplitude and frequency of the
oscillatory force, respectively. | �fint| = KL/(kBT ) = k is the
dimensionless interaction force. In the rest of the paper, we
use dimensionless variables.

III. TRANSPORT CHARACTERISTICS

As the particles are confined in the transversal direction
of the channel, we can compute the mean velocity 〈v〉 and
the effective diffusion coefficient Deff along the length of
the channel (x direction). Unfortunately, we cannot calculate
them analytically by solving the corresponding Fokker-Planck
equation with the reflecting boundary conditions at the chan-
nel walls. For this reason, we rely on numerical simulations.
Thus, 〈v〉 and Deff can be calculated using Brownian dynamics
simulations performed by solving the Langevin equations (6)
and (7) using the standard stochastic Euler algorithm over 104

trajectories with reflection boundary conditions at the channel
walls (see Refs. [7,33]). In the long-time limit, 〈v〉 and Deff

of the ensemble of the particles along the x direction can be
calculated as

〈v〉 = lim
t→∞

〈x(t )〉
t

, (8)

Deff = lim
t→∞

〈x2(t )〉 − 〈x(t )〉2

2 t
. (9)

A. Effect of particle interaction

Figure 2 depicts the behavior of 〈v〉 and Deff of active parti-
cles concerning their mass m for various interaction strengths
k. 〈v〉 exhibits rectification in the channel direction. In the
present case, 〈v〉 is positive because of the chosen channel
geometry. The oscillatory force breaks the thermodynamic
equilibrium and induces directed transport due to the asym-
metry of the channel. In the absence of particle interaction,
〈v〉 shows a maximum at moderate m values. It means that
particles of moderate m (∼10) have higher velocities than
the others. A similar behavior was reported in the case of
passive particles [37,38]. The corresponding Deff also shows
a similar trend. For particles of higher m, the inertia of the
particles dominate over the strength of the oscillatory force.
As a result, both 〈v〉 and Deff decay quickly. In the other limit,
i.e., m → 0, viscous forces due to the surrounding medium
dominate, which leads to a decrease in 〈v〉 with decreasing m.
However, Deff of the active particles can be finite.
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FIG. 2. (a) The mean velocity 〈v〉 and (b) the effective diffusion
coefficient Deff as a function of the mass m of the active particles
for different strengths of the interaction k between the particles. The
amplitude a and the frequency ω of the oscillatory force are set to
ω = 0.1 and a = 2.5. The geometry of the channel is described by
Eq. (3) with the channel aspect ratio ε = 0.1.

In the presence of interaction, 〈v〉 exhibits an additional
peak at lower m values. Indicting that lower and moderate m
particles can move faster than the rest. This behavior can be
effectively controlled by modifying the strength of the particle
interaction k. Deff follows a similar behavior. Note that in-
creasing k implies an increase in the interaction radius among
the particles. Particles of lighter mass diffuse faster than the
heavier ones [see Fig. 2(b)]. It leads to higher rectification,
as shown in Fig. 2(a). The system is nearly overdamped for
particles of lighter mass m, and the effect of inertia is weak. As
a result, 〈v〉 increases with k in this limit. However, the peak
height of 〈v〉 at moderate m values decreases as k increases.
In this case, although the diffusivity of the particles increases
with k, due to the inertia of the particles, the net displacement
decreases.

To ensure successful particle separation, attaining a peak
in the mean velocity within the target mass and concurrently
minimizing diffusivity lead to the formation of a precisely
focused collimated beam of particles. In this context, inves-
tigating the efficiency parameter 〈v〉L/Deff concerning mass
m is vital. Figure 3 depicts the behavior of 〈v〉L/Deff as a
function of particle mass m for various strengths of particle
interaction k. Remarkably, the plot exhibits a bimodal struc-
ture [similar to Fig. 2(a)] for optimal values of k. This bimodal
structure can signify an optimal regime where both high mean
velocity and low diffusivity align, resulting in enhanced parti-
cle separation and a more focused particle beam.
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FIG. 3. 〈v〉L/Deff as a function of the mass m of the active parti-
cles for different strengths of the interaction k between the particles.
The amplitude a and the frequency ω of the oscillatory force are set
to ω = 0.1 and a = 2.5, with the channel aspect ratio ε = 0.1 and
L = 1.

B. Variation of frequency and amplitude of the oscillatory force

Figure 4 shows the behavior of 〈v〉 as a function of m of
the interacting particles for different strengths of frequency ω

and amplitude a of the oscillatory force. The bimodal pattern
collapses into a single peak as ω increases [see Fig. 4(a)].
Also, as ω increases, the peak shifts to the lower m region. Fur-
thermore, the peak value of 〈v〉 at moderate m decreased with
increasing ω. At low frequencies, the particles have enough
time to respond to the driving force and be able to move along
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FIG. 4. The mean velocity 〈v〉 as a function of the mass m of the
interacting particles for different strengths of frequency ω (a) and
amplitude a (b) of the oscillatory force. The geometry of the channel
is described by Eq. (3) with the channel aspect ratio ε = 0.1. Here,
the particle interaction strength k = 350.
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FIG. 5. The average velocity 〈v〉 as a function of the mass m of
active particles for different values of channel aspect ratio ε. The
geometry of the channel is described by Eq. (3). The amplitude a
and the frequency ω of the oscillatory force are set to ω = 0.1 and
a = 2.5. Here, the particle interaction strength k = 350.

the oscillatory force direction and maintain relatively stable
trajectories, resulting in two distinct peaks in 〈v〉. At higher
frequencies, particles of moderate m experience more rapid
and irregular movements due to inertia. As a result, the peak
at the moderate m values decays quickly with increasing ω

[see Fig. 4(a)]. However, the lighter particles respond to the
oscillatory force and exhibit a peak in the small m regime. As
mentioned above, in the limit m → 0, 〈v〉 is low.

In the absence of the oscillatory force, i.e., a = 0, particles
of lighter mass show rectification along the channel direction
due to the chosen asymmetric channel shape [see Fig. 4(b)].
Here, the peak at the lower m values is due to the active
nature of the particles and the interaction between them. Since
active particles can self-propel and have rotational degrees of
freedom, they can diffuse more than passive particles. For this
reason, active particles exhibit a more pronounced peak in 〈v〉.
However, as a increases, i.e., in the presence of oscillatory
force, 〈v〉 shows a bimodal behavior. For higher values of a,
particles of moderate m move faster than those of lighter m. As
a result, 〈v〉 exhibits a single peak. From these observations, it
is evident that the behavior of 〈v〉 can be effectively tuned by
modifying the parameters of the oscillatory force. As reported
for the case of passive particles, the optimal values of m, i.e.,
the values of moderate m correspond to the peak value of 〈v〉,
can be estimated as mop ∼ (a ω2)−0.4 [37]. However, in the
presence of the interaction, the optimal values of m vary as k2

for moderate m values at fixed a and ω. Thus, in terms of a,
ω, and k, mop ∼ (a ω2 k2)−0.4.

C. Variation of channel aspect ratio

Figure 5 illustrates the behavior of 〈v〉 as a function of m
for various channel aspect ratios [Eq. (4)]. For ε < 1, geomet-
ric effects significantly control the transport characteristics of
the particles due to modulation in the channel’s shape. As
mentioned, these geometric effects lead to entropic barriers,
which dictate particle motion. Note that smaller ε corresponds
to a highly confined channel, and higher ε (∼1) corresponds
to a less confined channel [18]. In the presence of interac-
tion between the particles, for ε < 1, 〈v〉 shows a bimodal
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FIG. 6. The average velocity as a function of the mass of active
particles for different strengths of the self-propelled velocity v0. The
particle interaction strength k = 350. The geometry of the channel is
described by Eq. (3) with an aspect ratio ε = 0.1.

behavior. However, as ε increases, the peak values at lower
and moderate values of m are more pronounced. It is because,
as ε increases, the bottleneck width increases, which leads
to an increase in 〈v〉. For ε = 1, which corresponds to a flat
channel, as expected, particles do not show any rectification
leading to 〈v〉 = 0.

D. Effect of self-propelled velocity

Figure 6 depicts the behavior of 〈v〉 as a function of m for
various strengths of the self-propelled velocity v0. For v0 = 0,
i.e., for passive particles, 〈v〉 shows bimodal behavior in the
presence of particle interaction. However, as v0 increases,
the peak height of 〈v〉 at lower m increases. It means parti-
cles of lower m show higher rectification than the rest. Note
that, in general, particles exhibit rectification while diffusing
in asymmetric channels, even in the absence of oscillatory
force. It is because particles shuffling between the cells of
the asymmetric channel occurs due to the random force aris-
ing from thermal fluctuations resulting from the coupling of
the particle with the surrounding medium. Additionally, for
active particles, the random force can also be attributed to
the random orientation of self-propulsion. The diffusivity is
more in the case of active particles than in passive ones. In the
presence of particle interaction, as v0 increases, the force due
to the self-propelled nature of the particles dominates over the
oscillatory force. In this limit, particles of lighter mass move
with higher velocity, exhibiting a more pronounced peak.

IV. DISCUSSION

From the above observations, it is evident that 〈v〉 shows
a bimodal behavior in the presence of interaction between the
particles. Based on these observations, we propose empirical
relations to extract the optimal mass mh

op (m corresponds to
the peak value of 〈v〉) at moderate mass values as a function of
the parameters of the oscillatory force a, ω and the interaction
strength k as mh

op ∼ (a ω2 k2)−0.4. Note that mh
op is not much

influenced by other parameters, i.e., v0 and ε. Similarly, the
optimal mass in the lower mass region is ml

op ∼ (v4
0 /k3)0.8,

with a condition k � 350. Note that in the absence of k, there
is no additional peak in the lower m region. By changing the
asymmetry of the channel geometry, defined by the parameter
ε, the peak height in 〈v〉 with respect to m changes but not the
peak position significantly. These observations are very useful
in sorting out the particles of various masses. The observed
mass-based separation mechanism can be studied experimen-
tally for active particles of various masses diffusing in an
asymmetric channel, which can be prepared by microprinting
on a substrate [39]. To have an estimate in real units, which is
very useful for the experimentalists, the characteristic values
of the friction coefficient and characteristic diffusion time for
the particles in water moving in a triangular channel with
aspect ratio ε = 0.1 and period length L ∼ 10 µm at room
temperature (T ∼ 300 K) are given by η ∼ 2 × 10−3 mg/s
[40] and τ ∼ 50 s, respectively [15,22]. Particles having mass
around Mh

op ∼ 38 × 10−3 mg and subject to parameters A ∼
0.25 fN, v0 ∼ 0.207 µm/s, k ∼ 144 fN, and � ∼ 0.0002 s−1

move at an average velocity of about 0.13 µm/s, which is
higher than that of other particles. Similarly, Particles having
moderate mass around Ml

op ∼ 0.193 × 10−3 mg move at an
average velocity of about 0.12 µm/s. It is expected that these
results will motivate the experimentalists to design laboratory-
on-a-chip devices for separating active particles, nano- and
microparticles, proteins, organelles, and cells based on their
mass.

V. CONCLUSION

In this work, we have studied the diffusive behavior of
interacting active particles with mass m in an asymmetric
channel. The confinement of the channel significantly con-
trols the diffusive behavior of the particles. As the considered
channel is asymmetric in shape, particles exhibit rectification.
Without particle interaction, the mean velocity 〈v〉 and the
corresponding effective diffusion Deff show a single peak at
moderate m. However, due to the interaction between the
particles, 〈v〉 exhibits a bimodal behavior. It indicates that
particles of moderate and lighter particles can exhibit higher
rectification than the rest. By altering the strength of in-
teraction, self-propelled velocity, and the parameters of the
oscillatory force, one can selectively extract the particles of
either lower or moderate mass or both. We have proposed
empirical relations, mh

op ∼ (a ω2 k2)−0.4 for moderate mass
and ml

op ∼ (v4
0 /k3)0.8 for lower mass with the condition that

the particle interaction should be strong enough (k � 350).
Note that the asymmetry of the channel does not play a vital
role in mh

op or ml
op. These findings are helpful in separating the

nano- and microparticles, proteins, organelles, and cells.
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