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Chemotaxis refers to the motion of an organism induced by chemical stimuli and is a motility mode shared
by many living species that has been developed by evolution to optimize certain biological processes such as
foraging or immune response. In particular, autochemotaxis refers to chemotaxis mediated by a cue produced
by the chemotactic particle itself. Here, we investigate the collective behavior of autochemotactic particles that
are repelled by the cue and therefore migrate preferentially towards low-concentration regions. To this end, we
introduce a lattice model inspired by the true self-avoiding walk which reduces to the Keller-Segel model in the
continuous limit, for which we describe the rich phase behavior. We first rationalize the chemically mediated
alignment interaction between walkers in the limit of stationary concentration fields, and then describe the
various large-scale structures that can spontaneously form and the conditions for them to emerge, among which
we find stable bands traveling at constant speed in the direction transverse to the band.
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I. INTRODUCTION

Chemotaxis refers to motion induced by the presence of
one or multiple chemical compounds. This feature is observed
in nature in many forms, mostly in cells [1,2] and bacteria
[3,4], and is often used for particles to optimize search pro-
cesses such as foraging, as the smell of the targeted object
can be detected and used as a guide. Among the many forms
of chemotaxis, autochemotaxis occurs when a particle emits
itself the chemical cue to which it is sensitive. As a well-
known example, many species of ants deposit pheromones
along their path when foraging, which they then use to find
their way back [5]. We can also mention the phenomenon
of neutrophil swarming [6], occurring when a neutrophil
emits a chemoattractant to recruit other immune cells in its
vicinity for assistance in the killing process. On the other
hand, autochemorepulsion, i.e., when particles are repelled
by the chemical they produce, is also observed in nature.
Dictyostelium discoideum, an amoebian species, is an exam-
ple of a autochemorepulsive organism that has been studied
experimentally for many years now [7–9].

Chemotaxis was first quantitatively modeled by Keller and
Segel who proposed in 1971 field equations describing the
time evolution of both the chemical concentration field and
the particle density field [10]. These equations in their most
general form account for various processes inherent to chemo-
taxis, namely, the emission of the cue by the particles, the
diffusion and degradation of the cue, the diffusion of the
density field, and its advection due to chemical concentra-
tion gradients. The Keller-Segel model has been extensively
studied and generalizations have been proposed over the past
decades, such as a fractional form of the model [11–14].
More recently, various particle models for chemotaxis and
autochemotaxis have been introduced and molecular simu-
lations of such models have been performed. Most of the
recent studies focused their attention on chemoattraction for

which self-organized structures were discovered and thor-
oughly described [15–22]. However, less has been reported
on autochemorepulsion. From the pure point of view of sta-
tistical physics, autochemorepulsive walks are interesting as
they can be seen as random walks with memory since parti-
cles tend not to visit twice regions that they have previously
visited, provided that the chemical cue has not diffused away.
Such type of non-Markovian walks where particles have some
memory of their previous locations has motivated some recent
research [23–26], with the aim of characterizing their statisti-
cal properties such as first-passage times or record statistics.
Understanding the collective behavior of autochemorepulsive
particles and how they self-organize is therefore a missing
piece of this research field at the interface of physics and
biology.

In this paper, we introduce a lattice model for au-
tochemorepulsive walkers. It is inspired by the true self-
avoiding walk [27], where a walker jumps to a neighboring
site with a probability weighted by the number of times it
has already visited it, to which we add a diffusion step. The
model reduces to the Keller-Segel model in the continuum
limit, and is controlled by two main parameters: first, the
concentration diffusion constant, which essentially acts as the
memory of the walk, and second, the coupling of a walker
to the concentration field, which controls the persistence of
the walk. The main result that we present in this paper is the
formation of bands of particles, traveling at constant speed
in the direction transverse to the band. Similar bands have
not only been observed in experimental bacterial systems
for several decades [28–31], but also in various models of
active systems [32–36] and very often results from an align-
ment interaction, as in the well-known Vicsek model [37].
In the case of autochemorepulsive particles, the alignment
interaction is mediated by the concentration field and de-
pends on the diffusion constant of the chemical cue in a
nontrivial way.
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The paper is organized as follows. We first introduce the
lattice model and show its connection to the Keller-Segel
model. In the next section, we discuss the phenomenology
of the interaction between the walker and the field, by first
characterizing the self-interaction between a walker and the
cue it has produced itself, and then by computing alignment
probabilities of two particles going in different directions.
In the next part, we show results of numerical simulations
where we identify three different phases that break the di-
rectional symmetry. The conditions for these phases to form
are presented in a phase diagram and discussed in detail.
We conclude the paper by discussing the implications of our
results.

II. THE MODEL

Recently, computational models for autochemotactic par-
ticles have been introduced in the literature. For instance,
the model considered in [16,38] represents autochemotactic
particles as active Brownian particles which experience a
translational force as well as a torque proportional to the con-
centration gradient of the chemical cue. This is coupled to a
diffusion equation for the concentration field which includes a
source term located at the positions of each particle. While this
type of detailed continuous approach allows to characterize re-
alistic systems, it has the drawback of being computationally
expensive as the resolution needed for solving the diffusion
equation can be prohibitive.

In order to avoid computationally expensive simulations,
we propose a minimal lattice model for autochemotactic par-
ticles that contain three main ingredients: (i) particles emit a
chemical cue along their path, (ii) they migrate preferentially
to regions of low chemical concentration, and (iii) the cue dif-
fuses according to normal diffusion. To this end, we consider
a d-dimensional lattice on which a concentration field c is
defined, its value on a site i at time t being noted ci(t ). Nw

walkers are placed on sites of the lattice and we note ρi the
number of particles on lattice site i. The total walker density
is denoted by �. The time evolution of the system must couple
to the diffusion of the concentration field, the motion of the
walkers on the lattice, controlled by the local value of the
concentration field, and their production of the chemical cue.
We therefore introduce the following algorithm to evolve the
system over one time step from time t to t + δt :

(1) Generate a random permutation P of the set
{0, . . . , Nw − 1}.

(2) For m = 0, . . . , Nw − 1,
(a) Move walker l = Pm from its current site i to a

neighboring site j with probability

pi→ j = e−βc j∑
k∈Ni

e−βck
, (1)

where Ni is the set of neighboring sites of i.
(b) Update c j ← c j + hδt .

(3) Integrate on a time interval of length �t the following
diffusion equation:

dci(t )

dt
= Dc

∑
j∈Ni

[c j (t ) − ci(t )]. (2)

The model is governed by three main parameters:
(i) The deposition rate h. We define it as a unit of concen-

tration per unit time and therefore use h = 1 throughout this
study.

(ii) The diffusion constant Dc. For Dc = 0, any amount
of chemical deposited on a site remains there forever, and
the model becomes the well-known true self-avoiding walk
(TSAW). Throughout this paper, Dc will be expressed in units
of δt−1.

(iii) The chemotactic coupling strength β. For β = 0, the
walkers are not sensitive to the concentration field and jump to
any neighboring site with the same probability. On the other
hand, for β → ∞ the walkers always jump to the neighboring
site with the lowest concentration. Throughout this paper, β

will be expressed in units of (hδt )−1.
In addition, we use δt = 1 in the rest of the study and use

this as a unit of time. The lattice constant a will finally be used
as a unit of length.

Note that the model does not contain any direct repul-
sive interaction between particles such as, e.g., an excluded
volume interaction, such that two particles are in principle
allowed to occupy the same site. However, because the up-
date scheme of the model requires each particle to deposit
an amount hδt to the concentration field before the next
particle moves, the chemotactic interaction is sufficient for
the superposition of two particles on one site to be very
unlikely, provided that β is sufficiently large. Adding an ex-
plicit on-site repulsion would add a new parameter to the
model but not impact significantly the phenomenology of the
system.

For the rest of this paper, we will focus on a two-
dimensional system on a square lattice where the neighbor-
hood Ni of site i contains its four adjacent sites. We will
use the following notations. sl refers to the site occupied
by the walker l , whose coordinates are (xl , yl ). The current
direction of this walker is vl and is a vector that can only
be (0,1), (0,−1), (1,0), or (−1, 0). We also introduce the
directed density field ρv where ρv i is the number of walkers
going in the direction v located at the site i. Given (x, y),
the coordinates of the site i, we equivalently use the nota-
tions ρ(x, y) = ρi, ρv(x, y) = ρv i as well as c(x, y) = ci for
the chemical concentration field.

A natural question that arises when working with a dis-
crete lattice model is its continuum limit in which the lattice
constant is smaller than any other length scale involved in
the problem. To answer this question, we first consider the
continuum limit of the one-dimensional case for simplicity,
as the case of higher dimensions can be straightforwardly
adapted from it.

Let us define the time-dependent continuous concentration
field C(x, t ) and density field ρ(x, t ), such that ci(t ) = C(ia, t )
and ni(t ) = aρ(ia, t ), where a is the size of a lattice site
and ni is the number of walkers on site i. The partial dif-
ferential equation for the concentration field can be derived
from discrete equation (2) together with the update rule of
the concentration field. A standard Taylor expansion of the
right-hand side of Eq. (2) for a → 0 yields the diffusive term,
while the source term can be written as a punctual increase of
the concentration field by an amount hδt at time intervals δt
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located at the position of the walkers, yielding

∂c(x, t )

∂t
= D̃c

∂2c(x, t )

∂x2
+ ahδt

∑
k

ρ(x, t )δ(t − kδt ), (3)

where D̃c = a2Dc. The integration of the source term between
time jδt and ( j + 1)δt reads

ahδt
∑

k

∫ ( j+1)δt

jδt
dτρ(x, τ )δ(τ − kδt )

= ahδt
ρ(x, jδt ) + ρ(x, ( j + 1)δt )

2
, (4)

which equals at first order in δt the integration between times
jδt and ( j + 1)δt of haρ(x, t ). We can therefore approximate
the full equation for δt → 0 as

∂c(x, t )

∂t
= D̃c

∂2c(x, t )

∂x2
+ haρ(x, t ). (5)

The second equation governs the time evolution of the
density field. To derive it from the discrete case, we consider
the site i, at position x. The number of particles at this site is
noted N (x, t ). The rules of our discrete autochemotactic walk
imply the following master equation:

ρ(x, t + δt ) = ρ(x − a, t )

1 + eβ(c(x,t )−c(x−2a,t ))

+ ρ(x + a, t )

1 + eβ(c(x,t )−c(x+2a,t ))
, (6)

where a is the size of a lattice site. Expanding for a → 0 and
δt → 0 yields

∂ρ(x, t )

∂t
= Dp

[
∂2ρ(x, t )

∂x2
+ 2β

∂

∂x

(
ρ(x, t )

∂c(x, t )

∂x

)]
, (7)

where Dp = av0/2 is the particle diffusion constant and v0 =
a/�t is the velocity of the particles. This is a diffusion
equation with a drift term proportional to the gradient of the
concentration field. The set of Eqs. (3) and (7) is an instance
of the Keller-Segel model which accounts in its most general
form for multiple processes. The same analysis can be made in
higher dimension and leads to the same conclusion. Note that
the drift velocity in Eq. (7) is v = 2βdc/dx and is therefore
negative when the concentration gradient is positive, which
implies chemorepulsion. The original Keller-Segel model was
devised to describe chemoattraction and therefore contains a
minus sign on the right-hand side. The Keller-Segel model
has been studied in many publications since its introduction
in 1971 [10], but the case of chemorepulsion has not been
extensively discussed [39]. One should therefore keep in mind
that the results we will show for the lattice model we are using
can be extended to the Keller-Segel model of autochemorepul-
sion if the lattice constant is small enough, which practically
corresponds to large diffusion constants Dc.

III. PHENOMENOLOGY OF THE FIELD-MEDIATED
INTERACTION

The only information that a walker uses to decide which
site to jump to at the next step is the local value of the concen-
tration field produced by itself and other walkers. We discuss

FIG. 1. Concentration gradient ∇c∞, where the color indicates
its norm and the arrow its direction. The lower-half plan (y < 0) cor-
responds to Dc = 0.1 while the upper half corresponds to Dc = 0.5.

here the phenomenology of this field-mediated interaction.
In general, two walkers 1 and 2 located at positions r1 and
r2, which have respectively produced a concentration field c1

and c2, are likely to align if [∇c1(r1) + ∇c2(r1)] · [∇c1(r2) +
∇c2(r2)] is large. In practice, the fields c1,2 depend on the
current position of the particle and on the complete trajectories
of all walkers. Here we consider a few simplified scenarios to
understand emerging effective interactions.

As one walker follows on a straight line in the direc-
tion u, the concentration field that it has produced reaches
a stationary profile centered around it in the long-time limit.
Let c∞(u; r) be this profile, where r indicates the vectorial
distance to the site occupied by the walker. Symmetry under
rotation imposes that c∞(Rθu; r) = c∞(u; R−1

θ r) where Rθ is
the rotation matrix of angle θ in R2. We therefore omit the
dependence on u and use the convention c∞(r) = c∞(ex, r).
We show in Fig. 1 the gradient ∇c∞ for Dc = 0.1 and
Dc = 0.5, defined as ∇c∞(x, y) = 1

2a (c∞(x + a, y) − c∞(x −
a, y), c∞(x, y + a) − c∞(x, y − a)), whose additive inverse
can be interpreted as the effective force exerted by the cue
produced by a walker on another walker located at a dis-
tance r. As expected the concentration gradient is oriented
mostly orthogonally to the trail left behind the walker, with
a small component in the direction of the trail. In addition,
the gradient at the location of the walker is directed along
the trail, in the direction of the walk. This structure impacts
the interaction of a walker with its own field but also the
alignment interaction of walkers depending on their relative
directions, as discussed next.

A. Self-interaction

Before considering the effective interaction between two
walkers, we characterize the force exerted by the concentra-
tion field produced by a walker on the walker itself. To do this,
we consider the stationary field c∞(r). As this field results
from an infinite straight walk, the value of the field on the
site that has just been visited by the walker is necessarily
higher than the left and right sites and even higher than on
the forward site. For β > 0, the probability for the walker to
choose the forward site will therefore be the highest such that
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FIG. 2. Persistence length lp as a function Dc and various values
of β, where we have subtracted the value lp0 = 1/3 reached for β =
0. The inset shows the value of Dc that maximizes the persistence
length as a function of β (solid line), together with the corresponding
value of the persistence length �l∗

p = l∗
p − lp0 (dashed line).

it will preferentially continue in the same direction. The con-
centration field therefore effectively acts as an aligning force
that hinders the walker to turn. This effect can be quantified by
a persistence length lp as the mean number of steps continued
along the same direction, starting from the stationary field c∞,
reading

lp =
∞∑

k=0

kak
→(1 − a→) = 1

a−1→ − 1
, (8)

where a→ is the probability for the walker to continue in the
same direction at the next time step and is given by

a−1
→ = 1 +

∑
u �=ex

e−β(c∞(u)−c∞(ex )). (9)

Noting �c⊥
∞ = c∞(ey) − c∞(ex ) and �c‖

∞ = c∞(−ex ) −
c∞(ex ) we obtain

lp = [2e−β�c⊥
∞ + e−β�c‖

∞ ]−1. (10)

Because of mass conservation, both �c⊥
∞ and �c‖

∞ cannot
be arbitrarily large simultaneously. We show in Fig. 2 the
persistence length as a function of Dc for various values of
β. It reaches a β-dependent maximum which results from
two competing effects. First, for Dc → 0, the cue diffuses so
slowly that �c‖

∞ is large but �c⊥
∞ is very low, such that a

turn to the right or left is probable. On the other extreme for
Dc → ∞, the cue has diffused so fast in one time step that
both �c‖

∞ and �c⊥
∞ are low. This again implies that a turn

(and even a reverse jump) is easy. In between these two limits,
there exists a region where the cue has diffused sufficiently
for �c⊥

∞ to be nonzero but has not diffused enough for �c‖
∞

to be insignificant. In such a situation, the forward site will be
highly favored for the walker to jump to and the persistence
length will be substantially increased.

FIG. 3. Alignment probability A⊥ for β = 100. Because of the
symmetry of the field by reflection with the line �y = −�x , we show
it for Dc = 0.1 in the lower left plane and Dc = 0.5 in the upper
right plane. The position � = 0 is indicated by the white circle.
An animation of an alignment event for θ = π/2 is provided in the
Supplemental Material [40].

We conclude that the self-produced concentration field acts
as an aligning force whose strength is maximized for a certain
value of the diffusion constant Dc.

B. Aligning two walkers

Now, let us consider two walkers going in directions u1

and u2 for a long enough time such that the field they produce
is the stationary one. As they approach each other, they will
sense more and more the field produced by the other walker.
We therefore ask the question: given their mutual distance,
what is the probability that they will align their directions? To
formalize the answer, we need to consider the combined field
c(2)
∞ (θ,�; r) = c∞(r) + c∞(Rθ (r − �)). In other words, c(2)

∞
is the field resulting from the infinite straight walks of two
walkers oriented with an angle θ and which are separated by
a vector �, with the origin placed at the position of the first
walker.

1. θ = π/2

First, let us tackle the case θ = π/2 where the two walkers
go in perpendicular directions. We compute the alignment
probability A⊥(�), defined as the probability for two walkers
at a distance � to align their directions at the next step, given
the combined concentration field c(2)

∞ (π/2,�). As shown in
Fig. 3, the space dependence of the alignment probability field
depends on the diffusion constant Dc in a nontrivial way. First,
consider the asymptotic value A⊥0 = lim|�|→∞ A⊥. This is a
signature of the self-interaction which we have discussed in a
previous paragraph. In fact, walkers far away from each other
can align by chance simply because their self-produced field
allows them to pick the same direction. This is, however, less
likely as the persistence length lp is large, yielding a low value
for A⊥0.
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FIG. 4. Alignment probability A� for β = 100 and Dc = 0.1
(upper panel) and Dc = 0.5 (lower panel).

The effect of the interaction can, however, be quantified
via �A⊥(�) = A⊥(�) − A⊥0. For Dc → 0, it takes non-
negligible values along a long trail behind the walker but
does not reach very large values. However, for intermediate
values such as Dc = 0.5, �A⊥ takes high values in a rather
small region with maximal values slightly in front of the
walker and to its right (or to its left for θ = −π/2). Finally,
as Dc becomes very large, the cue diffuses so fast that the
concentration gradient is too small and the alignment prob-
ability becomes homogeneous with values corresponding to
the alignment probability of two independent blind random
walks.

2. θ = π

Next, let us consider the case θ = π where the two walkers
go in parallel opposite directions. We can perform the same
analysis as for θ = π/2 and compute the probability A�(�)
that two walkers at a mutual distance � would align based on
the combined field c(2)

∞ . Due to the symmetry of the problem,
the alignment interaction is weaker in this case, as there will
be at most a probability 1/2 for the two walkers to align.
In particular, the alignment probability A� is noticeably in-
creased when the two walkers approach each other perfectly
aligned, i.e., for �y = 0 and �x > 0, as shown in Fig. 4.
However, A�(�) takes remarkably low values in a region
corresponding to the back of the walker. This indicates that
two walkers will probably align only if � · u1,2 = 0, but will
otherwise scatter away. Note that this effect is much more
pronounced for small values of Dc.

C. Alignment stability

Let us consider now the case θ = 0 where the two walkers
move in the same direction and are separated by a distance
�. As they are already aligned in this configuration, we want

FIG. 5. Persistence length l (2)
p for β = 100 and Dc = 0.1 (upper

panel) and Dc = 0.5 (lower panel).

to quantify here the stability of the alignment. To formalize
this, we define the persistence length l (2)

p (�) as the mean
number of steps the two walkers separated by a vector � will
continue along the same direction before turning, given the
initial stationary concentration field c(2)

∞ . It is given by

l (2)
p (�) =

∞∑
k=0

ka⇒(�)k (1 − a⇒(�)) = a⇒(�)

1 − a⇒(�)
, (11)

where a⇒(�) is the probability for two walkers to continue in
the same direction at the next time step:

a⇒(�) = z⇒e−β(c(2)
∞ (0,�;ex )+c(2)

∞ (0,�;�+ex )), (12)

where we have used by convention ex the common direction
of the walkers and z⇒ is a normalization factor. Similarly to
the cases θ ∈ {π/2, π}, this quantity might vary due to the
self-interaction of a walker with its own field, but the value of
lp corresponding to this effect is found for |�| → ∞.

We show in Fig. 5 two instances of l (2)
p (�) for β = 100,

and Dc = 0.1 and Dc = 0.5. We note that there exists a
maximum value of l (2)

p for � = ±δ∗ey which depends on
the parameters of the model but increases with Dc. Again,
the value of the persistence length at this location strongly
depends on Dc and is maximized for a certain value of Dc.
Similarly to the persistence length to due the self-interaction,
this maximum l (2)∗

p and its location D∗
c depend on β as we

show in Fig. 6.

IV. RESULTS

We performed Monte Carlo simulations of the stochastic
process defined in Sec. II on a two -dimensional (2D) square
lattice of size Lx × Ly and particle density � = Nw/LxLy,
with periodic boundary conditions. The walkers were initially
placed one by one on randomly chosen empty sites. If � > 1,
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FIG. 6. max� l (2)
p − lp (solid lines) and δ∗ (dotted lines with

squares) as a function of Dc for various values of β. The inset shows
the value of Dc that maximizes this function (solid line) and the cor-
responding value of the persistence length from which is subtracted
the persistence length due to self-interaction (dashed line).

we first place � Nw

LxLy
� on each lattice site and then place the

remaining walkers on random sites, provided that each site
contains at most � Nw

LxLy
� + 1 walkers. The concentration field

was initially set to zero on all sites. The diffusion equation for
the concentration field was solved using the Crank-Nicolson
method with alternating direction, using an integration time
step δt = 0.01D−1

c .

A. Dilute regime

We start by investigating the low-density regime where we
place only one walker in the simulation box, leading to a num-
ber density of � = 1/LxLy, in order to characterize the effect
of the interaction of a walker with its own concentration field
on its dynamics. To this end, we compute the mean-square
displacement (MSD) of the process, that we show in Fig. 7.

FIG. 7. Mean-square displacement of a single walker for Dc = 1
and various values of β. The limit cases 〈r(t )2〉 = t and 〈r(t )2〉 = t2

are shown in dashed and dotted lines, respectively.

From the analysis presented in the previous section, we
expect the field to act as an aligning force for the walker.
This implies that for β → ∞ and Dc > 0, we expect the walk
to be ballistic, such that 〈r(t )2〉 = t2, which is equivalent to
an infinite persistence length. The limit β → ∞ and Dc = 0
must, however, be taken with care. Here, the ballistic regime
cannot be reached as the chemical does not diffuse. As the
walker proceeds, there is on average no difference between
the forward, left, and right sites such that the walker can easily
take turns and break the ballistic regime. On the other extreme,
for β = 0, the process is a conventional random walk such that
the MSD is entirely diffusive, i.e., 〈r(t )2〉 = t .

For finite values of β, we observe an intermediate behav-
ior. The MSD is superdiffusive at short times and reaches a
diffusive regime at long times with 〈r(t )2〉 = Dwt . We show
an example of the MSD for Dc = 0.1 and various values of
β in Fig. 7. Note that even for the single-walker case, the
numerical computations of the MSD suffer from finite-size
effects as the walker can potentially interact with the concen-
tration field produced by one of its periodic images. However,
if the simulation box is large enough this field must have suf-
ficiently diffused away such that the total field that the walker
feels is negligibly impacted by the field produced by periodic
images.

B. Dense regime

We consider now arbitrarily large number densities. The
phenomenological analysis discussed previously indicate that
walkers can effectively interact over length scales that depend
on Dc in a nontrivial way. While an alignment interaction at
short distance can order the system, a similar interaction over
long distances can, however, prevent large ordered regions
from spontaneously emerging. For this analysis, we used a
rectangular simulation box, as patterns with broken symme-
tries are expected to form. A lattice with uneven dimensions
makes the probability for the system to end up in a certain
global orientation much higher than in the orthogonal direc-
tion, which simplifies our analysis. However, we emphasize
that this choice does not impact the phenomenology of the
system: all phases observed and reported in this paper were
also observed in square simulation boxes and the physical
mechanisms responsible for their formation are also the same.

First, we compute again the MSD for increasing numbers
of walkers, as shown in Fig. 8 for Dc = 1, β = 100, Ly = 100,
and Lx = 400. As the density is low, the behavior observed in
the single-walker case still holds, namely, an initial superdif-
fusive behavior followed by a diffusive one. The transition
time between the two regimes is, however, decreased as den-
sity increases since the superdiffusive behavior can persist
on a timescale related to the average volume per particle,
while it is broken because of spontaneous fluctuations in the
single-walker case.

As the density increases even more, the MSD exhibits a
nontrivial behavior. In the specific case displayed in Fig. 8,
some values of � result in a persistent superdiffusive regime
with an exponent very close to 2. This indicates a clear change
in the motile behavior of the walkers and is the signature
of a new phase of the system. For even larger densities, this
phenomenon disappears and we observe an almost purely
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FIG. 8. Mean-square displacement for Dc = 1, β = 100, and
various values of �. The limit cases 〈r(t )2〉 = t and 〈r(t )2〉 = t2 are
shown in dashed and dotted lines, respectively.

diffusive behavior, with even a subdiffusive regime at inter-
mediate times.

To assess the existence of different phases for intermediate
values of � and characterize the symmetry breaking of the
system, we define a global order parameter σ as

σ = N↑ + N↓
N→ + N←

, (13)

where N↑,↓,←,→ refers to the number of walkers traveling in
one of the four directions, provided that N↑ + N↓ < N← +
N→ such that 0 � σ � 1. This quantity is devised to indicate
whether the fourfold symmetry is broken. We note σ̄ , its time-
averaged value in the steady state. To detect indications of
pattern formation, we also compute the discrete Fourier trans-
forms ρ̂v(kx, ky) of all four directed density fields ρv(x, y),
defined as

ρ̂v(kx, ky) =
Lx−1∑
x=0

Ly−1∑
y=0

e−i2π ( kx x
Lx

+ kyy
Ly

)
ρv(x, y). (14)

Note that σ = |ρ̂ey (0,0)|+|ρ̂−ey (0,0)|
|ρ̂ex (0,0)|+|ρ̂−ex (0,0)| , provided that there are more

walkers going along the x axis than along the y axis. We also
introduce ψv(q) defined as ψv(q) = |ρ̂v(q/Lx, 0)| if v = ±ex

and ψv(q) = |ρ̂v(0, q/Ly )| if v = ±ey. We use σ and ρv to

identify different phases in the (ρ, β ) plane, which we show
in Fig. 9 and describe in detail now.

1. Homogeneous phase

We refer to any system with σ̄ > 0.5 as the homogeneous
phase. Here, no patterns are formed and no symmetry is
broken on large length scales. We will not discuss this “gas”
phase in more detail in this paper and focus on the phases for
which we observe broken symmetries.

2. Cluster phase

For very low densities and large values of β, we find a
phase where most particles travel along the same axis, in
either direction. We show in Fig. 10 a typical snapshot of
such a phase. Here, particles group in small clusters which
behave essentially as ballistic units. We identify this phase as
the mean value of σ being lower than 0.5 but no particular
peak is observed in |ρ̂v(kx, ky)|. To explain the formation of
the clusters and their stability, we first recall that without
interaction between walkers, large values of β lead to ballistic
motion. When multiple walkers are placed together, the ballis-
tic motion can be broken if two walkers traveling in different
directions can sense each other’s concentration field. Here, the
formation of the cluster phase can be summarized as follows.

Initially, particles walk ballistically as long as they do not
sense the field of another walker. This can happen over rather
large distances due to the overall low density. Eventually, two
walkers going in orthogonal directions will reach a mutual
distance such that the alignment interaction will be high and
the two walkers will adopt the same direction. Because of the
large values of β, these two walkers should not come apart
and will therefore form a cluster of two particles as long
as they do not encounter a third particle or another cluster.
In such a case, either they will absorb the third particle or
merge with the other cluster, or be split in parts. The formation
and growth of such clusters will, however, stop whenever all
clusters (or single particles left alone) travel along the same
axis and are located at large enough distances. Then, they
will never interact again and continue along their ballistic
paths indefinitely. This is, however, possible only because the
overall density is very low such that a configuration can be
spontaneously reached.

In accordance with the phenomenological analysis made
earlier, we note that the minimal value of β from which the

FIG. 9. Diagrams in the (�, β ) plane showing various phases found in the system for Dc = 0.1 (left panel), Dc = 0.5 (center panel), and
Dc = 1 (right panel). Note that both axes are in logarithmic scale.
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FIG. 10. Typical configuration of the cluster phase (� = 0.001,
β = 4640, Dc = 0.5, Lx = 400, Ly = 100). The upper panel shows
the positions of walkers and their traveling directions along the x axis
while the lower panel shows the corresponding concentration field.
A full animation is provided in the Supplemental Material [40].

dilute ballistic phase can be formed depends nonmonotoni-
cally with Dc, as the persistence length and hence the strength
of the ballistics behavior is maximized for Dc � 0.5 for
β � 1.

3. Macrophase separation (MPS)

At intermediate densities, we observe a second phase
where system-spanning bands are formed. Particles arrange
densely in a narrow region and travel ballistically in a direc-
tion perpendicular to the band which connects to its periodic
image, as shown in Fig. 11. For bands traveling along the
x axis, the mean value of σ is much lower than 0.5, and
|ρ̂v(kx, 0)| decays over a range corresponding to the inverse
of a typical band size. For dense rectangular bands, it also
presents peaks similar to a sinc function. This set of features
allows to formally identify the phase.

In this region of the phase diagram, the system can reach
three different stationary states:

(i) One single band is formed and all particles travel along
the same direction.

(ii) One single band is formed but a substantial amount of
particles still travel in the opposite direction, in a dilute cloud.

(iii) Two bands of the same size travel in opposite
directions.

A single set of parameters (�, Dc, β ) can spontaneously
lead to these three configurations, with different probabilities.
We show in Fig. 11 typical time series of N→, N↑, N←, and
N↓ in the three scenarios. In cases (ii) and (iii), the spikes oc-
curring at periodic intervals correspond to collisions between
the two structures traveling in opposite directions. The phe-
nomenology of these events can be summarized as follows.

In case (iii), two colliding bands, the concentration field
is more intense at the back of each band as long as they are
far apart, which pushes them independently in opposite direc-
tions. When the fronts of both bands collide, they temporarily
merge to form a larger structure, the center of which becomes
denser and more concentrated. As long as the concentration
field on both sides of this superband is more intense than at
the center, the two bands will keep moving in their original
direction, and the concentration will keep increasing at the
center. Eventually, the overall concentration gradient will flip

its direction such that the walkers will favorably reverse their
orientations. Doing so, the superband will split again and the
two bands will reform as two independent structures going in
opposite directions. Overall, the process can be understood as
two bands bouncing on each other. We show in Fig. 12 a series
of snapshots showing this phenomenon.

For case (ii), a collision between a band and a dilute cloud,
the mechanism is essentially the same. When the fronts of
both structures meet, the particle density and concentration
field increase locally, where the collision occurs. However,
since the concentration in the cloud is much lower than in the
band, walkers in the cloud will quickly reverse their direction
and be absorbed at the front of the band. In addition, the
same increase in concentration will in turn lead some particles
within the band to reverse their direction, hence propagating
the local concentration increase in the direction opposite to the
band velocity. When this wave reaches the back of the band,
walkers in this region will eventually reverse their directions
and leave the band to reform the dilute cloud.

As seen in Fig. 9, macrophase separation occurs at inter-
mediate values of the particle density and high values of β.
In fact, given δ∗ the typical length scale that maximizes the
alignment stability between walkers, a system-spanning band
can only form if Nwδ∗ is larger than the smallest dimension of
the simulation box. As shown in Sec. III, δ∗ increases with Dc.
As a result, the lowest particle density � for which macrophase
separation can be observed decreases with Dc. In addition, we
have also shown that the alignment interaction is weaker as
Dc is larger than an optimal value D∗

c . A stronger coupling
strength β is therefore needed for the bands to sustain. This is
illustrated in Fig. 9, where the region of macrophase separa-
tion is shifted towards lower densities and larger values of β

as Dc increases.
We also remarkably notice that the macrophase separation

is not observed as Dc is very small. This is due to the very
persistent trail left by the walkers which prevents any bandlike
structure from spontaneously forming.

4. Oscillating stripes

In a narrow region of the phase diagram, and only for
certain values of the diffusion constant, we observe a third
ordered phase. It is composed of narrow stripes, typically two
lattice sites wide, the left side of which travels to the left and
the right side to the right. We show a typical configuration and
the corresponding concentration field in Fig. 13. At each time
step, each band splits in two parts which recombine with half
of the neighboring bands. This forms an oscillating “beating”
pattern that is stable once it has been reached. We call this
phase the oscillating stripe (OS) phase. It can be clearly iden-
tified using again |ρ̂v(kx, 0)| as peaks are observed for values
of kx corresponding to the width of stripes and the spacing
between them. This phase can also be seen as a stationary
wave of the particle density field, as two-walker-wide stripes
travel at constant speed, namely, two sites per time step.

We note that this phase is only observed for sufficiently
large values of the diffusion constant Dc. To understand this,
we perform a stability analysis via the following experiment.
First, we initialize the system by placing walkers in a perfect
arrangement of two-site-wide stripes separated by gaps of the
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FIG. 11. Different formations of bands for Dc = 0.5, Lx = 400, Ly = 100 and various couples (�, β ) (upper block, � = 0.11, β = 1000;
center block, � = 0.1, β = 215; lower block, � = 0.18, β = 1000). In each example we show snapshots of the total orientation along the x
axis (upper left panel) and concentration field (lower left panel), with the corresponding time series of N→, N↑, N←, and N↓ as a function of
time (upper right panel) and the profiles ψv for all four directions (lower right panel). Animations of all cases are provided in the Supplemental
Material [40].

same size. Then, we impose the oscillatory motion observed
in the simulations by making the left side of a stripe move to
the left and its right side move to the right, hence recombining
neighboring half stripes into new stripes. This is performed
until the concentration field reaches a stationary profile. From
this state, we pick one random walker and make it move to a
neighboring site in an orthogonal direction and let the concen-
tration field diffuse over one time step, creating a defect in the
pattern. Then, we let the system evolve according to the actual
rules of the model.

For β → ∞, we observe that the concentration field is such
that the stripes reform immediately after the first time step if
Dc is larger than a certain threshold D∗

c . Otherwise, it will need

more steps to reform or even destroy completely the overall
structure [40]. To estimate the value of D∗

c , we investigate
the details of the concentration field after the creation of the
defect, right before the system is let free to evolve.

Let W0 be the walker initially moved away from the stripe,
and W1,2,3 the three walkers neighboring the hole left by W0,
as shown in Fig. 14. For each of these walkers, we identify
which of their neighboring sites have the lowest concentra-
tion, which indicates their preferred direction for the next
step. As shown in Fig. 14, there are three regimes. First, for
Dc < 0.255, W1, W2, and W3 would preferentially migrate to
the same site. Because this is not possible, as the first one to
jump will force the others to choose other sites, this creates
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FIG. 12. Series of snapshots in a bouncing event between two
bands. The background color codes the value of the concentration
field (note that the scale is not the same in all snapshots to increase
the contrast), while the dots indicate the position of walkers, the color
of which refers to their position in the first snapshot. A full animation
is provided in the Supplemental Material [40].

a strong instability. No reformation of the original pattern is
possible and the macroscopic structure is progressively lost.
For 0.255 < Dc < 0.705, the three walkers will preferentially
migrate to different sites but the stripe will not be immediately
formed back. This is a lightly unstable case since a small
perturbation does not prevent the bands from reforming but
a larger defect can [40]. Finally, for Dc > 0.701 = D∗

c , the
W0,1,2,3 jump to four different sites in such a way that the
original pattern is immediately recovered. This stability is the
reason why the OS phase can emerge spontaneously from an

FIG. 13. Snapshot of a system in the oscillating band phase
(� = 0.56, β = 1000, Dc = 1). The upper panel shows the direction
of particles along the x axis while the lower panel shows the corre-
sponding concentration field. An animation of the formation of the
phase is provided in the Supplemental Material [40]. We also show
ψv for all four directions.

FIG. 14. Setup for the stability analysis for three different values
of Dc. The color codes for the concentration field. Positions of all
walkers are indicated by the white circles except for W0,1,2,3 which
are specified by special markers. The preferred directions for the next
time step are indicated by arrows. The ones of W0,1,2,3 are reported
as a function of Dc in the lower panel. Three different regimes can
clearly be identified.

initial random configuration as observed in our simulations.
In fact, spontaneous fluctuations can form thin stripes locally,
which will remain stable and be allowed to grow larger. How-
ever, if Dc is too low, the small stripes that would emerge
spontaneously could not grow as they would be unstable.

V. SUMMARY AND DISCUSSION

In this paper, we have characterized the phase behavior of
assemblies of autochemorepulsive walkers using a minimal
lattice model mainly parametrized by the diffusion constant
Dc and the coupling of particles to the concentration field β.

While alignment interactions are a common feature in
many active systems, either due to dipole-dipole interactions
or to particle shapes [41–44], the alignment observed in our
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model is of a very different nature because it is nonlocal in
time and space and depends on the complete path followed by
the walkers. As a result, alignment will occur only if walkers
can travel persistently over a sufficiently long distance in
order to produce a directed trail. This major difference with
Vicsek-like and Ising-like models yields dissimilar band struc-
tures. Most strikingly, the chemorepulsive walkers form bands
which do not a priori have a size limit, whereas microphase
separation with bands of a well-defined width is observed in
most other band-forming active systems [45–48]. In addition,
some sets of parameters can produce different steady states,
where a macroscopic band either contains all particles in the
system or coexists with a gas or a dilute cloud traveling in the
opposite direction. We also emphasize that we have observed
similar bands by running simulations on a hexagonal lattice
and by varying the aspect ratio of the simulation box. This
indicates that the formation of bands is a robust feature of
autochemorepulsive particles.

In addition to their spatial structure, the behavior of the
bands is remarkable. There is in fact no diffusion of walkers
within the band as all walkers in the band travel ballistically
at constant speed. If one of them takes a turn within the band,
the fluctuation in the concentration field generated by this
disturbance impacts neighboring walkers which will in turn
change their direction. This results in a cascading effect where
a fluctuation of the concentration field travels within the band
in the backward direction and eventually expel particles at the
back of the band. This phenomenon is also observed as a band
absorbs particles at its front.

Finally, more exotic structures are observed in our model
that have rarely been found in other systems, namely, the
oscillating stripes.

One can legitimately wonder whether the existence of the
phases reported in this paper is due to the discrete nature
of the lattice model. While we do not have a definitive an-
swer to this question, we conjecture the following. First, we
believe that the macrophase separation composed of system-
spanning bands can be observed in the continuum limit. The
phenomenology of the alignment interaction leading to band

formation does not depend on the lattice structure of the
model. In particular, the remarkable stability of these bands
is ensured by periodic boundary conditions, which can be
realized in any other off-lattice setting. We also conjecture
that the cluster phase could form in the continuum case; how-
ever, the lifetime of the clusters might be shorter. In fact, the
long-lasting existence of such clusters in our lattice model is
enhanced by the fact that a walker has only four options to
jump to at each time step and will strongly favor the least
concentrated site. In a continuous setting, a walker would
have more freedom in the direction it can adopt such that
the persistence of a cluster could be reduced. Finally, the
oscillating stripes are very likely to be observed only in lattice
models as they strongly rely on the overall alternation of two
empty sites and two filled sites along an axis. Such a discrete
feature is, in our opinion, unlikely to be observed in off-lattice
simulations. These claims are, however, purely speculative to
this day and will be checked thoroughly in future works.

Finally, we recall that the autochemorepulsive walk is a
good example model for a non-Markovian process with mem-
ory. Recent studies have been dedicated to quantifying the
search efficiency of such walks [25,26], namely, by calcu-
lating first-passage-time properties. We emphasize here that,
in this context, bands are very bad as they significantly in-
crease the mean first-passage time for finding a target located
at a random site of the lattice because walkers are densely
distributed in a narrow band. While one might have expected
that field-mediated repulsive interactions could be an efficient
way to distribute walkers evenly in space and hence scan
space rapidly, we show here that the emergence of such self-
organized macroscopic structures are prohibitive for a reliable
search. As a lead for future work, we will raise the question of
possible strategies for the bands not to form and hence allow
for better search strategies.
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