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Thermal properties of knotted block copolymer rings with charged monomers subjected
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The thermal properties of coarse-grained knotted copolymer rings fluctuating in a highly screening solution
are investigated on a simple cubic lattice using the Wang-Landau Monte Carlo algorithm. The rings contain
two kinds of monomers A and B with opposite charges that are subjected to short-range interactions. In view
of possible applications in medicine and the construction of intelligent materials, it is shown that the behavior
of copolymer rings can be tuned by changing both their monomer configuration and topology. We find several
phase transitions depending on the monomer distribution. They include the expansion and collapse of the knotted
polymer as well as rearrangements leading to metastable states. The temperatures at which these phase transitions
are occurring and other features can be tuned by changing the topology of the system. The processes underlying
the observed transitions are identified. In knots formed by diblock copolymers, two different classes of behaviors
are detected depending on whether there is an excess of monomers of one kind or not. Moreover, we find that
the most stable compact states are formed by copolymers in which units of two A monomers are alternated by
units of two B monomers. Remarkably, these compact states are in a lamellar phase. The transition from the
lamellar to the expanded state produces in the specific heat capacity a narrow and high peak that is centered at
temperatures that are much higher than those of the peaks observed in all other monomer distributions.
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I. INTRODUCTION

Polymer knots are abundant in nature and in artificial poly-
meric materials [1–5]. They can be created in the laboratory
[4–6] and have attracted considerable attention both from
experimentalists and theoreticians working in several different
disciplines including chemistry [7–9], engineering [10,11],
mathematics [12,13], and physics [14–23]. We consider here
the static properties of knots made by copolymer rings con-
taining two different kinds of charged monomers A and B in
an ion solution. Our investigations are conducted using the
Wang-Landau Monte Carlo algorithm [24]. The main advan-
tage of the algorithm is that, once the density of states is com-
puted, it gives a complete overview of the thermal properties
of the systems under consideration over the whole range of
temperatures. It is also very efficient in sampling rare events,
which play an important role in the low temperature range.

Part of the motivations of this work come from biology.
In fact, DNA and other biomolecules are characterized by
regions that have different properties and can thus be regarded
as copolymers. Recently, a diblock copolymer approximation
of a piece of DNA has been used in order to understand how
the dishomogeneities in the flexibility affect the localization of
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knots on a piece of circular DNA [25,26]. Knotted copolymer
rings can be useful also in technological applications. For
instance, it is already known that the presence of knots affects
the behavior of polymer materials. Indeed, the elastic response
of elastomers cannot be understood without considering the
fact that the polymer chains inside these materials form knots
and links [27]. The effects of the presence of knots on the con-
formational properties of AB diblock-copolymer rings have
already been noted for instance in Ref. [28].

The statistical mechanics of open or circular copolymers
has been investigated in the past, see, e.g., Refs. [29–35].
Systems similar to those treated here have been considered in
Refs. [36–38] and, more recently, in Refs. [39,40]. There has
been also some interest on circular diblock copolymers with
nontrivial topologies [25,26,28,39,41–44]. For example, in
Ref. [39] it has been shown how the stiffness heterogeneity or
the presence of charges influence the localization of the knot.
The role of stiffness and heterogeneity in knot production
has been explored in Ref. [45]. Other aspects of topology in
copolymers have been treated in Ref. [44]. Some more general
systems have been considered in relation to specific aspects,
like for instance the knotted hydrophobic-polar (HP) models
in proteins [46,47] and the self-assembly of nanomaterials
of specific topologies controlled by tuning the properties of
patchy heteropolymers [19]. Previous studies of the statistical
mechanics of knotted homopolymers and copolymers with the
help of the Wang-Landau algorithm [24] can be found for
example in Refs. [48,49] (homopolymers) and Refs. [37,50]
(copolymers).
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TAKLIMI, FERRARI, PIĄTEK, AND TUBIANA PHYSICAL REVIEW E 108, 034503 (2023)

In this paper we extend the earlier results in the subject
by providing an extensive survey considering several knot
topologies and many different monomer configurations. It
emerges from our investigations that knotted copolymer rings
enjoy remarkable properties depending on the monomer dis-
tribution including the presence of intermediate phases and a
lamellar phase. While the relevant parameters of a polymer
knot, like gyration radius, heights and temperatures of the
peaks of the heat capacity, specific energy, and number of
contacts (noncontiguous monomers that are at the distance of
one lattice unit, see below for a more precise definition) are
highly affected by the monomer distribution, we show that it
is possible to fine-tune the polymer’s behavior by choosing its
knot type. Indeed, topology has strong effects on the behavior
of knotted polymer rings, in particular when they are short
[51,52]. A considerable effort has been spent here in order
to understand the entropic and topological origins of the ob-
served phenomena. In particular, the characterization of the
different phases of knotted copolymers, sometimes appearing
in a short interval of temperature, has required the introduction
of precision experiments of numerical calorimetry. In this
way, it has been possible to arrive at a satisfactory understand-
ing of the phase transitions responsible for the various peaks
observed in the plots of the specific heat capacity.

Concluding this Introduction, the present analysis requires
the sampling of rare conformations in the low energy range
that are dominant in the lowest temperature range. For in-
stance, in the case of knotted diblock copolymers having
an excess of monomers of one type, the inclusion in the
simulations of the lowest energy states is crucial to cap-
ture the structural rearrangements that these knots undergo
at low temperature. Unfortunately, such conformations are
rare and act as bottlenecks in a Markov-chain Monte Carlo
simulation [53]. To address this problem, we adopt the
Wang-Landau Monte Carlo algorithm [24], whose ability in
sampling rare events is well established in the literature, see,
e.g., Refs. [54,55]. Following Ref. [56], in this work we have
used parallelization techniques to speed up the Wang-Landau
algorithm in such a way that it has been possible to include the
lowest energy conformations. Some of these techniques have
been discussed in more detail in Ref. [57] and Ref. [58].

The material presented in this paper is organized as fol-
lows. In Sec. II the used methodology is briefly explained.
The thermal properties of knotted copolymer rings in an ion
solution are presented in Sec. III. Finally, the conclusions and
open problems are the subject of Sec. IV.

II. METHODOLOGY

Polymer rings are modeled as self-avoiding loops on a
simple cubic lattice. The rings are knotted and their topol-
ogy is kept fixed during the simulation. Two consecutive
monomers on the loop are linked by one lattice bond, so
that the total length of the knot in lattice units is equal to
the number of monomers N . We consider monomers of two
types: Monomers of type A have a positive charge, while
monomers of type B are negatively charged. The monomers
are subjected to very short-range interactions that can be at-
tractive or repulsive. In particular, monomers of the same kind

repel themselves, while the interactions between the A and B
monomers are attractive.

Our setup is intended to model block copolymers formed
by monomers of positive and negative charges fluctuating in
a highly screening ion solution. We notice that this setup is
relevant not only for ion solutions but also in the case of
charged polymers in water. In fact, water is able to screen
efficiently the Coulomb interactions. For instance, in water at
room temperature the Bjerrum length lB amounts to just 7 Å.
Let us recall that the constant lB measures the length scale at
which the strength of the Coulomb interactions in a dielectric
medium becomes equal to the thermal energy kBT , where kB

is the Boltzmann constant and T is the temperature [59].
The energy of a given knot conformation X is expressed by

the following Hamiltonian:

H (X ) = ε(mAA + mBB − mAB). (1)

In Eq. (1) the quantities mMM ′ ’s count the numbers of contacts
between monomers of the kind M and M ′, where M, M ′ =
A, B. Two monomers i and j are said to be in contact if i �=
j ± 1 and |Ri − R j | = 1. Here R1, . . . , RN denote the loca-
tions of the N monomers. ε > 0 is an energy scale measuring
the cost of one contact, which can be positive or negative.
Other setups are possible, see, for instance, Ref. [30] and
Refs. [60,61].

We construct knots containing alternating units with nA

monomers of type A and nB monomers of type B until the
total number of monomers N is obtained. Knotted multiblock
copolymers of this kind will be denoted with the symbol
M(N, nA, nB). If N is not a multiple of nA + nB, then a slight
excess of monomers of type A is allowed. In the follow-
ing, it will be convenient to introduce the total number NA

of A monomers and the total number NB of B monomers.
Of course NA + NB = N . A particularly interesting subcase
is that in which the knotted ring is formed starting from
a AB diblock copolymer composed by two segments, one
with A monomers and the other with B monomers and then
circularizing it. Such knotted AB diblock copolymer rings
will be distinguished introducing the new symbol D(NA, NB).
Clearly, D(NA, NB) = M(N, NA, NB). To further characterize
the analyzed systems, also their monomer composition f =
NA/(NA + NB) will be used. A summary of the main knot
types and monomer compositions investigated in this work
is provided in Table I. Uncharged homopolymer knots have
already been studied in the past, see for instance Ref. [62], and
will thus be important for comparison. In this case, as there
are no charges, short-range interactions are used to model the
quality of the solvent and the Hamiltonian of Eq. (1) simplifies
to

Hhom(X ) = ±εmAA, (2)

in which it has been assumed that all monomers are of type
A. Homopolymers in a good solvent, corresponding to the +
sign in the right-hand side of Eq. (2), will be denoted with
the symbol H+(N ) while homopolymers in a bad solvent,
corresponding to the − sign, will be denoted with the symbol
H−(N ).

Examples of polymers that may be described within the
present setup are poly(acrylic acid) block copolymers and
DNA. The interaction of DNA with ions has been extensively
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TABLE I. Main knot types and monomer compositions f used.

M(N, nA, nB) f = 0.5 f = 0.83

31, M(24,2,2) 31, D(12,12) 31, D(20,4)

41, M(32,2,2) 41, D(16,16) 41, D(27,5)

51, M(36,2,2) 51, D(18,18) 51, D(30,6)

studied, see for instance Ref. [63]. Other examples are re-
ported in Ref. [64], in particular polyelectrolytes based on a
poly(p-phenylene) backbone. Similar setups have been used
in the case of proteins, see the already-mentioned HP protein
model [46].

For convenience, we will introduce the rescaled tempera-
ture T ∗ = kBT

ε
. To go back from T ∗ to the usual temperature

T measured in Kelvins some assumptions on ε are needed.
We assume that the strength ε of the interactions is a multiple
of the energy associated with thermal fluctuations at room
temperature T0, i.e., ε = qkBT0, where T0 ∼ 298 K and q is a
positive real constant. Choosing different values of the param-
eter q allows to model different ion solutions. For example, if
the ions are multivalent, like Ca++ or Mg++, then we expect
higher values of q with respect to monovalent ions like Na+

or Cl−. Changes in q imply among others changes in the
temperatures at which phase transitions occur.

At this point it is easy to see that the temperature T is
expressed in terms of T ∗ as follows: qT ∗T0 = T . For example,
if q ∼ 1.5, then the point T ∗ = 1 corresponds to the tem-
perature T = 1.5T0 ∼ 447 K. After the passage T −→ T ∗, it

is possible to eliminate the ε factor in the Hamiltonian of
Eq. (1). The upshot is that we obtain the following rescaled
Hamiltonian: H∗(X ) = H (X )

ε
. The symbol E will denote the

values of H∗(X ).
The simulations are performed using the Wang-Landau

Monte Carlo algorithm [24]. The initial knot conformations
(seeds) are obtained by elongating the existing conformations
of minimal length knots [65,66] until the desired final length
is attained. Each seed is equilibrated by performing on it
random transformations until the criterion for equilibrium of
Ref. [67] is fulfilled. Knots up to six crossing according to the
Rolfsen table are studied, though there is no restriction against
including more complicated knots.

The details on the sampling can be found in Refs. [68]
and [62]. The random transformations that are necessary for
sampling the different knot conformations are the pivot moves
of Ref. [69]. In order to preserve the topological state of
the system, the pivot algorithm and excluded area method of
Ref. [68] is applied. First, during the sampling a randomly
chosen segment s of the knotted copolymer is modified using
a pivot move like a reflection, an interchange or an inversion.
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Due the fact that the initial and final monomers of s are kept
fixed, the new segment s′ obtained after the transformation and
the old segment s form a closed loop � = s′ + s. If s consists
of k segments, then � is composed by 2k segments. Next, we
check if some part of the knot passes through the internal
points of an arbitrary surface spanned by the loop �. If yes,
then the pivot move breaks the topology of the knot and is thus
rejected. In the opposite case it is accepted. Up to k = 5, the
surfaces spanning the loop � have been classified in Ref. [68].
There are at most eight of them. This implies that for a knot
of N segments the maximum time necessary in order to detect
potential topology breakings scales as 8N .

The partition function of the polymer knot is given by

Z (T ∗) =
Emax∑

E=Emin

e−E/T ∗
g(E ), (3)

where g(E ) denotes the density of states,

g(E ) =
∑

X

δ(H∗(X ) − E ). (4)

g(E ) is the quantity to be evaluated via the Wang-Landau
Monte Carlo algorithm. Emin and Emax represent, respectively,
the minimum and maximum values of the energy. The whole
energy range I = [Emin, Emax] over which the sampling is
performed depends on the used setup, the length of the knot,
its topology, and the selected monomer distribution. To deter-
mine the values of Emin and Emax, a preliminary run without
specifying any energy limit is performed. In doing that we
exploit the fact that the Wang-Landau algorithm is very effi-
cient in exploring the whole energy range of the system. The
preliminary run is stopped when no new values of the energy
are found for a reasonably long time. After that, the averages
of the observables are computed by a second run with the
values of Emin and Emax calculated from the preliminary run.
Also in this second run the energy range is kept open, but
for the convergence of the Wang-Landau algorithm only the
energy values in the interval [Emin, Emax] are considered. For
the convergence of the Wang-Landau algorithm the sampling
of an order of 1012 conformations is necessary. If new values
of Emin and Emax appear during the sampling, then the run is
repeated with the new, extended energy range. In the case of
long polymers with N � 300, cuts in the energy range are nec-
essary in order to obtain the convergence of the Wang-Landau
algorithm in a reasonable time. In this case, several runs are
repeated by slightly changing the energy range to check that
the results are independent of the energy range despite these
small variations. It turn out that the Wang-Landau algorithm
is very robust in this sense. For instance, small variations of
the energy range do not have relevant influences on the height
and the position of the peaks of the specific heat capacity. The
averages of the observables are particularly insensitive under
changes of Emax, while variations of a few percentages occur
at very low temperatures, i.e., 0 < T ∗ � 0.5, by changing
Emin.

The expectation values of any observable O may be com-
puted using the following formula:

〈O〉(T ∗) = 1

Z (T ∗)

Emax∑

E=Emin

e−E/T ∗
g(E )OE . (5)

Here OE denotes the average of O over all sampled states
with rescaled energy E . The observables that will be consid-
ered in this work are the mean specific energy,

〈E (T ∗)〉
N

=
Emax∑

E=Emin

E

N
e−E/T ∗

g(E ), (6)

the specific heat capacity, C/N = 1
N

∂〈E (T ∗ )〉
∂T ∗ , and the mean-

square average of the gyration radius, R2
G. An important role

is played by the averages of the numbers of contacts mAA,
mBB, and mAB formed by the monomers of a specific type
with themselves or with the other type. Also the averaged
total number of contacts, ntot = mAA + mBB + mAB, will be
relevant in the following. These variables are necessary to
understand the behavior of knotted copolymer rings in the
presence of monomers of different type, in which there are
not only compact or swollen states but also mixed or unmixed
states. The average values of mAA, mBB, mAB, and ntot are
plotted in Fig. 1 for a knot 41 in two monomer distributions
that will be relevant for the future discussion.

Let us recall that in the Wang-Landau algorithm the sam-
pling is performed in the microcanonical ensemble, in which
the energy, not the temperature, is a thermodynamic vari-
able. This makes it difficult to inspect the conformations
near the transition points. For this reason, during our simu-
lations snapshots of conformations at different energies are
stored covering as much as possible the interval [Emin, Emax].
Once the simulation finishes, Eqs. (5) and (6) are used to
plot the specific heat capacity and the average energy 〈E〉
against the temperature. The temperature at which a given
phase transition is occurring is determined by looking at the
peaks of the specific heat capacity. The average values of
the energy of the conformations near the transition point are
known from the plot of 〈E〉. At this point, the previously
stored conformations whose energies are slightly below or
above the energy at the transition point are inspected. Such
conformations provide invaluable information that may be
used to understand the rearrangements undergone by knotted
polymer rings during the transition. As previously mentioned,
the transitions taking place at low temperatures involve very
rare states whose conformations are difficult to be captured.
For example, states with energy Emin = −60 in a 31 knot
with N = 90 and monomer distribution D(70, 20) have a
probability P(E ) = g(E )∑

E g(E ) of being generated by random

transformations that is below 10−30. This complicates the
sampling process, especially when knots are long. In a knot
41 with N = 1000 and monomer distribution D(800, 200), the
lowest energy state has a probability lower than 10−256.

III. RESULTS: THERMAL PROPERTIES OF KNOTTED
BLOCK COPOLYMER RINGS

We report the effect of monomers distribution and topology
on copolymers of different lengths. We focus in particular on
multiblock copolymers with repeating blocks of monomers
of type A and B and diblock copolymers with either the
same number of monomers of type A and B, or an excess of
monomers of one type. Interestingly, the first setup has been
considered in Ref. [70], where the dynamics of the unknotting
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FIG. 1. This figure shows how the numbers ntot, mAA, mAB, and mBB change with the temperature in the case of a knot 41 with monomer
distributions D(167, 33) (left panel) and D(100, 100) (right panel).

has been investigated. The second setup is similar to that in-
vestigated in Ref. [40]. The topologies here include the knots
31, 41, and 51, as well as knots 61 and 10122 as test cases.

The variety of behaviors that it is possible to obtain in the
case of short copolymer knots is shown in Fig. 2 which reports
the diagrams of the gyration radius and the heat capacity
of a trefoil knot 31 of length N = 90 in different monomer
distributions. For convenience, in the following we will use
the word knot to mean knotted polymer ring.

A. Effects of the choice of monomer distribution
on short polymers

As shown in Fig. 2 (left panel), the distribution of the A and
B monomers greatly influences the range of allowed gyration
radii. For example, in the 31 copolymer knot with monomer
distribution D(80, 10), the values of the mean-square gyration
radius are restricted to the narrow interval 13 � R2

G � 16.
By passing to the D(75, 15) distribution, a change that re-
quires just the substitution of five monomers of type A with
monomers of type B, the new range in which R2

G can take
its values is 7.86 � R2

G � 14.89. Let us note that all gyration
radii in Fig. 2 (left panel) converge to a common limit at
the highest temperatures considered here (data not shown)
as is expected when the interactions between the monomers
are no longer relevant due to the strong thermal fluctuations.

Approximately, at T ∗ → +∞ the value of the mean-square
gyration radius R2

G lies in the range 13.21–13.86. A better
estimation is difficult because of the statistical errors.

Also the heights of the peaks of the specific heat capacity
and the temperatures at which these peaks occur are very
sensitive to the monomer distribution as it is possible to realize
from Fig. 2 (right panel). The peaks’ heights range in fact
from about 0.11 for knotted and uncharged homopolymers
in a good solvent [monomer distribution H+(90)], see the
plot at the bottom of Fig. 2 (right panel) and comments in
the caption) up to about 4.00 in the case of the multiblock
copolymer M(90, 2, 2) (Fig. 3, left panel). In the case of
diblock copolymer rings, we observe a profound difference
between the behavior of knots with monomer distribution
D(45, 45) and knots with monomer distribution D(75, 15).
This point will be discussed later in more detail. Finally, we
note that the temperature at which the peak of the specific heat
capacity appears can be fine-tuned by choosing the monomer
distribution.

B. Effects of topology in short polymers

The effects of topology for short polymer knots are illus-
trated in Fig. 4, where the plots of the gyration radii and of
the specific heat capacity for a few AB diblock copolymers
of knot types 31, 41, and 51 are presented. For each knot
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FIG. 2. The mean-square gyration radii R2
G (left panel) and the specific heat capacities C/N (right panel) of a knot 31 with N = 90 in

various monomer distributions are plotted as functions of T ∗. In the left panel, going from the top to the bottom, it is possible to distinguish
the plots of the gyration radii for the following monomer distributions: H+(90), D(80, 10), D(75, 15), D(70, 20), D(60, 30), and D(45, 45).
The plot in the bottom part of the left panel is that of the homopolymer in a bad solvent H−(90).
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FIG. 3. Plots of the specific heat capacity of knotted multiblock copolymers with monomer distribution M(N, 2, 2) for the lengths N = 90
(left panel) and N = 300 (right panel). We notice that the specific heat capacity of these knots exhibits just a single peak that is higher than
those of the knots with other monomer distributions, see for example Fig. 4 for short polymers and Fig. 5 for long polymers. Moreover, the
single peak appears at T ∗ > 1, contrarily to what happens in all other monomer distributions in which T ∗ � 1 when N � 300.

type, two different monomer distributions have been taken
into account, namely D(45, 45) and D(75, 15). Fixing the
monomer distribution and the knot length, which is equal to
N = 90, we expect that the differences in the plots are solely
due to pure topological effects. The latter are quite evident
in the figure if we look only at the plots of the gyration
radii of the knots with the same monomer distribution, i.e.,
D(45, 45) or D(75, 15). It turns out from Fig. 4 that the choice
of the knot type significantly affects the gyration radius and
the heights of the peaks of the specific heat capacity. There is
also a visible shift of the temperature in which the transition
from the compact to the expanded state occurs.

C. Effects of the monomer distribution and topology
on longer polymers

Figure 5 illustrates how topology and monomer distribu-
tion affect the gyration radius (left panel) and the shape of
the peaks of the specific heat capacity (right panel) of longer
knots with N = 200 [71].

As in shorter polymers, the behavior of knotted diblock
copolymers with N � 200 strongly depends on the monomer
composition f , see Fig. 5 in which the monomer distribution
D(100, 100) corresponds to f = 1

2 and the monomer distribu-

tion D(167, 33) corresponds to f ∼ 0.83. For this reason, in
the following we will divide the knotted AB diblock copoly-
mers in the two classes NA 
 NB and NA ∼ NB. The specific
heat capacity of knots with NA 
 NB exhibits a double peak
or a peak with a shoulder in the case of 51, while that of knots
with NA ∼ NB has only one peak. For knotted polymers with
N = 200, the threshold value of the monomer composition
f that separates the two classes has been identified to be
between f ∼ 0.785 and f ∼ 0.800. These values correspond
to NA = 157, NB = 43 and NA = 160, NB = 40, respectively
(data not shown). In knotted polymers with f < 0.785 the
specific heat capacity has no double peak and a double peak
(or a peak with a shoulder) certainly appears when f � 0.800.
It is particularly difficult to determine more precisely the
exact threshold value of f because the simulations in the
critical range 0.785 � f � 0.800, where the passage from
single to double peak is occurring, require a time-consuming
exploration of the energy landscape in order to find those low-
temperature conformations that are relevant for the structural
rearrangement leading to the double peak.

Another characteristic that distinguishes knotted polymers
of any length with NA ∼ NB from those with NA 
 NB is that
the highest peak of the specific heat capacity is decidedly
higher when NA ∼ NB, see Fig. 5 (right panel). This means
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FIG. 4. Presented are the plots of R2
G and C/N in the case of the knots 31, 41, and 51 with N = 90. This picture shows the differences in the

behavior of knotted polymers due to topology when the monomer distribution is fixed. The two cases of monomer distributions D(45, 45) and
D(75, 15) are displayed.
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FIG. 5. Dependence of the mean-square gyration radius R2
G and of the specific heat capacity C/N on the topology and on the monomer

composition f in the case of AB diblock copolymers. Presented are the plots of R2
G in the case of the knots 31, 41, and 51 with N = 200. For

each knot two values of f are considered: f = 0.50, corresponding to the monomer distribution D(100, 100), and f ∼ 0.83, corresponding
to the monomer distribution D(167, 33). In the inset of the left panel it is shown a detail of the behavior of R2

G for the knot 41 with monomer
distribution D(167, 33).

that the energy differences between the compact states at low
temperatures and the expanded states at high temperatures
are not so strong when NA 
 NB. This is due to the fact
that the number of contacts between the A and B that can
be formed in order to minimize the energy according to the
Hamiltonian (1) is limited if NA 
 NB. In general, when the
number of A monomers is increased while keeping N fixed,
the peaks of the specific heat capacity become lower and
lower.

To conclude this discussion, we remark that the behavior of
the knot does not change if the monomers of type A and B are
interchanged, i.e., NA ←→ NB. For this reason, the situations
in which NA 
 NB and NB 
 NA are equivalent.

Figure 5 further shows that topology has important effects
also in the case of longer polymers with N = 200. In partic-
ular, when T ∗ → ∞, the asymptotic values of R2

G for knots
41 and 51 are very similar to each other, but this is not the
case of knot 31. In general, however, we observe that, as in
the homopolymeric case [62], topological effects become less
marked with growing polymer lengths. A possible explana-
tion of this fact is the following. We notice that the path
of a fluctuating polymer is characterized by many turns that
are forming for entropic reasons. In the presence of turns,
monomers get closer to each other, so that their interactions
become more frequent. In a knot, part of these turns is dictated
by the topological constraints. As an upshot, one of the effects
of increasing the topological complexity by keeping the length
fixed is to increase the frequency of the interactions with the
consequent changes in the behavior of the knot. The shorter
the knot, the larger grows the fraction of turns related to
topology with respect to those related to entropy. Thus, it can
be expected that in shorter knots topology will have a greater
influence than in longer knots, where the majority of turns
is of entropic origin. For example, on a simple cubic lattice
the minimal trefoil knot has a length Nmin = 24. Supposing
that the turns are uniformly distributed along the length of the
path, it is possible to estimate that at least one third of the
total number of turns is necessary to characterize the topology
of a trefoil knot with N = 72 monomers. As a consequence,
the contribution of topology to the behavior of such a short
knot will be much greater than in the case of a trefoil knot

with N = 240 in which the knotted part can be confined in
just 1/10th of the total length available.

D. Phases of knotted copolymer rings

1. Lamellar phase

A particularly interesting case is provided by knotted poly-
mers with monomer distributions M(N, 2, 2). In contrast to
all other cases studied here, they form compact states that are
stable also at temperatures T ∗ > 1 and the transition to the
expanded phase is much sharper. Consequently, their specific
heat capacities are characterized by a single peak which is
much higher and narrower than that of all other monomer
distributions as it can be realized by comparing the plot of
C/N in Fig. 3 (left panel) with the plots in Fig. 2 (right
panel). This sharp peak corresponds to the transition from
a lamellar phase, characterized by layers of A monomers
followed by layers of B monomers, to an expanded phase,
which is disordered and with a low mixing between the A
and B monomers. The peculiar way in which the monomers
of type A and of type B are organized in the lamellar phase
in order to minimize the energy at low temperatures is shown
in Fig. 6 for a 41 knot. Simulations performed considering
knotted copolymers with knot type 41 and different lengths
N = 90, 200, 480, 720 show that, by increasing the size of
the repeating unit in the multiblock copolymer, for instance
choosing M(N, 3, 3), M(N, 4, 4), M(N, 5, 5), etc., the lamel-
lar phase disappears, while the single peak of the heat capacity
becomes rapidly lower and wider.

The lamellar phase is not related to a particular topology
as it has been observed in all investigated knot types including
the unknot 01 and the knot 10122. These results have been ob-
tained on simple cubic lattices which are somewhat special, as
they are bipartite, meaning that they could be divided into two
sublattices S1 and S2 such that particles belonging to a sub-
lattice can interact only with particles of the other sublattice.
Naively, the absolute minimum of the energy on a bipartite
lattice would correspond to all A monomers located on the
vertices of S1 and all B monomers on the vertices of S2. How-
ever, such a structure is not compatible with the connectivity
of knotted copolymers with monomer distribution M(N, 2, 2).
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FIG. 6. This picture shows the organization at the lowest tem-
peratures of a knot 41 of size N = 480 and monomer distribution
M(480, 2, 2). As it is possible to see, the monomers are forming
layers of A monomers followed by B monomers.

The structure of the found lamellar phase is visible in Fig. 6
and is summarized in Fig. 7. Contiguous monomers form on
each plane in the lattice long straight lines along a chosen
direction, let us say the x direction. If a monomer of A type is
at the point xi, y j, zk , where i, j, k can be any integer number,
then its neighbors in the y and z directions are of the B type.
It is easy to see that in this way lamellae are formed inside
the bulk of the knot along the directions pointed out by the
green lines in Fig. 7. Of course, a real knotted copolymer is
not bound to a particular lattice and its underlying symme-
try group but spontaneously chooses conformations with the
suitable symmetry to minimize its energy. The question is if
the absolute minimum is attained within a simple cubic lattice
or if there is some other lattice which allows the system to
reach lower energies. To decide which is the minimum energy
of the system extensive calculations using different lattices or
off-lattice are required, which would be outside the purpose of
this work. Such calculations have been performed for instance
in Ref. [72] in which the somewhat related case of spherelike
micellar phases in a melt of diblock copolymers is discussed.

FIG. 7. Sketch of the the organization of knotted polymers in the
lamellar phase. Only a cross section along the xy plane is shown.
Monomers laying on horizontal lines are connected together. The
green lines show the orientation of the lamellae.

It turns out from that work that the minimal energies per chain
obtained in all considered lattices vary within a 1% range.

2. Phases of AB diblock copolymers with NA ∼ NB

In knotted AB diblock copolymer rings both attractive
and repulsive interactions are simultaneously at work. De-
spite the repulsive component, when NA ∼ NB the behavior
of these copolymers is similar to that of homopolymers in
a bad solvent in which the interactions are purely attractive.
The reason is that if the number of A and B monomers is
comparable, then a relatively large number mAB of contacts
can be formed. This leads to compact conformations held
together by the bonds between the A and B monomers at very
low temperatures (0 < T ∗ � 0.5), when mAB is maximized
in order to minimize the energy. Of course, due to the repul-
sions between the monomers with the same charge, the lowest
energy conformations cannot be so compact as those formed
by homopolymers in a bad solvent, where all interactions are
attractive. Nevertheless, when copolymers with NA ∼ NB are
heated, their mean-square gyration radius exhibits a consid-
erable increase of up to 350% in the case of the knot 31

with monomer distribution D(100, 100). Similarly to what
happens in knotted homopolymers in a bad solvent, the low
energy states are quite stable. The swelling process occurs
at relatively high temperatures—the specific heat capacity is
peaked at T ∗ ∼ 1—and continues also when the temperature
exceeds T ∗ ∼ 1 by a few degrees. The result is a single broad
peak in the specific heat capacity with the maximum of the
peak at a temperature of T ∗ ∼ 1, see Figs. 4 (right panel) and
5 (right panel).

The fact that at very low temperatures there is a large
number of contacts between the A and B monomers implies
that the compact conformations are characterized by a high
level of A-B mixing. On the contrary, the number mAB drasti-
cally decreases at T > 1, hinting to a possible unmixed phase
which is confirmed by close inspection of the stored confor-
mations. The aspects of knot localization, see e.g. Refs. [73]
and [74], will be treated elsewhere.

3. Phases of AB diblock copolymers with NA � NB

At very low temperature, 0 < T ∗ � 0.5, knots with NA 

NB are in a compact state with high A-B mixing. At high
temperatures they are found in a swollen state and the mixing
of A and B monomers is negligible. This behavior is similar
to that observed when NA ∼ NB, but due to the condition
NA 
 NB, the differences of the gyration radius between the
compact and expanded states are much less marked. The new
feature of knots with NA 
 NB is an extra peak or a shoulder
appearing in the plots of the specific heat capacity of Fig. 5,
right panel. The presence of these extra peaks and/or shoul-
ders is a general characteristics of long knotted polymers in
which there is an excess of monomers of one type that was
also observed in the unknot 01 and the knot 61 (not shown
in this paper). Of course, when the number of A monomers is
increased more and more, the double peaks merge into a single
one. Eventually, in the limit f → 1, the case of homopolymers
in a good solvent already described in Ref. [68] is recovered.

It is known that double peaks and peaks with shoulders in
the plots of the specific heat capacity of polymer chains are
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FIG. 8. Plots of the specific heat capacity of a knotted polymer
41 with N = 200 and monomer distribution D(167, 33) obtained by
putting a cutoff E cutoff

min = −100 (green line) and without a cutoff
(Emin = −115, cyan line). The broad peak in the case with cutoff
and the second peak in the case without cutoff almost overlap and
appear in the temperature interval in which the polymer undergoes
the main expansion process.

related to the occurrence of two different phase transitions
in a small interval of temperatures, see Refs. [75–78] and
Ref. [36] in the case of polyelectrolytes. The behavior of
the specific heat capacity that is observed here is similar to
what is found in the transition from the native to the unfolded
state in long proteins [79]. That transition is not a simple
two-state transition due to the presence of intermediate states.
The question is What are the intermediate states in the case of
knotted diblock-copolymers with NA 
 NB?

To answer this question we have performed a series of
numerical experiments. First, we have studied the changes
occurring in the thermal behavior of several polymer topolo-
gies and lengths when the interval of available energies
[Emin, Emax] is gradually decreased from below while keeping
constant the upper energy limit Emax. Clearly, if there is an
intermediate phase transition related to the first peak of the
specific heat capacity at low temperatures, then we expect that
this peak will disappear when the cutoff E cutoff

min in the restricted
energy interval [E cutoff

min , Emax] is such that the low-energy

states responsible for this transition are no longer allowed.
Indeed, this is exactly what is observed: The first peak at low
temperatures disappears, leaving only one broad peak after a
certain threshold value E cutoff

min is reached. For instance, for a
knot 41 with N = 200 and monomer distribution D(167, 33),
the first peak is absent by choosing E cutoff

min > −105, see Fig. 8.
All that hints to the fact that the first peak is due to a rear-
rangement of the polymer corresponding to the transition to
an intermediate phase.

Further evidence of a rearrangement is a characteristic
pattern that is visible in the plots of the mean-square gyration
radius R2

G. An example of such patterns is shown in the inset
of Fig. 5 (left panel), in which the plot of R2

G of a knot 41

with monomer distribution D(167, 33) is displayed in greater
detail. We can see that there is a rapid increase of R2

G in the
range of temperatures 0.4 � T ∗ � 0.6. This range coincides
approximately with that in which the first peak of the specific
heat capacity of the knot 41 centered at about T ∗ = 0.50 is
appearing; see the inset in Fig. 5 (left panel). Another hint sug-
gesting that knotted diblock copolymers with NA 
 NB have
an intermediate phase comes from the close inspection of the
stored knot conformations at different energies. The available
data obtained from simulations encompassing several knot
topologies and lengths in the range 200 � N � 500 suggest
that there are three distinct phases: “unmixed,” “mixed,” and
“intermediate” or U, M, and I phases. At low temperatures
the knotted polymer is in the M phase, characterized by rel-
atively compact conformations and by a strong mixing of the
A and B monomers. The structure of these conformations is
heterogeneous; however, it is possible to distinguish a well-
defined compact bulk held together by the bonds formed by
the A and B monomers. A number of short tails containing A
monomers is departing from this bulk, see Fig. 9 (left panel).
The presence of such tails is unavoidable because, due to the
excess of the A monomers with respect to the B monomers,
not all A monomers may be accommodated in the bulk. When
the temperature increases, the knotted polymer undergoes a
first transition, entering in the I phase. Also in the I phase a
compact bulk is observed, but the tails protruding from it are
decidedly longer, see Fig. 9 (right panel). The passage from
the M phase to the I phase is at the origin of the first peak in

A
B

A
B

FIG. 9. This figure shows two sample conformations of a knot 41 with length N = 200 and monomer distribution D(167, 33). The
conformation in the left panel has energy E = −105 and is an example of conformations in the M phase. The conformation in the right
panel has energy E = −100 and it is a representative of the I phase, see Fig. 10 and related comments. It is characterized by a partially ordered
portion located in the upper part of the knot in which some of the A monomers are in contact with the B monomers. Other A monomers form
a “tail” that is visible on the bottom of the knot. Both pictures have been drawn using the same dimension scale.
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FIG. 10. Phase diagram in the plane (N, T ) of knotted AB di-
block copolymers with fixed monomer composition f = 5

6 and knot
type 41. The diagram has been obtained using the data coming from
a set of nine simulations, each of them characterized by a different
number of monomers N : N = 72, 96, 120, 144, 168, 192, 200, 216,
and 240.

the specific heat capacity at temperatures T ∗ � 0.5. The main
swelling process leading to the unmixed, relatively swollen U
phase causes the second, broad peak in the plot of the specific
heat capacity. Indeed, comparing the plots of R2

G and C/N , see
for instance Fig. 5 (left and right panels), it is possible to see
that the main expansion of the knotted polymers takes place in
the range of temperatures where the second peak is appearing.

The phase diagram of knotted AB diblock copolymers
with fixed knot type 41 and fixed monomer distribution such
that NA 
 NB is presented in Fig. 10. This figure has been
obtained by first drawing on the (N, T ) plane the points cor-
responding to the peaks of the heat capacity of nine knotted
copolymers 41 with different number of monomers in the
range 72 � N � 240, see the caption of Fig. 10 for more
details. Next, these points have been connected with lines.
These lines separate the various phases. To be sure that there
are no effects due to the change of monomer distribution,
it has been required that, independently of N , the monomer
composition for all knots is always f = 5/6. For instance,
for N = 72 we have put NA = 60, NB = 12 and for N = 144,
NA = 120, NB = 24. The plane (N, T ) has been chosen be-
cause it is the analog in the present case of the (V, T ) plane in
the standard thermodynamics of gases. We note that the lines
in the phase diagram of Fig. 10 have a bifurcation approxi-
mately when N = 192. After this threshold, the knotted AB
diblock polymers 41 with NA 
 NB exhibit three phases. In
Fig. 10 the bifurcation point appears at a lower value, but this
is only due to the limited resolution in the N axis. A represen-
tative conformation of the U phase is presented in Fig. 11. An
analogous phase diagram may be drawn in the case in which
the knot type is 31 or 51. In the latter case, however, the third
phase appears when the number of monomer is higher than
200.

A last point to clarify is why there is a set of conformations
at low temperatures that are so stable to produce measurable
effects and constituting a new, intermediate phase. After all,
when a knotted polymer in a compact state typical of very
low temperatures is heated, it could be expected that, in the
initial phase of the expansion, its compact conformation will

FIG. 11. A typical conformation in the U phase (see Fig. 10).
The knot appears in a swollen state and the mixing between the A
and B monomers is negligible. The conformation in this plot is that
of a knot 41 with length N = 240, monomer distribution D(200, 40),
and energy E = −20.

start to get “frayed.” This means that the weak thermal fluc-
tuations are only able to melt the external part of the knotted
polymer, while the main compact bulk is still held together
by the bonds between the A and B monomers. This fraying
process produces tails similar to those that characterize the
conformations in the I phase and can be observed also in
knotted polymers with monomer distribution NA ∼ NB. So
what is the mechanism behind the stability of these conforma-
tions? To unravel this puzzle, we have performed additional
numerical tests with the aim of exploring the energy land-
scape of knotted AB diblock copolymers. The idea is that
if there is an intermediate phase appearing together with the
mixed M phase in a short range of temperatures, then the
free energy of the system should exhibit two close minima
corresponding to the M and I phases as shown in Fig. 12. As a
consequence, there should be conformations in the low part of
the energy interval near these minima that, despite having the
same energy E , have different features because they belong

M
I

U

Conformations

En
er
gy

Mixed
compact

Unmixed
expanded

FIG. 12. Pictorial representation of the energy landscape of knot-
ted copolymer rings with NA 
 NB. The three minima corresponds
to the three phases U, I, and M described in the text.
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FIG. 13. The histograms HE (mAB) in this picture show the distribution of the number of contacts mAB in conformations of fixed energy
E . The data have been obtained by counting the number of contacts mAB in all conformations with energy E = −135 (left panel) and energy
E = −120 (right panel) sampled during a run that computed the density of states of a knotted diblock copolymer 31 with N = 240 and
monomer distribution D(200, 40). The possible values of mAB range in the interval 136 � mAB � 149 when E = −135 and 120 � mAB � 141
when E = −120. The distribution of mAB has two peaks centered in mAB = 137 and mAB = 141, respectively, in the case E = −135 and is
Gaussian with most probable value in mAB = 127 in the other case.

to different minima. In order to capture these differences,
we have measured the histogram HE (mAB) of the number of
contacts formed by the A and B monomers in conformations
with a given energy E . Clearly, HE (mAB) = 0 if mAB < E .
The obtained results confirm the existence of two types of
conformations at very low temperatures. As we see from
Fig 13 (left panel), the histogram HE (mAB) of a knot 41 with
N = 240 and monomer distribution D(200, 40) exhibits two
peaks in the case of conformations of energy E = −135, i.e.,
in the lowest energy domain (Emin = −140). With increasing
energy, the mAB histogram becomes a Gaussian centered at the
most probable value of mAB. An example of such histograms
when E = −120 is shown in Fig. 13 (right panel). Numerical
experiments have been performed changing the knot topology,
the monomer distribution, and the polymer length. The data
show that whenever the plot of the specific heat capacity
has a double peak, in the low-energy spectrum the histogram
HE (mAB) is characterized by a double peak, too. Moreover,
when the energy E is near to the absolute energy minimum
Emin, the most probable value of mAB is slightly higher than
E . In conclusion, in agreement with the hypothesis of the
existence of an intermediate phase, knotted polymers with
monomer distributions such that NA 
 NB have two kinds
of low-energy conformations characterized by two different
values of the number of A-B bonds. The states in the M phase
are assigned to the first peak in the mAB histogram, in which
the value of mAB is closer to that of the energy E of the
state. The intermediate states in the I phase are assigned to
the second peak of HE (mAB), in which the number of A-B
bonds is somewhat higher. This small excess of A-B bonds
is sufficient to stabilize these states against the weak thermal
fluctuations in the interval of low temperatures in which the
I phase is observed. This stabilizing mechanism is not sup-
ported in knotted polymers with NA ∼ NB because they form
stronger compact states that start to melt at high temperatures,
where the thermal fluctuations are too strong.

In shorter knots, with N = 90, only a single peak is ob-
served. One possible explanation is that in a short knot the

interactions between the monomers are more frequent than in
a long one. In this situation, a rearrangement that increases the
number of contacts between the A and B monomers will also
bring closer monomers of the same type that are subjected
to repulsive interactions. It is thus very likely that such rear-
rangement will be penalized from the energetic point of view.

Finally, since the A monomers are numerous in the case
NA 
 NB and are subjected to repulsive interactions, we may
expect that, at high temperatures, the knot will shrink as ho-
mopolymers in a good solvent do. The plots of the gyration
radius show indeed that also knotted diblock copolymers are
subjected to this shrinking process but to a lesser extent than
homopolymers, see for instance Fig. 5 (left panel). While the
shrinking produces in homopolymers just a small peak in the
specific heat capacity, in the present case its effects on the
plots of C/N are negligible.

E. The case of knots with N � 300

The data of longer knots with N = 300 and N = 500
agree with the previous conclusions, see Figs. 14 and 15.
We note that three peaks appear in the plot of the specific
heat capacity of the knot 41 with N = 300 and monomer
distribution D(250, 50); see Fig. 14 (right panel). This is com-
patible with the fact that more than one rearrangement could
occur in longer polymers when T ∗ < 1. In agreement with
the characteristic pattern of these rearrangements mentioned
in Sec. III D 3, the inset in the left panel of Fig. 14 shows a
rapid growth of the gyration radius in correspondence of the
first peak at about T ∗ ∼ 0.35. However, at the temperature
T ∗ ∼ 0.55 of the middle peak the plot of R2

G becomes almost
flat. The explanation of this flat region and the identification
of the processes causing these peaks would require a more
extended analysis like that performed in the case of knots with
N = 200.

Finally, the data of the specific heat capacity displayed
in Fig. 15 confirm that also long knots with N = 500 have

034503-11
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FIG. 14. The data of the gyration radius R2
G of knots 01, 41, 51, and 62 of length N = 300 and monomer distribution D(250, 50) are

presented. In the case of knot 51 it is shown the plot of R2
G also for the monomer distribution D(200, 100). In the inset the behavior of the

gyration radius of knots 01 and 41 is displayed in more details at low temperatures. Note the characteristic saddle point in the plot of the
gyration radius of knot 41 at T ∗ ∼ 0.45.

a different behavior depending if NA ∼ NB or NA 
 NB. In
particular, no double peak is observed in the case NA ∼ NB.

IV. CONCLUSIONS

In this work the Wang-Landau algorithm has been applied
to study the thermal properties of a lattice model of charged
knotted copolymer rings in a ion solution with the monomers
subjected to very short-range interactions. A- and B-type
monomers carry opposite charges.

While uncharged homopolymers are simple systems whose
mean-square gyration radius steadily increases (in bad sol-
vents) or slightly decreases (in good solvents) with growing
temperatures, knotted copolymers exhibit a more complex
behavior with several new features that may be tuned by
changing their monomer distribution and topology. Knotted
multiblock copolymers with monomer distribution M(N, 2, 2)
turn out to be special: Their specific heat capacity is charac-
terized by a single, very high peak concentrated in a narrow
range of temperatures, as reported in Fig. 3 (left and right pan-
els). The data of the gyration radius show that, exactly in this
range of temperatures, such knots undergo a sharp swelling
process similar to that of the homopolymer chains studied in
Ref. [34]. A close inspection of the knot conformations has

shown that these knots are in a lamellar phase at very low
temperatures, see Fig. 6. In all other monomer distributions
of the kind M(N, nA, nB) that have been investigated here,
the knot expansion is much smoother and occurs at decidedly
lower temperatures.

Knotted diblock copolymers with monomer distributions
D(NA, NB) can be divided into two classes depending if NA ∼
NB or NA 
 NB. Knots with monomer distributions belonging
to the first class behave similarly to chargeless homopolymers
in a bad solvent. In particular, they are found in a compact
state at very low temperatures and expand with rising tem-
peratures. This expansion is responsible for a single high and
broad peak in their heat capacities that is centered at relatively
high temperatures, with T ∗ > 1 in the case of longer polymers
with N � 300. When NA 
 NB, instead, the expansion has
a more limited range and, in comparison with knots with
NA ∼ NB of the same length, it occurs at lower temperatures.
States in both classes are better characterized by the level of
mixing between the A and B monomers than by the mean-
square gyration radius. The role of the phase separation was
stressed also in the case of copolymer chains in Ref. [80]. It is
possible to distinguish a mixed, relatively compact M phase at
the lowest temperatures and an unmixed, relatively swollen U

FIG. 15. Plots of the mean-square gyration radius and the specific heat capacity of a few knots with length N = 500 in three different
monomer distributions.
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phase at high temperatures. The presence of an extra peak in
the specific heat capacity of longer polymers with NA 
 NB

shows the existence of an additional, intermediate I phase
similarly as in proteins [79]. The I phase has been investigated
with the help of several numerical experiments. Using cutoffs
that increasingly restrict the energy interval until the peak of
the transition from the M phase to the I phase disappears, see
Fig. 8, it has been possible to establish which energies are
relevant for this transition. In all cases studied here it turns
out that it is sufficient to reduce the energy interval from
below by approximately 10% to eliminate the peak at lower
temperatures. The remaining peak can be assigned to the main
expansion of the knotted copolymer ring, because it appears in
coincidence with the range of temperatures in which there is a
substantial increase of the gyration radius. A close inspection
of the conformations at the energies that are relevant for the
M and I phases has shown that these conformations are char-
acterized by a bulk held together by the bonds between the A
and B monomers, but in the I phase the tails departing from the
bulk are decidedly longer than in the M phase. It is the melting
of the bulk that causes the swelling of the knot leading to the
U phase. A new quantity, namely the histogram HE (mAB) of
the number mAB of bonds between the A and B monomers for
states with energy E , has been introduced in order to explore
the energy landscape of the system and to understand why
the states in the I phase are not just intermediate steps of the
knot expansion on heating. It has been found that, whenever
there is a double peak in the specific heat capacity, also this
histogram has two peaks in the low energy spectrum, see
Fig. 13. This means that states with the same energy E are
characterized in the lower energy spectrum by two possible
values of the number of contacts mAB. The obtained data are
compatible with an energy landscape of the form given in
Fig. 12, in which the free energy of the system has two close
minima M̄ and Ī , with M̄ corresponding to the M phase and Ī
corresponding to the I phase. The most probable value of the
number mAB of contacts formed by the A and B monomers
depends if the conformation of the knotted copolymer is near
one minimum or the other. Analyzing the histogram HE (mAB),
it has been possible to understand why the conformations in
the I phase are so stable to form a new phase. It turns out
that they contain a slightly higher number of A-B bonds than
states of the M phase. At low temperatures, this is sufficient
to stabilize the knotted polymers against the thermal fluctua-
tions. In correspondence with the increase of mAB during the
transition from the M to the I phase, the plots of the number
mAA has a sudden small bump, making the total energy of the
conformations in the M phase lower than that of the confor-
mations in the I phase as expected. More intermediate phases
may occur in longer knots. For instance, up to three peaks
have been observed in the specific heat capacity of the knot

31 with N = 500 and monomer distribution D(400, 100), see
Fig. 15, and knot 41 with N = 300 and monomer distribution
D(250, 50), see Fig. 14. Figures like Fig. 8 allow us also to
estimate the fractions of energy involved in the M-I and I-U
transitions.

Our investigations have also shown a strong intertwining
between monomer distribution and topology. The effects of
topology are visible in the plots of the gyration radius and
specific heat capacity reported in Figs. 4 and 5.

Before concluding, we discuss possible improvements and
directions for future research work. The simulations presented
in this paper require the sampling of an extensive amount
of knot conformations. Despite major improvements in the
sampling procedure, that of rare events is still a problem in
the case of long polymers. Some of the conformations appear
after several hundred billions of trials and their inclusion
extends enormously the calculation times. Moreover, in this
work very short-range interactions have been considered. This
is enough to study the cases of flexible knots in a good or bad
solutions, but it would be interesting to add more complicated
interactions. In this way, it would be possible for instance to
consider also the polymer rigidity and the transition from bad
to good solvents at the theta point. Work is in progress to
implement in our code the backbone rigidity and the Lennard-
Jones interactions. As a curiosity, in the intermediate state of
the knot 41 with length N = 200 and monomer distribution
D(167, 33) the knot seems to be localized in the compact bulk
and not in the long tail, see Fig. 9. It would be interesting to
check if this remains true also in the case of longer knots or
knots with different topologies.

Recently, the following articles concerning closely related
subjects have been published: Refs. [40], [81], and [82].
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