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Molecular conformations of dumbbell-shaped polymers in good solvent
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We study conformational properties of diluted dumbbell polymers composed of two rings attached to both
ends of a linear spacer segment. Our investigation involves analytical methods of field theory and bead-spring
coarse-grained molecular dynamics simulations. We focus on the influence of the relative length of the spacer
segment to the length of side rings on the shape and the relative size of dumbbells as compared to linear polymers
of equal mass. We find that dumbbells with short spacers exhibit a significantly more compact structure than
linear polymers. Conversely, as the spacer length increases, the influence of the side rings on the size of the
dumbbells becomes negligible. Consequently, dumbbell molecules with long spacers attain a size comparable to
corresponding linear chains. Our analytical theory accurately predicts a quantitative conformational crossover
between the behaviors of short-spacer and long-spacer dumbbells, which is further confirmed by our numerical
simulations.
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I. INTRODUCTION

In recent decades a lot of attention has been directed to the
research of polymers that go beyond standard linear molecular
architectures. Particularly interesting are ring polymers with
no free ends [1–3]. Ring polymers are observed in nature in
bacteria [4] and in some higher eukaryotes [5] which contain
a circular DNA. Ring polymers exhibit unique physical and
chemical properties that can make them advantageous with
respect to their linear counterparts. This includes increased
solubility, greater stability, and improved catalytic activity.
For example, cyclic peptides and cyclic oligonucleotides are
often used in drug discovery and development because their
cyclic structure can increase their bioavailability and improve
their ability to interact with target molecules. One of the main
advantages of ring polymers with respect to their linear coun-
terparts is their compact size which prevents the rings from
becoming entangled and makes them the simplest model sys-
tem where reptation is completely suppressed. Ring polymers
have smaller size and hydrodynamic radius in solutions, lower
melt viscosity due to lack of plateau modulus, much larger
swelling factor and larger maximum strain at break in swollen
networks, and higher thermostability [6–15]. The cyclic archi-
tecture lowers interpenetration and frictional forces between
polymer coated surfaces [16] and allows one to tune domain
spacing of self-assembled polymer materials [17].

Blending of rings with linear polymers as well as incor-
poration of cyclic grafts into linear architecture open new
possibilities to control physical properties of polymeric ma-
terials. The viscosity of a linear-ring blend increases with
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increasing concentration of linear contaminants and for equal
concentrations of linear and ring polymers is about twice that
of the pure linear melt [18]. Covalent bonding of a ring to
one end of a linear chain provides hybrid polymer architecture
called a tadpole polymer which allows for further modifi-
cation of viscoelastic properties. Melts of tad-pole polymers
with linear tails above entanglement length exhibit a plateau
modulus which is comparable to melts of linear polymers but
have much slower terminal relaxation than their component
ring and linear chains as well as slower than the ring/linear
blends [19,20]. These properties are attributed to threading
which is spontaneous intermolecular ring-linear penetration
[21].

Dumbbell polymers consist of two rings that are attached
to both ends of a linear chain segment. Recently dumbbell-
shaped polymers (see Fig. 1) were investigated experimentally
in dilute and concentrated solutions [22]. The viscosity of di-
luted dumbbell solution is comparable with that of pure linear
chains. This suggests that the dumbbell molecules behave like
an isolated linear chain in the dilute regime. Bulk dumbbells
display an extremely long entanglement plateau, whereas their
terminal relaxation behavior is not observed. The authors
suggested that this specific behavior is due to formation of
dynamic networks where two rings on both ends of a dumbbell
molecule spontaneously thread with other dumbbells. This
characteristic entanglement due to the intermolecular thread-
ing dominates typical entanglements observed in pure linear
chain melts. On the other hand those same molecules in dilute
solution have a similar behavior to that of the simple chains,
in particular the similar values of viscosity where observed.

In this paper we investigate conformational properties
of diluted dumbbell-shaped macromolecules in a good sol-
vent. We characterize universal structural properties of these
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FIG. 1. Schematic representation of a dumbbell-shaped polymer
composed of a linear spacer (red line) with two side rings (green
lines) grafted to its ends.

polymers that depend only on global properties of the system
such as the quality of solvent, polymer connectivity, and the
space dimension, but do not depend on the details of the
monomer chemistry. We analyze the degree of compactness
of dumbbells with respect to the linear chains of the same
molecular weight. The quantitative description of the relative
size is calculated through the size ratio [6]

gc =
〈
R2

g

〉
〈
R2

g

〉
linear

. (1)

We also analyze the shape of dumbbell conformations using
asphericity parameter 〈Ad〉 [23]. The quantity Ad measures the
degree to which a molecule deviates from a perfect sphere.
For spherical conformations it is 〈Ad〉 = 0 whereas for rodlike
configurations it is 〈Ad〉 = 1. The asphericity is defined as

〈Ad〉 = 1

d (d − 1)

〈
TrŜ

2

(TrS)2

〉
(2)

where S in the gyration tensor and Ŝ = S − μI with μ being
an average eigenvalue and I a unity matrix. We estimate
gc using an analytical theory based on the path-integration
method. The parameter Ad is calculated using the graph theory
approach developed by Wei [24]. The outcomes of our analyt-
ical calculations are compared with numerical data obtained
from extensive bead-spring coarse-grained molecular dynam-
ics (MD) modeling.

The paper is organized as follows. In Sec. II we start with
description of theoretical and simulation methods utilized in
this paper. The discussion of the results is presented in Sec. III.
We conclude our findings in Sec. IV.

II. MODELS AND METHODS

A. Analytical model

An analytical description is conducted using the field-
theoretical continuous chain model [25]. In this model the
polymer chain is represented by a trajectory of length L
parametrized by the radius vector �r(s) where s varies from
zero to L. The Hamiltonian of the model is given as

H = 1

2

F−1∑
i=0

∫ Li

0
ds

(
d�ri(s)

ds

)2

+ u

2

F−1∑
i, j=0

∫ Li

0
ds′

×
∫ L j

0
ds′′ δ[�ri(s

′) − �r j (s
′′)]. (3)

In the above equation F denotes functionality, i.e., a number
of trajectories in the branched polymer architecture (for a
dumbbell polymer it is F = 3), and u is a coupling constant
that describes the strength of the excluded volume interac-
tions. The polymer topology is introduced in the partition
function of the system by fixing the end(s) of trajectories:

ZDB
Lc,L = 1

ZDB
0

∫
D�r(s) × δ[�r1(0) − �r0(0)]δ[�r2(0) − �r0(Lc)]

× δ[�r1(0) − �r1(L)]δ[�r2(0) − �r2(L)] e−H , (4)

where δ(�r1(0) − �r0(0)) and δ(�r2(0) − �r0(Lc)) describe the
connectivity of ring trajectories parametrized by vectors �r1

and �r2 to the ends of the linear trajectory �r0 and the remain-
ing two δ functions impose geometrical constraints to which
trajectories are subjected to form closed rings (see Fig. 1)
and ZDB

0 is a partition function of the Gaussian chain. Note
that in our paper we consider dumbbell topologies with tra-
jectories of different length. The linear backbone trajectory
has the length Lc whereas the trajectory of side rings has
the length L. We also point out that since both L and Lc

in our analytical model are considered to be infinitely long
the difference in length is introduced by considering the ra-
tio limL,Lc→∞ Lc/L = l . We also note that in the continuous
chain model the averaging over possible configurations that
is performed in the partition function includes all types of
knot conformations of the rings. Typically, the locations of
knots along the polymer chain are not restricted to some
specific parts of chain conformation and are influenced, for
example, by thermal fluctuations and interactions within the
chain [26]. It is anticipated that the distribution of knot sizes
will exhibit universality [27]. However, the presence of knots
in polymer conformations is not distinguishable in our model.
Though the knots can influence dynamic polymer properties
such as rheological response [28], in the limit of infinitely long
polymer chains knots do not influence the universal conforma-
tional characteristics (such as scaling exponents and critical
amplitudes) [29–31].

In the continuous chain model the contribution from the ex-
cluded volume interactions is considered to be much smaller
as compared to the Gaussian elasticity term. As a consequence
all the observables are calculated as a perturbation series over
the coupling constant u0 [32]. In general the partition function
has the following form:

Z (L, Lc) = Z0[1 − u0Z1(l, d ) + · · · ] (5)

where u0 = u(2π )−
d
2 L2− d

2 is a dimensionless coupling con-
stant. In the the case of a dumbbell polymer Z0 = (2πL)−d .
The second coefficient Z1(l, d ) in the above equation repre-
sents the contribution from the excluded volume interactions
and is calculated using the diagrammatic technique. The final
expression for the coefficient Z1(l, d ) as well as the details
of calculations are provided in the Appendix [see Eq. (A5)].
All the observables can be written in the form of Eq. (5). In
particular the radius of gyration is given as〈

R2
g

〉 = 〈R2
g

〉
0[1 − u0R1(l, d ) + · · · ] (6)

where 〈R2
g〉0 denotes the contribution from the Gaussian con-

formation and the term R1 is the first-order approximation
of steric interactions. The explicit formula for term R1 is

034502-2



MOLECULAR CONFORMATIONS OF DUMBBELL-SHAPED … PHYSICAL REVIEW E 108, 034502 (2023)

provided in Eq. (22) and the sketch of calculation of this term
is given in the Appendix.

In the continuous chain model all observables depend on
the coupling constant u0 that diverges as L → ∞. In order to
calculate finite physical value of the observable a renormaliza-
tion has to be introduced such that u∗

0 → u∗
R as L → ∞. The

direct polymer renormalization approach for the model given
by the Hamiltonian [see Eq. (3)] leads to the following fixed
points [32]:

Gaussian : u∗
R = 0 at d � 4, (7)

EV: u∗
R = ε

8
at d < 4, (8)

where ε = 4 − d denotes the deviation from the upper critical
dimension. A final result in this approach is usually given as
a series in ε and and an accurate quantitative result that can
be compared with experimental data requires at the very least
terms up to ∼ε2. However, this is hard to achieve for a case
of complex branched polymers. To overcome this problem we
will use the method proposed by Douglas and Freed [7]. It
starts by considering a generalized scaling form for the radius
of gyration: 〈

R2
g

〉 = 〈R2
g

〉
0

(
2πN

�

)2ν(η)−1

fp(η), (9)

where N is the degree of polymerization, � is the coarse-
graining length scale [33], and fp(η) is a function that controls
the solvent quality with η being the crossover variable. It is
equal to 1 for η = 0 (Gaussian chain) and 1 + a for η → ∞
which corresponds to the case of good solvent where a is a
topology-dependent parameter. At this point it is important to
note that ( 2πN

�
)2ν(η)−1 is the same for all molecular topologies

and yields that the size ratio has the following general form:

gx =
〈
R2

g,1

〉
0〈

R2
g,2

〉
0

1 + a1

1 + a2
. (10)

This expression does not contain any approximations since
the parameters a1 and a2 are functions of ε. The approxima-
tion itself comes into play when the connection between a
renormalization group approach and that of the two-parameter
model for a d = 3-dimensional space is made by the expres-
sion

a = 3

4

ε

8
R1(l, d = 3) − 1

4
(11)

where R1(l, d = 3) is the coefficient mentioned above but cal-
culated for d = 3 which corresponds to two-parameter model
calculation.

B. Molecular dynamics simulations

We consider a three-dimensional, bead-spring coarse-
grained model [34] of a dumbbell polymer which is composed
of N spherical beads in each of two rings and Nc beads in the
linear backbone. Each bead has the size σLJ and equal mass m.
The nonbonded interactions between monomers are taken into
account by means of the Weeks-Chandler-Anderson (WCA)
interaction, i.e., the shifted and truncated repulsive branch of
the Lennard-Jones (LJ) potential given by

V WCA(r) = 4εLJ[(σLJ/r)12 − (σLJ/r)6 + 1/4]θ (21/6σLJ − r).
(12)

In the above equation r denotes the distance between the
centers of spherical beads, while ε and σLJ are chosen as units
of energy and length, respectively. In Eq. (12) is the Heaviside
step function θ (x) = 0 or 1 for x < 0 or x � 0. The bonds
between subsequent beads are described by the Kremer-Grest
potential [35] V KG(r) = V FENE(r) + V WCA(r), where the first
term represents by the finitely extensible nonlinear elastic
(FENE) spring modeled by the following potential:

V FENE(r) = −0.5kr2
0 ln [1 − (r/r0)2]. (13)

with two constants k = 30ε/σ 2
LJ and r0 = 1.5σLJ.

The simulations were conducted using the LAMMPS sim-
ulator [36], that solves Newton’s equations of motion using
a velocity-Verlet algorithm. The temperature T was main-
tained by presence of the Langevin dumping term with the
coefficient ζ = 0.5 mτ−1, where τ =

√
mσ 2

LJ/ε is the LJ time
unit. The simulations were carried out in the cubic box with
periodic boundary conditions in all three dimensions with
equations of motion solved with the integration step �t =
0.005τ .

The initial conformations for the dumbbell polymers were
generated using a self-avoiding walk technique generated
by applying 20(2 + l )N symmetry operations on the simple
cubic lattice [37] (see details on the pivot algorithm). This
approach allowed us to start from a more compact confor-
mation and save computation time since the method allows
for more radical changes to the trajectories per step than the
MD simulation. Note that the advantage of MD simulations is
better sampling of conformations when calculating size ratios
[38].

The simulations were run for up to 27 molecules in the sim-
ulation box, with the steric interactions between the molecules
turned off to describe dilute solution conditions. The data for
the averaging of observables were accumulated for a time
period of at least three relaxation times of the corresponding
systems.

We considered dumbbell polymers with degree of polymer-
ization of rings N = 50, 100, 150, 200, 250, and 300 beads
and degree of polymerization of linear backbones of Nc =
N/4, N/2, N, 3N/2, and 2N . For each of value of Nc we cal-
culated universal size ratios g in the asymptotic limit, i.e.,
by removing the finite size effects via a least-squares fitting
of the form g̃c(N ) = gc + C/N� where gc and C are fitting
constants and exponent � is defined below. In the calculation
of the g factor [see Eq. (1)] we used the radius of gyration
R2

linear of the corresponding linear chain of the same overall
degree of polymerization as the dumbbell molecule. The val-
ues of R2

linear were derived from a fitting function, R2
linear =

aN2ν (1 + bN−�), utilizing simulation data within the range of
100 to 600 beads. This range was selected to capture the antic-
ipated scaling regime. For the fitting procedure the best known
numeric values for the scaling exponent ν = 0.587 597(7) and
the correction to scaling exponent � = 0.528(12) were taken
into account [39]. This allowed us to utilize the most accurate
values of R2

linear in the calculation of the size ratio gc. The
fitting results yielded Person’s coefficients ranging from 0.8
to 1 for the majority of data sets. However, there are two
exceptions where the coefficient approaches 0.5, specifically
for the ratio gc with l = 0.25 and 0.5. These lower coefficients

034502-3



HAYDUKIVSKA, BLAVATSKA, AND PATUREJ PHYSICAL REVIEW E 108, 034502 (2023)

FIG. 2. Schematic representation of diagrams for use in calcu-
lation of the radius of gyration in the Gaussian approximation. The
polymer is depicted by solid lines and the bullets represent the so-
called restriction points s1 and s2.

can potentially be attributed to an increase in stiffness of the
linear backbone. This is likely due to the backbone being
relatively shorter compared to the ring segments in order to
maintain the correct scaling behavior, resulting in a weaker
quality of fit.

C. Wei’s method

A macromolecule with complex architecture can be repre-
sented as a mathematical graph (network) where monomers
are represented as vertices and chemical bonds between them
are represented as bonds of the graph. A degree of a node
corresponds to the monomer functionality. The size and shape
characteristics for any polymer network can be calculated
using Wei’s method [24], which uses the Kirchhoff matrix and
its eigenvalues.

A polymer that consists of N monomers is described by
the Kirchhoff N × N matrix K. All diagonal elements of this
matrix Kii are equal to degree of vertex i. The nondiagonal
elements Ki j are equal to either −1 or 0 for i and j being con-
nected or not connected, correspondingly. A Kirchhoff matrix
of size N × N has N − 1 nonzero eigenvalues λ2, . . . , λM :

KQi = λiQi, i = 1 . . . M (14)
and λ1 is always zero. The size and shape characteristics
within this model are given as functions of the above men-
tioned eigenvalues, thus the universal size ratio of Eq. (1) is
defined as

g =
∑M

j=2 1/λDB
j∑M

j=2 1/λlinear
j

, (15)

where λDB
j and λlinear

j are the corresponding eigenvalues for the
Kirchhoff matrix describing architecture of either a dumbbell
or a linear chain.

The asphericity is given by the expression [24,40]

〈Ad〉 = d (d + 2)

2

∫ ∞

0
dy

M∑
j=2

y3

(λ j + y2)2

[
M∏

k=2

λk

λk + y2

]d/2

.

(16)

For a dumbbell architecture there are N = (2 + l )n + 2
vertices with n being the number of vertices between the
branching points (see Fig. 1) and every vertex having a degree
k > 1.

III. RESULTS AND DISCUSSION

A. The radius of gyration of a dumbbell polymer and the
universal size ratio

In the continuous chain model the radius of gyration of a
dumbbell polymer is defined as

〈
R2

g

〉= 1

2((2 +l )L)2

2∑
i, j=0

∫ Li

0

∫ L j

0
〈[�ri(s2) − �r j (s1)]2〉ds1 ds2.

(17)

The actual calculation R2
g is performed by utilizing the follow-

ing identity:

〈[�ri(s2) − �r j (s1)]2〉 = −2
d

d|�k|2 ξ (�k)�k=0,

ξ (�k) ≡ 〈e−ι�k(�ri (s2 )−�r j (s1 ))〉, (18)

where the contributions to ξ (�k) are calculated using the di-
agrammatic technique. The schematic representations of the
diagrams in the Gaussian approximation are displayed in
Fig. 2. The first two diagrams are counted twice and the
later two are counted only once. The final formula for the
radius of gyration of a dumbbell polymer in the Gaussian
approximation reads

〈
R2

g

〉
0 = dL

6
(l + 1)(l2 + 5l + 3). (19)

The corresponding universal size ratio [Eq. (1)] of a dumb-
bell polymer in the Gaussian approximation is given by the
expression

gc = (l + 1)(l2 + 5l + 3)

(l + 2)3
. (20)

A significantly larger set of diagrams needs to be consid-
ered to estimate the radius of gyration of a dumbbell polymer
with included excluded volume interactions. The calculation
of R2

g in the first order of the perturbation theory gives the
following expression:

〈
R2

g

〉 = 3L3(l + 1)(l2 + 5l + 3)

6
− u0R1, (21)

where the term R1 accounting for steric interactions is given by

R1 = 288l2 − 964l − 85

72
arcsin

[
(1 + 4l )−

1
2
]− π (192l2 − 332l + 47)

72

− 1072l6 + 8308l5 + 862l4 + 42588l3 + 36505l2 + 7630l + 420

630
√

l (1 + 4l )(2l + 1)
− arctan[(2

√
l )−1]

3

− 32l4 − 1088l3 − 2128l2 − 1684l − 425

144[(2l + 1)
√

4l + 2]

[
arctan

(
1 + 4l + √

4l + 2

2
√

l

)
− arctan

(
1 + 4l − √

4l + 2

2
√

l

)]
. (22)

034502-4



MOLECULAR CONFORMATIONS OF DUMBBELL-SHAPED … PHYSICAL REVIEW E 108, 034502 (2023)

From a number of previous studies it is known that ε

expansion provides only a qualitative agreement with sim-
ulation and experimental data [7,41–44]. For this reason in
this paper we do not provide the exact expression for gc and
limit our consideration to the Gaussian case [Eq. (20)] and
the Douglas-Freed approximation. In the latter method the
data were obtained numerically using the procedure described
above.

In Fig. 3 we compare the results of our analytical cal-
culations for the relative size gc of ideal and real dumbbell
polymers with respect to size of linear polymers and compare
them with the results obtained from MD simulations. The data
are plotted as a function of the relative degree of polymeriza-
tion l ≡ Nc/N , i.e., the ratio between the number of monomers
in a linear backbone and the number of monomers in a side
ring. The red squares in the plot depict the data obtained
using Wei’s method, while the red dotted line represents the
Gaussian approximation. These data sets correspond to an
ideal dumbbell polymer and serve as the lower boundary for
the value of gc. The black dashed line represents the analytical
results of the Douglas-Freed approximation for a real dumb-
bell polymer, i.e., with included excluded volume interactions.
The plot displays the MD results using gray circles, represent-
ing the data for a finite system size of N = 100. Additionally,
green circles indicate the data obtained from the correction
to scaling analysis, i.e., for N → ∞. We observe very good
agreement between simulation data and the analytical predic-
tions. The data obtained from all the methods consistently
show that the size ratio for dumbbell architectures with l � 2
is gc < 1 indicating a smaller molecular size of these poly-
mers as compared to linear counterparts of the same molecular

FIG. 3. Relative size ratio gc of dumbbell-shaped polymers with
respect to the size of the corresponding linear polymer with the same
overall degree of polymerization. Data are plotted as a function of
relative degree of polymerization l of linear chain monomers Nc to
side ring monomers N . The lines represent theoretical prediction
obtained for the Gaussian model (dotted line) and Douglas-Freed
approximation (dashed line). Squares display the data obtained from
Wei’s method [see Eq. (15)]. Empty circles denote molecular dy-
namics results for fixed degree of polymerization N = 100 whereas
full circles represent the values of gc for infinitely long molecules
(N → ∞) obtained from correction to scaling analysis. The arrows
indicate simulation snapshots for dumbbell polymers with given l .

0 0.5 1 1.5 2

l

1

1.1

1.2

1.3

1.4

p g

 Gaussian
 Douglas-Freed
 RG
 MD simulation

FIG. 4. Relative size ratio pg of the backbone radius of gy-
ration of dumbbell-shaped polymers to the radius of gyration of
linear polymers plotted as a function of the relative degree of
polymerization l . The lines represent theoretical predictions for the
Gaussian conformations (dotted line), the Douglas-Freed approx-
imation (dashed line), and the renormalization group calculations
(dashed-dotted line). The symbols display the results of molecular
dynamics simulations.

mass. The ratio gc increases with increasing l . For Gaussian
dumbbell conformations in the limit of l → ∞ it leads to
the value of gc = 1 whereas for real dumbbell conformations
the limiting value for gc obtained from the Douglas-Freed
approximation and MD simulations is observed for l ≈ 5.
These results corroborate the recent experimental study on
dumbbell-shaped polymers carried out for large l = 8 where
it was found that gc ≈ 1 [22]. Furthermore, it is noteworthy
that when conducting analytical calculations for H polymers,
which are macromolecular architectures with two linear side
arms connected to each end of a linear backbone, the resulting
value of gc approaches 1 in the limit of l → ∞. In particu-
lar, for H-shaped polymers with l = 5, the calculation yields
gc = 0.95 [45].

B. The radius of gyration of a dumbbell backbone and the
corresponding size ratio

Another quantity that describes equilibrium conformation
of a dumbbell molecule that is considered here is the gyration
radius of a dumbbell backbone defined as

〈
r2

g

〉
backbone = 1

2(lL)2

∫ Lc

0

∫ Lc

0
〈[�r0(s2) − �r0(s1)]2〉. (23)

The strategy of calculation is similar to that of the full
radius of gyration. The general expression for 〈r2

g〉backbone is

〈
r2

g

〉
backbone = dlL

6
[1 − u0rb(l, d ) + · · · ], (24)

where rb(l, d ) is the contribution from the excluded volume
interactions. The explicit formula for 〈r2

g〉backbone is provided
in the Appendix [see Eq. (A12)]. To describe the influence
of dumbbell side rings on the stretching of its backbone we
introduce the relative size with respect to the linear chain of
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0 1 2 3 4 5

l

0.35

0.4

0.45

0.5

0.55

A

 Gaussian
 Real
 Wei
 MD simulation N = 100
 MD simulation N ->∞

FIG. 5. Asphericity A of dumbbell-shaped polymers plotted as a
function of the relative degree of polymerization l . The lines rep-
resent predictions for Gaussian conformations A = 0.4 [46] (dotted
line) and real conformations A = 0.431 [47] (dashed-dotted line),
i.e., with included steric interactions and the calculations using Wei’s
method [see Eq. (16)]. The symbols display the results of molecular
dynamics simulations. Empty circles denote molecular dynamics re-
sults for fixed degree of polymerization N = 100 whereas full circles
represent the values of A for infinitely long molecules (N → ∞)
obtained from correction to scaling analysis.

the same molecular weight as the backbone:

pg =
〈
r2

g

〉
backbone〈

R2
g

〉
linear

. (25)

Unlike in the case of the universal size ratio gc defined in
Eq. (1), the quantity pg does not depend on polymer topology
for Gaussian conformations since it is simply equal to pg =
1. In our analytical calculations of dumbbell conformations
with steric interactions we accounted for topology-dependent
contributions to pg by considering the ε expansion and
Douglas-Freed approximation. In Fig. 4 we plot the values of
pg as a function of l obtained from theoretical methods (lines)
and MD simulations (symbols). For l � 1, the data calculated
from ε-expansion method (dashed-dotted line) are in good
agreement with the simulation results. However for l � 1
these results significantly overestimate MD data. The reason
for this is the presence of logarithmic terms [∝ ln(l )] in the ε

expansion. Note that the results obtained from Douglas-Freed
approximation (dashed line) do not provide a good agreement
with the numerical results. This indicates necessity of the
second-order perturbation calculations to correctly capture
stretching of the backbone.

C. Asphericity

In what follows we focus on the analysis of a shape of
dumbbell polymers using the asphericity factor. We empha-
size that it is impossible to carry out path integration of the
asphericity defined by Eq. (2) with the proper averaging. For
this reason we limit our consideration to Wei’s method, which
provides good estimation of the asphericity for Gaussian
conformations. Since in our calculations excluded volume

interactions are introduced only as a small (perturbative) cor-
rection with respect to the Gaussian behavior, this approach is
useful in predicting a qualitative behavior of the molecule’s
shape and includes molecular architecture of polymers. In
Fig. 5 we display asphericity of ideal dumbbell molecules
calculated from Wei’s method and plot it as a function of l
(dashed line). We observe that for l � 1 asphericity decays
towards the limiting value of A = 0.4 [46] known for the
Gaussian linear chain (dotted line). A similar trend is ob-
served from our MD data (circles) but in this case the limiting
value of asphericity for real dumbbell polymers is A = 0.431
(dashed-dotted line). The latter value of A is known from the
previous studies on a linear chain in good solvent [47].

IV. CONCLUSIONS

In this paper we have studied the conformational properties
of diluted dumbbell-shaped macromolecules consisting of
two ring polymers connected to the ends of a linear spacer. For
this purpose we used a combination of analytical calculations
using field-theoretical methods and molecular dynamic

FIG. 6. Schematic representation of diagrams utilized in calcu-
lation of the radius of gyration radius in one loop approximation.
The polymer is depicted by solid lines and the bullets represent the
so-called restriction points s1 and s2. The dashed line represents the
excluded volume interactions.

034502-6



MOLECULAR CONFORMATIONS OF DUMBBELL-SHAPED … PHYSICAL REVIEW E 108, 034502 (2023)

simulations. We have determined two relative size ratios gc

and pg which are defined respectively as a ratio of the size
Rg of a dumbbell and the size rg of a linear spacer to the
size Rlinear of a linear chain of the same molecular weight.
Our results indicate that conformations of dumbbells with
short linear spacers are much more compact as compared
to the linear polymer coils (gc < 0.65). In this structural
regime side rings have the major contribution to the global
dumbbell conformation and cause stretching of the spacer
segment (pg > 1). Increasing the degree of polymerization of
a spacer restores its conformational flexibility (pg ≈ 1) and
gradually increases the size of a dumbbell molecule (gc → 1).
Finally, for spacers that are much longer than side rings the
size of a dumbbell matches the size of the corresponding
linear chain (gc = 1). The numerical data for gc are in a
very good agreement with the analytical predictions. Our
theory accurately captures the conformational transition of
dumbbells, shifting from configurations primarily governed
by rings to configurations dominated by linear chains. This
is evident in the observed increase of gc as the length of the
spacer grows. The results of this paper also corroborate the

recent experiments that were carried out for dumbbells with
long spacers which reported gc ≈ 1 [22].
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APPENDIX

Here we consider the details of the calculations of the
contributions from the first order of perturbation theory to the
partition function [Eq. (5)] and the corresponding calculations
of the radius of gyration of a dumbbell polymer [Eq. (6)]. In
both cases a certain set of diagrams has to be considered. For
the partition function the diagrams are the same as for the
Gaussian approximation of the gyration radius (see Fig. 2).
The only difference is that we include interaction points in-
stead of restriction points. The corresponding expressions are
given below:

Z1 = u(2π )−
d
2 (2πL)−d L2− d

2
�
(
1 − d

2

)2
(2 − d )

2�(3 − d )
, (A1)
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2
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Z3 = u(2π )−
d
2 (2πL)−d L

2− d
2

c(
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2

)(
2 − d

2

) , (A3)

Z4 = u(2π )−
d
2 (2πL)−dL2− d
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(
x
4

)− d
2 hypergeom

(
1
2 , d

2 ; 3
2 ; 1

x

)
2
√

2 − x + 4l
dx. (A4)

Here we would like to point out the complications encountered in calculations of the term Z4 which contains an integral.
However, since this integral does not contain divergences in respect to ε = 4 − d , we can perform the expansion of the integrand.
As in one loop approximation we have to consider only the terms with pole and terms ∝ ε0. Note that we effectively calculate
the expression Z4 only for d = 4. Thus, the first-order contribution to the partition function will read

Z1(l, d ) = 2Z1 + 2Z2 + Z3 + Z4. (A5)

The calculation for the radius of gyration is conducted in a similar manner and is also complicated. Here, we have to calculate
the set of diagrams displayed in Fig. 6. Here, diagrams 25, 26, and 44–46 are reducible, as interaction points and restriction
points do not share the same trajectory and thus the contributions are reduced to the product of the respective diagrams for the
partition function and the Gaussian approximation for the radius of gyration. In general the calculation of the radius gyration is
written as

〈
R2

g

〉 = Z−1
[〈

R2
g

〉
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g
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0Z−1

(
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0

)
= 〈R2

g
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0
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g

〉
0

− Zx
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. (A6)

Note that any contributions that appear in the product Zx〈R2
g〉0 cancel out. These are the diagrams mentioned above and some

parts of the remaining diagrams, that in the case of the radius of gyration are easily identifiable. As an example we consider
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diagrams 9–11: ∫ S
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Since all three integrals contain the same factor (s + z)−
d
2 that does not depend on the restriction points this expression can be

rewritten as ∫ S
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All the integrals inside the square brackets [. . .] contain the same term under the integration, that allows us to rewrite the
expression as∫ L
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The last two terms in the first line can be joined since the limits of the integration over s2 are the same and the integration over
s1 can be presented as one integral:∫ S
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The similar arguments now may be presented for the case of integration over s2, so the final expression reads∫ S
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Here the first term is reducible. The more interesting part is that in the first order of the perturbation theory
only the diagrams that correspond to excluded volume interactions between points on the same trajectory (diagrams
1–8, 12, 13, 20, 21, 23–26, 39–42, 44, and 45) contain poles in their ε expansions, that are not canceled by the partition sum.
These diagrams are also easy to calculate. For the rest of the diagrams we perform calculations for either d = 4 or 3 and take into
account only the terms that are not canceled. This way it is easier to handle the analytical calculations. Note that an expression
for the ε expansion will still in parts be calculated numerically. Results for d = 3 are a bit more straightforward and thus are
provided in the main part. As an example we present here the expressions for the radius of gyration of a dumbbell backbone for
both d = 3 and ε expansion:
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