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Polymer translocation driven by longitudinal and transversal time-dependent end-pulling forces
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In this article, we simulate the translocation of a semiflexible homopolymer through an extended pore, driven
by both a constant and a time-dependent end-pulled force, employing a model introduced in previous studies.
The time dependence is simplistically modeled as a cosine function, and we distinguish between two scenarios
for the driving—-longitudinal force and transversal force—depending on the relative orientation of the force,
parallel or perpendicular, respectively, with respect to the pore axis. Besides some key differences between the
two drivings, the mean translocation times present a large minimum region as a function of the frequency of the
force that is typical of the resonant activation effect. The presence of the minimum is independent on the elastic
characteristics of the polymeric chains and reveals a linear relation between the optimum mean translocation time
and the corresponding period of the driving. The mean translocation times show different scaling exponents with
the polymer length for different flexibilities. Lastly, we derive an analytical expression of the mean translocation

time for low driving frequency, which clearly agrees with the simulations.
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I. INTRODUCTION

Polymer translocation has been a subject of significant
interest in both biological and soft-matter physics due to its
relevance in many natural and technological processes. For
instance, transportation of DNA, RNA, and proteins through
cell and nuclear membranes [1], protein degradation [2], and
DNA virus injection [3] are examples of the former, while
the study of these processes and subsequent fabrication of
technological devices at the nanoscale used for a variety of
applications, namely, DNA sequencing through either biolog-
ical or artificial nanopores, [4] or biosensing [5,6] exemplify
the latter.

The growing interest in this field has given rise to a series
of computational models aiming to describe the behavior of
translocating bodies under different conditions, with the goal
to find new properties and devise applications for experimen-
tal uses.

The stochastic models of translocation dynamics have in-
creased in complexity over time, ranging from the application
of a constant force to the translocating molecule [7,8], where
the pore is a passive channel that permits the passage of
the molecule between the two sides of a membrane [9]. The
force here is generated by an ion current [8] or by an electric
field [10].

A simple unique—-eventually time-dependent—energy
barrier has also been used to describe the overall transloca-
tion [11]. In other cases, a ratchetlike potential to describe the
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driving mechanism has also been implemented [12]. In the last
decade, active pores, i.e., time-dependent pore drivings, have
been introduced [12-17], up to the more recent end-pulled
polymer able to mimic the force spectroscopy experimental
setups [18,19].

According to their dimensions, we distinguish punc-
tual [20] or spatially extended [14] pores, the latter becoming
more popular in the recent years.

Regarding the functional form of the active driving it-
self, different options have been considered: sinusoidal
forces [13,14], stochastic random telegraph noises [21], or
dichotomous adenosin triphosphate (ATP)-based noises mo-
tivated by the action of molecular motors [12,22,23].

Generally speaking, the driving force can be applied to
the polymer through two main methods: in the space inside
the pore or onto one of its ends. In the first case, the driving
applies to the monomers moving along the channel [14,24,25],
either as a result of changes in pressure over the two sides
of a membrane or as the effect of a molecular machine ca-
pable of producing movement in the pore. In the second, the
force is applied to the first monomer of the chain, the pore
thus taking a more passive stand. This end-pulled force [26]
emulates the action of experimental setups like atomic force
microscopy [27], optical, or magnetic tweezers [21,28].

It is interesting to note that many papers have been study-
ing the translocation process from an analytical point of view.
In this context, various results on scaling behavior [17,29—
31], free-energy calculation [20,32,33], or force propaga-
tion [34-36] can be found in the literature.

In this article, we study numerically the application of a
time-dependent end-pulling force to polymer chains of dif-
ferent lengths and flexibilities using a 3D model previously
employed [13,23].

©2023 American Physical Society
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FIG. 1. Section of the polymer translocating through a nanopore
in the 3D space. The pore has a square section of width Ly and its
length is L), with the same repulsive walls as the whole membrane.
The polymer is pulled through the pore with a time dependent force
F().

The end-pulling mechanism can be useful to explore and
check the mathematical aspects of the single barrier translo-
cation [37], as well as for the detailed analysis of monomers
stepping into the pore, especially for sequencing analysis
purposes [38,39].

Our focus here is to investigate the effects of the peri-
odic driving on the translocation times. The time dependence
is simplistically modeled as a cosine function, and we
distinguish between two scenarios—longitudinal force and
transversal force—depending on the relative orientation of the
force, parallel and perpendicular, with respect to the pore axis.
We find some possibilities of optimization in the translocation
time already found in previous works [13,40], albeit with
remarkable differences due to the way how the force is here
applied.

The article is organized as follows: In Sec. II, we pro-
vide an explanation of the model, along with the associated
equations of motion and the units of the experiments. Sec-
tions III A and III B contain the results of the two scenarios
considered. The final conclusions are contained in Sec. IV,
while the Appendix presents the analytical derivation of the
mean translocation times (MTTs) at low frequency for both
drivings.

II. METHODS

A. Polymer model

The model depicts a three-dimensional chain formed by
N identical monomers joined together by elastic springs, that
also interact through bending and excluded-volume potentials.
The latter applies both to the rest of the chain and the walls of
the pore, as shown in Fig. 1. The harmonic potential associ-
ated to the elastic interaction is given by

k N
Va(d) = 5 3 (i = 1)*. (1)
i=1

where k¢ is the elastic constant of the interaction, r; the po-
sition vector of the ith monomer, /; = |r;;; — r;| the distance
between consecutive beads, and [y the equilibrium distance.
The bending energy of the chain is described by

N
W (6:) = —ky Y _ cos(6; — b), 2)

i=1

where ky, is the bending constant, 6; represents the angle
formed by the three adjacent monomers i — 1, i, and i + 1,
and 6 is the equilibrium angle. In this particular model, the
equilibrium angle is fixed at 0.

Lastly, the excluded volume effect is encoded via a repul-
sive Lennard-Jones interaction

N o 12 o 6
VLJ =4e Z |:<r—> - <r—) :| + €, (3)
ij ij

i#j=1

which applies only when the distance between monomers i
and j, denoted by r;;, is less than or equal to 2!/°o. For larger
distances, the interaction is assumed to be zero.

With the potentials described previously, the dynamics
of each monomer can be described using the overdamped
Langevin equation of motion:

myt; = =V;Vo(d;) — ViVp(6;) — ViViy
+ Foun(@) + Fyan + /2mykpT§(2), 4

where y and m are the damping and mass of each monomer,
respectively, and &;(¢) represents the white noise associated
with thermal fluctuations, verifying that

(Eia®) =05 (& ()& (")) =8 i8apbir,

withi=1,-,Nand e, 8 =x,y, 2.

There are two additional terms to mention. The first, Fyy,
represents the truncated Lennard-Jones interaction between
each monomer and the topology of the porous channel as
well as the interaction with the limiting membrane, acting as
an excluded volume effect. This is depicted in Fig. 1. The
second term, Fyuy(¢), is the time-dependent force applied to
the first bead of the chain to induce translocation. It has two
components: a constant force applied along the length of the
channel and a time-dependent force,

Fpull(t) = FeonstX + Fyar (17,
Foar(t) = Acos(2mvt — vp), (%)

where A is the amplitude of the periodic force, set at 1.5 in
program units (unless otherwise specified in later paragraphs),
v is the frequency, and ¥ the initial phase, sampled randomly
with uniform distribution in the range [0, 27).

The amplitude of the constant component Fons 1S se-
lected to ensure successful polymer translocation in the large
majority of simulations even in the absence of the time-
dependent driving, while also being low enough not to hide
the effect of the variable component, and is specified later
in Secs. IIT A and III B. As for the time-dependent force it-
self, as commented before, two scenarios have been studied:
transversal driving, which is applied along the y direction
(7 = 9), and longitudinal driving, which is directed along the x
axis (7 = %).

B. Parameters and units of the model

The model has several fixed parameters: the equilibrium
distance between adjacent monomers was set to [p = 1; the
elastic constant is taken as k, = 1600, high enough to rep-
resent a nonextending chain; the temperature was taken as
ksT = 0.1; and for the Lennard-Jones potential, ¢ = 0.3 and
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o = 0.8 were chosen. Regarding the amplitudes of the forces
applied to the first monomer, the constant term is 0.3 and 1.8
for the transversal and longitudinal cases, respectively, while
the time-dependent amplitude is 1.5. Regarding the pore itself,
the dimensions were set to comfortably fit approximately six
monomers inside and keep them relatively straight, with Ly, =
5.5 and Ly = 2, although other options for the dimensions
can be found in the literature [40,41]. The membrane and
pore walls are characterized by the same excluded volume
parameters taken for the chain, ¢ = 0.3 and ¢ = 0.8.

With these parameters and values in mind, €, /y, and m
can be chosen as the units of energy, length, and mass, re-
spectively. This gives the Lennard-Jones timescale as ;7 =
(mi§/€)1/) . This scale, however, has to be compensated due
to the overdamped conditions chosen for our system, finding
that our time unit is fop = ytEJ.

We can try to establish a relation between our model units
and real magnitudes. Let us take a DNA chain at room tem-
perature, fixing kg7 = 4.1 pNnm. Since kg7 = 0.1 in our
program, the energy unit €y = 41 pN nm. Additionally, we
can set [p = 1.875nm and m = 936 amu [40]. This way, we
already obtain the units of time as 7y = 0.38 ps, and the unit
of force as €p/lp = 21.9 pN.

III. RESULTS

The objective of this article is to investigate the influence
of various frequencies and different directions of the driving
on the translocation times of the polymer.

The chain is initially configured such that the first five
monomers are inside the pore, while the remainder are aligned
in the cis side along the x axis to avoid possible complications
regarding the geometry of the larger polymers, such as the
formation of knots. During the thermalization phase of the
simulations, which lasts for 1000 time units, the monomers
within the pore are restricted in their movement, while those
in the cis side are free to move. This thermalization time is
long enough to reach an equilibrium state of the polymer in
the cis region. Following this, the driving force is applied and
the translocation process begins.

The MTT (also indicated as 7 throughout the article) is the
primary measure of interest in this study. The TT is defined as
the duration required for the final monomer of the polymer
chain to enter completely inside the pore. In other words,
the TT is the time at which the polymer has fully exited the
cis side of the system. Figure 1 shows the polymers while
translocating inside the pore, under the application of the
force F(¢). Due to the stochastic nature of these simulations,
the t values are averages over a large number of realizations
Nexp, performed by randomly changing the initial phase of
the driving at every run. For the majority of the numerical
experiments Nexp, = 2000, but for those with higher variance,
and typically around some frequency of interest, we reached
up to Ney, = 10000.

The longitudinal constant force in Eqs.(5), Feonst, Was in-
troduced to promote the translocation even in the worst cases
with respect to the driving, i.e. in which the initial phase
provides the maximum amplitude of the force in the nega-
tive direction. In these cases, the polymer is not tethered to
the pore, and in some realization the chains exit the pore,
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FIG. 2. Mean translocation time as a function of the frequency
of the transversal sinusoidal force applied for a chain of N = 30, at
different bending values, shown in the legend. The inset corresponds
to the region where the minimum in translocation time is found. The
continuous lines on the right correspond to simulations performed
with the periodic driving off, representing the high frequency limit,
and in clear agreement with the curves.

remaining permanently on the cis side. These cases, whose
number is highly reduced by the presence of F,ong, are not
included in the MTT calculations.

A. Transversal driving

In the transversal driving the force is applied in the y axis,
i.e., # =9, with the functional form introduced in Egs. (5).
The amplitude of the constant component of the force (Feonst)
is kept at 0.3, so not too high to obscure the effects of the
transversal driving.

1. Translocation time

Figure 2 displays the dependence of t with the frequency
of the driving force, as defined in Egs. (5), for a polymer
chain consisting of N = 30 monomers and various bending
constants, ranging from a fully flexible polymer (k, = 0.0)
to a semiflexible one with a high persistence length, tending
to a rigid rod (k, = 5.0). The graph reveals three distinct
frequency regimes independently of the bending constant.

High-frequency regime. In this region, the TTs are consid-
erably larger than those observed at lower frequencies, with an
increase of almost one order of magnitude at the saturation. In
this frequency range, the period of the driving force is much
smaller than the relaxation timescale of the polymer [34,35].
Therefore, the transversal interaction cannot propagate effec-
tively through the chain, and the force felt by the polymer
results in a temporal mean of the sinusoidal excitation, i.e.,
a null contribution. This leads to a progressive descent of
the effective intensity as the frequency increases, eventually
reaching a point in which the transversal driving is practically
0, which corresponds to the observed plateau around v = 10°.
To confirm this, a set of simulations have been conducted with
the driving force turned off, whose results have revealed clear
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FIG. 3. Histograms of the TTs at different frequencies for a chain
of N = 30 and k, = 1.25. The frequencies, starting from the top left,
are v = 10%, x = —5.0, —4.0, —3.5, —3.35, —2.0, 0.0.

agreement with the higher values of the curves, and are plotted
as continuous lines on the right of the curves of Fig. 2.

Low-frequency regime. Here, the magnitude of the force
throughout the entire translocation process is completely de-
termined by its initial phase, since the period of the driving is
much higher than the typical TT.

The phase is uniformly distributed in the range [0, 2r),
but the longness of the period makes the translocation occur
during an almost fixed value of the oscillating force. It is worth
underlining that, even if the cosine function averages to zero
in a period, the contribution of the transversal driving to the
polymers is in fact mediated by the interaction with the walls,
which create a longitudinal component of the force of the
same sign for the two cases: positive and negative values of
the cosine function. This way, the transversal driving always
aids the movement of the polymer towards the trans side,
thus resulting in smaller TTs than those saturating at high
frequencies.

Mid-frequency regime. This region is characterized by a
clear decrease in the value of t, expressed by the presence
of a large frequency region with MTT values well below both
the high- and low-frequency limits. This behavior is typical
of the resonant activation (RA) [42] effect that appears in the
presence of an oscillating potential barrier accompanied by
thermal fluctuations [11,13]. For this particular system, the
RA effect has its origins in the interactions of the polymer
with the walls in both the cis and trans sides of the membrane,
giving rise to an effective potential barrier with oscillatory
nature, caused by the periodic driving of the system. As a
result, the MTTs present a large minimum region of different
orders of magnitude with a modulation in the minimum prox-
imity. The latter is due to the presence of classical oscillations
caused by the deterministic periodic nature of the driving.
These kind of modulations, that involve a smaller region of
frequencies with respect to the RA effect, are also present in
the absence of the potential barrier [14].

Figure 3 provides the detailed features of the three fre-
quency regimes previously discussed. The histograms show

the distribution of translocation times recorded at different
frequencies v ranging from 107> to 10°. As already stated,
in the low-frequency region the translocation is dominated
by the initial phase of the force. The low-frequency peak
therefore corresponds approximately to the maximum pos-
sible transversal excitation Fy,, & £A. This initial condition
is more favorable than others due to the choice of a uniform
distribution of initial phases between 0 and 2, which give a
nonflat distribution of the forces that depends on the cosine
function, so making the extreme values of the forces more
probable. Thus, the subsequent translocation times correspond
to progressively smaller absolute values of the force, less
represented in the probability distribution.

The increase of the frequency leads to the mid-frequency
regime, which is characterized by the coexistence of two
nearby peaks (see Fig. 3 with v &~ 107335, 1073, and 10~*0)
and a narrower TT distribution than those at low or high fre-
quencies. In these conditions, the first peak corresponds to the
minimum possible translocation time, i.e., the translocation
with the highest average force over the specific trajectory.
The peak representing the fastest polymer translocation in
the low-frequency regime maintains its presence in the mid-
frequency region. Its disappearance marks the beginning of
the high-frequency regime.

The second peak corresponds to the translocation time of
nonoptimal initial conditions, i.e., the TT for simulations in
which the initial phase does not lead to a high value of the
transversal force. Thus, the observed translocation time is
higher than the time required to reach the optimum driving
force giving the minimum TT, but small enough to allow the
polymer to translocate at the subsequent high force values.
This peak progressively moves towards lower values with
increasing frequency, which can be understood in terms of the
fact that the force period decreases.

At high frequencies (10729, 10%9), both of these peaks
combine into a single, normal-like distribution. Additionally,
the distribution moves towards higher TTs with increasing
frequency as a consequence of the progressively lowering
value of the effective periodic driving, eventually reaching 0
and leading to the plateau in the translocation times observed
in Fig. 2.

Looking back to the mid-frequency regime, the relation be-
tween initial phase vy and the force value is further explored
in Fig. 4, which shows the distributions of the TTs for different
Vo values at the frequency of the minimum v = 10733 It
is there evident that starting slightly before the maximum
of the force (Yo ~ 7m /8, point 16 in the graph) results in
the maximum average driving and therefore in the minimum
possible translocation time. Conversely, the worst possible
scenario occurs when starting at the maximum driving, where
the chain either translocates in 7 /4 or it needs to wait, on
average, an additional 7 /4 time lapse to reach the high forces
again, resulting in a total translocation time of ~ T /2. The
intermediate initial phases result in intermediate translocation
times, ranging from 7 /4 to T /2, making the peak at 7' /4 the
minimum possible 7. The average over all the possible initial
phases yields the translocation time distribution presented in
Fig. 3.

Chains with distinct flexibility constant ky, will exhibit dis-
tinct MTTs, but maintain the same condition for the minima:
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FIG. 4. Absolute values of the force depending on the initial
phase of the system in the range [0, 7 ]. The histograms correspond to
the TTs at the frequency of the minimum at the frequency minimum
v = 107*% associated to the particular phase indicated by the in-
dex i = 1...16, accompanied by three vertical dashed lines marking
different fractions of the period: 7'/4, 3T /8, and T /2. This graph
corresponds to chains of length N = 30 and k, = 1.25.

the minimum MTT, t,,, is found when the minimum possible
translocation time (the TT with the maximum average driving)
corresponds to 7' /4. As the distributions of translocation times
at the minimum depend only on the initial phase of the system,
a correlation between t,, and its associated frequency period
T,, can be established for all chains, which results in the
simple law:

T, = aty,. (6)

Figure 5 collects the points of the minima taken for each set
of parameters (chain length N, bending parameter k;, different
amplitudes of the transversal driving A), where a parabolic
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FIG. 5. Minimum translocation period as a function of the min-
imum translocation time for the different parameters used in the
paper. The fitted line is shown in black, along with the parameter .
In the inset: Parabolic fit of the region of the minima for the different
curves of Fig. 2. Same color coding.

fit around the minima has been performed to reduce errors
due to the fluctuations and the points of interest have been
taken as the minima of the fit functions for all the parameters
used, namely, for the polymer lengths N = 30, 45, 60, 75,
and k, = 0.0, 0.5, 1.25, 2.0, 2.75, 3.5, 4.25, 5.0. The lin-
ear behavior of the points is evident and valid for all the
parameters, with a slope of @ = 2.90 4= 0.04. The points ob-
tained with the fitting procedure are shown in the inset of
Fig. 5 with the corresponding fit curves of the chains with
N = 30 shown in Fig. 2.

2. Dependence on the bending parameter

Figure 2 contains several translocation curves correspond-
ing to different values of the bending constant k;,, showcasing
the effect this parameter has on the TTs.

At high frequencies, an increase of T with k, can be ob-
served. This is attributed to the chain’s conformation in the cis
region, which is determined by that parameter. Chains with
higher k; tend to be more extended in the cis region, while
folded chains with lower gyration radius and closer to the pore
are expected for low bending values. Therefore, the stiffer
chains need to travel greater distances to achieve successful
translocation, resulting in larger TTs [13].

This fact additionally explains the observed separation
of the high frequency values. The persistence length, L, ~
ky/ksT, gives the length of the straight stick in which a
chain can be divided, and corresponds in our case, due to the
monomer distance equal to 1, to the number of monomers in
that segment. Values of k, = 0.0 and 0.5 have relatively small
persistence lengths compared to the overall chain length (L, =
0and L, = 5, respectively) and result in a similar behavior. On
the other hand, for k, = 1.25 or 2.0, (L, = 12.5 and 20) the
persistence lengths are lower than—but comparable with—the
total chain length. Beyond k, = 2.75, L, is either similar to, or
larger than, the chain length, resulting in a saturating behavior
of the MTT.

Around the minima, this tendency fundamentally changes;
chains with higher bending experience lower values of TTs,
as the curves present a crossing interval around v &~ 1072,
A possible explanation comes from the interactions of the
chains with the walls on the trans side of the pore. The typical
dynamics for chains translocating in the mid-frequency range
corresponds to the force starting at an already high value and
maintaining the same direction throughout the translocation
process, leading to high interaction with the trans walls. These
reactions, which possess a longitudinal component, are what
truly leads the chains forward, and they will be both stronger
and more frequent the higher the &y, of the chain, given that
those chains are more restricted in their possible conforma-
tions. This fact is illustrated in Fig. 6, which compares the
typical geometries that lead to reactions of the walls [Fig. 6(a)]
and an example of one that does not generate such forces
[Fig. 6(b)]. Chains with little to no bending will not collide
with the trans walls as frequently and intensively as the more
rigid ones, leading to more reaction forces and thus smaller
translocation times for the higher k, chains. This does not
happen in the high-frequency region because the effective
transversal force eventually becomes 0, and the collisions
with the trans walls are therefore reduced with respect to the
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FIG. 6. Schematic depiction of the typical configurations found
for chains with high (a) and low (b) values of k,. The term F.
corresponds to the reaction force that takes place on the monomer
collision with the trans walls.

mid-frequency regime. In general, the stiffness of the chain
in the typical situations encountered in the mid-frequency
range gives an additional push in the longitudinal direction,
thus explaining the lower MTTs for polymers with higher
ky [14,26].

3. Dependence on the polymer size N

As much as the polymer length increases, the translocation
time also increases, and the minimum of the curves moves
towards lower frequency values, still maintaining the linear
relation described by Eq. (6). A scaling law for the MTTs
of chains with different lengths N can be established. The
proposed form for this scaling is given by

T o (N — NP, (7

where the parameter N, represents an effective reduction in
the length of the polymers, caused by the confinement of a
part of the chains inside the extended pore throughout the
translocation process, and is around 5 to 6 monomers given
the dimensions of the pore. The scaling coefficient 8 is an
exponent which depends on the bending constant of the chain
ky. It is here shown that curves with the same k;, scales with N
according to Eq. (7), and the scaling parameters are shown
in Table I. Figure 7 contains the scaled plot for chains of
ky = 1.25 and different lengths.

Considering N, as a free parameter in the fit analysis,
it is found that the best value for N, is N, & 6 monomers,
which confirms the effect of the finite pore extension on the
translocation, defining an effective chain length.

Previous determinations of the scaling coefficient 8 have
confirmed its relation with the Flory exponent Sr [13], a
parameter connected to the scaling behavior of the radius of

TABLE 1. Scaling exponent B of the translocation times for
the different bending parameters k, = 0.0, 1.25,2.75and 5.0 in the
transversal driving, and the corresponding standard deviation og. In
all cases, N, = 6.

ky, 0.0 1.25 2.75 5.0
B 0.59 0.76 0.82 0.92
og 0.07 0.10 0.10 0.12
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FIG. 7. Transversal translocation time curves for chains with
k, = 1.25 and different N, scaled according to Eq. (7).

gyration of a polymer (R, ~ NP) that is also a function of
the chain rigidity. For the flexible freely jointed chain model
Br = 0.5, while the inclusion of the excluded volume interac-
tions leads to Br ~ 0.6 (L, ~ 0) and a completely rigid rod
(L, > N) has Br = 1.0 [43]. Our results show that all our
B coefficients belong to the appropriate range and increase
monotonically with the bending constant, behaving consis-
tently with the known properties of the Flory exponent.

4. Analytical expression for low frequency values

At low frequencies, the amplitude and direction of the
driving are determined by the initial phase of the system.
This allows us to give an estimation of the mean translocation
time of the system averaging over the different possible .
To make these calculations easier to manage, let us consider
a square wave, which roughly corresponds to the sinusoidal
force excitation approximated to O or its extreme values £A.
It is worth remembering that both extreme values of the force
aid the translocation in the same manner, given that the driving
is applied in the transversal direction. The evolution of this
square wave and the comparison with the sinusoidal inter-
action (in terms of module) can be seen in Fig. 15 of the
Appendix.

With that description of the square wave, there are only
two timescales of relevance: 7,,, the time taken by the chain
to translocate if the driving is in its extreme values A, and
Toff, 1.€., the time it takes when the transversal force value is
0 during the process. We then have four distinct translocation
possibilities for a given initial phase: either the force starts
and remains at the same value or we will experience a switch
between high and low force, or viceversa. Given that, the
formula can be written as (see the Appendix for an extended
derivation of this formula)

(TT) = gTon(l - Fon ) + lfoff(l - folt )
3 T/3) "3 T/6
2 Ton (@ roff>
3T/3

1.’:off Ton Toff
- Joff (fon @
2 T 3T/6<2+2>()
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FIG. 8. Translocation curves for polymer chains of N = 15 and
ky = 1.25, with square wave and cosinusoidal drivings, along with
their low-frequency analytical approximations (A2). The values of
the parameters are included in the graph.

Note that the above derivation requires the assumption that
both 7, and 75 are smaller than the time spent by the driving
in the corresponding values (£A or 0), which is 7/3 and
T /6, respectively. Since 7o has to be larger than 7,,, this
gives an upper limit for the frequency range in which the
approximation remains valid:

Toff < A < 6r10ff'

The comparison of the analytical derivation with the sim-
ulations are shown in Fig. 8 for a chain of N = 15 and k;, =
1.25. The blue points are the simulations of the MTTs with the
square wave, and the continuous line is the analytic approxi-
mation, which results in excellent agreement at low frequency.
The parameters used, 7o, = 112.16 and 7,5 = 798.49, have
been obtained from simulations performed at maximum (+A)
and minimum (0) driving, respectively.

The analog approximation of the sinusoidal driving has
been also included in Fig. 8, with, again, excellent agreement
between formulas and simulations. In this case, the parameters
Ton and T come from a fitting procedure. Both analytical
expressions fail on the hard limit established in Eq. (9) at the
value vy, &~ 10738,

9

B. Longitudinal driving

The longitudinal driving consists in the application of the
periodic force along the pore, i.e., along the x axis (7 = %),
with the same temporal dependence indicated in Egs. (5).

Things here are different than in the transversal case,
where the introduction of the periodic force leads to a gen-
eral descent of the translocation times, whatever frequency
is considered, given that the application of the force, though
oscillating sinusoidally, always aids the translocation process,
as it contributes to the x component of the wall reactions.
That symmetry is broken in the case of the longitudinal
driving, where the negative values of the cosine give forces
opposing the translocation movement. To ensure that we have

et % k= 0.0
x9eX "X
< K X ky, = 1.25
"’ % Ky =275
10° S -
XXX =%k, = 5.0
xxxx_xx X\ié
%
= X %gé
X %
" 5%
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X
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FIG. 9. Translocation time as a function of the frequency of
the longitudinal sinusoidal force applied for a chain of N = 30, at
different bending values, shown in the legend. The continuous lines
on the right correspond to the MTTs when the periodic driving is off,
pointing out the saturation of the MTTs in the high-frequency limit.

translocating trajectories in the majority of the simulations
performed, the constant term of the force (F;onst) has been then
increased in value, going from the original 0.3 up to 1.8 in
program units.

1. Translocation time

The evolution of the average translocation times with the
frequency on the longitudinal driving can be found in Fig. 9,
containing chains of N = 30 with different values of the bend-
ing constant ky,. Just as with the transversal driving, three
distinct frequency regimes can be identified:

Low-frequency regime. In this region, as seen in the
transversal driving, the magnitude of the force is defined by
the value of the initial phase. In contrast to the transversal
case, the translocation times at low frequency are much higher
than those at high frequency. This is due to the absence of
the symmetry previously present in the transversal driving
when passing from positive to negative values of the cosine:
negative values of the force, which aided the translocation
in the transversal scenario, now oppose it, increasing the
translocation times with respect to the positive forces. Thus,
while in the transversal case the TTs are smaller than the
high-frequency values, in this longitudinal case the average
translocation time is much higher than in high frequency
because it is greatly increased by the effect of negative forces.

High-frequency regime. At high frequencies, the translo-
cation times eventually saturate. This happens for a period
of the forces much smaller than the polymer relaxation
timescale [34,35] and, similarly to what we found in the
transversal case, the oscillations of the force average to zero
so the MTT only depends on the constant contribution Fgong;.
Simulations with the time-dependent force turned off, leaving
only the constant term, can be seen on the right of the graph as
continuous lines, in clear agreement with the data and showing
the saturation of the MTTs.
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FIG. 10. Histograms of the TTs at different frequencies for
chains of N = 30 and k, = 1.25. The frequencies, starting from the
top left, are v = 10°, x = —=5.0, —3.5, —2.8, —2.7, —1.6, 0.0.

Mid-frequency regime. In the mid-frequency range, a clear
decrease of the translocation times is appreciated, in combina-
tion with a series of oscillations around the minimum point of
the curves. The results are all similar to those already obtained
with pore-driven forces (see Refs. [13,44,45]), and the results
of the transversal driving. Similarly, the nonmonotonic behav-
ior corresponds to the combination of two phenomena: the RA
effect given by the interaction of the polymer with the walls
on both sides of the pore [11,13,44], and a classical resonant
effect given by the synchronization of the polymer chain with
the driving frequency, responsible for the oscillations [14].

The histograms of the MTTs at several values of the fre-
quency, from 10~ up to 10°, are presented in Fig. 10.

At low frequencies, where the value of the force along
the trajectory is approximately fixed during the dynamics and
strongly determined by the initial phase, we observe a high
peak at low values of the TTs, corresponding to translocations
characterized by force values around +A i.e., the minimum
possible translocation time, followed by a long tail, due to
other initial phases. This tail is due to the negative value of the
periodic force, which gives much larger translocation times
and a distribution with higher variance.

High-frequency histograms are described by normal-like
distributions centered around the translocation time given by
the constant term of the force due to the value of the peri-
odic driving being effectively 0. The distribution progressively
shifts towards higher force values as the frequency increases,
eventually arriving at a saturation value, corresponding to the
constant force indicated by the straight lines in Fig. 9.

In the mid-frequency regime, two nearby peaks can be
observed. The first corresponds to the minimum possible
translocation time and takes place when the averaged periodic
force the chain is maximal. This peak remains at its position
from the start of the low-frequency regime, eventually disap-
pearing after combining with the second peak, marking the
beginning of the high-frequency region.

The second peak corresponds to the average of the translo-
cation times of the different chains that do not start at high

5000 F ,
4000 « ou
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FIG. 11. Minimum translocation period as a function of the
minimum mean translocation time for the different parameters con-
sidered. The fitted line is shown in black, along with the value
of a.

enough values of the force. Therefore, it is a combination of
the time required to reach high forces and the time necessary
to translocate with those forces. It moves towards lower time
values with increasing frequency because the time necessary
to reach high forces diminishes as a consequence of the de-
creasing period of the driving.

The minimum in the translocation curves is reached when
the value of the first peak (corresponding to the minimum
possible TT, associated to maximum driving during the
translocation process) corresponds to a half of the driving
period tmin = 7/2. Once again, independently of the features
of the chains such as length or rigidity, a linear relationship be-
tween the minimum average translocation time and the period
associated to it can be established, like in (6). Different min-
imum MTT (t,,) and minimum period (7,,) pairs for chains
with different values of number of monomers N and bending
constant ky, are contained in Fig. 11, along with the fit for the «
coefficient and obtaining @ = 1.36 & 0.03, in agreement with
previous studies [14].

2. Dependence on the bending parameter

For the longitudinal translocation the MTTs monotonically
increase with the bending constant ky, of the chain, as can
be seen in Fig. 9, where the values of the bending k, =
0.0, 1.25, 2.75, and 5.0 are shown. This difference can be
explained from the typical conformations the chains tend to
adopt, depending on their &, values along the translocation
process. In the cis region, more rigid chains will tend to be
in extended conformations along the axis of the pore. This
means that their mass centers will be more distant from the
pore entrance with respect to more flexible change and will
therefore have to travel longer distances to achieve successful
translocation. This hypothesis is further confirmed by the fact
that the differences between the chain with &, = 0 and the rest
are significantly larger than those between the chains of k, =
1.25 and above, which have persistence lengths (L, ~ 10k)
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TABLE II. Scaling exponent B of the translocation times at
the longitudinal driving for the different bending parameters k, =
0.0, 1.25,2.75, 5.0 and the corresponding standard deviation og. In
all cases, N, = 6.

ky, 0.0 1.25 2.75 5.0
B 0.64 0.73 0.79 0.83
og 0.02 0.02 0.03 0.03

either comparable or larger than the chain length N = 30 in
Fig. 9, and thus their conformations will be similar.

When applying the transversal driving, we observed an
inversion of this tendency around the mid-frequency range,
presumably associated to the differences in interactions with
the walls between chains with different k;, values. However,
for the longitudinal driving, that is not the case. Interactions
with the trans walls with the longitudinal driving are evi-
dently weaker and less frequent than in the transversal driving,
given that all the forces are concentrated in the x axis, and
the tendency established at high frequencies is maintained
throughout the entire frequency range.

3. Dependence on the polymer size N

Increasing the length of the chains leads to higher values
of the translocation times, and displacements of the translo-
cation minima towards lower frequency values to verify the
linear relation between the minimum translocation time and
its associated minimum period.

We used the law previously established in Eq. (7) to scale
the values of the translocation times and frequencies for
chains of different lengths N and the same bending constant,

T o (N — N8, (10)

where N, represents, again, a reduction in the effective number
of monomers of the chain resulting from the extended nature
of the pore, and g is the scaling exponent that depends only
on the bending constant ky, of the chain. Translocation times
and frequencies of the polymers of different lengths N and
equal bending constants were rescaled according to this law,
fitting the values of the parameter to those at which the curves
collapsed against each other. A value of N; &~ 6 was obtained,
just as in the transversal driving, thus confirming the contribu-
tion of the pore extension. The values of the scaling parameter
B are listed in Table II, together with the standard deviation
related to its determination.

The coefficients obtained are within the range of the Flory
exponent, and monotonically increase with the value of the
bending constant kj, as expected. The overlapping of the
scaled curves corresponding to chains of k, = 1.25 and N =
30, 45, 60, 75 can be seen in Fig. 12.

4. Analytical expression for low frequency values

Following the same ideas previously explained in the
transversal driving, and given that at low frequencies the driv-
ing is completely determined by the initial phase, an analytical
expression for the translocation curve can be derived when
averaging over the different initial phases . Once again, let
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FIG. 12. Longitudinal translocation time curves for chains with
k, = 1.25 and different N, scaled according to Eq. (7).

us consider a square wave, with extreme values A, which, in
principle, can approximate a sinusoidal function.

For the transversal driving, we dealt with two timescales,
given the equivalence between the extreme +A and —A in
terms of translocation times. However, that no longer holds
for the longitudinal driving. Let us then consider three dif-
ferent timescales: t4, the time taken for the translocation to
complete when the force value is +A; 7o, the time it takes
when the driving is 0; and t_, the time necessary to translocate
when the amplitude of the force is at its lowest point, —A.
Given that we now have three timescales and the functional
form of the square wave as depicted in Fig. 16, we have
now seven scenarios to consider, depending on the initial
phase: either staying in the same force during the trajectory
or changing between two of those values. Taking into account
the possibility of starting in each of the regimes, and the prob-
abilities of changing between them, the formula yields (see the
Appendix for a detailed derivation)

1 Ton 1 Toff
TT) = =ty 1 — — —Torr|l 1 —
< ) 3T0 < T/3)+3T()tt( T/3)
1 To I Ton (Ton To
2ol - 2 _ on [0
+3m< Tm>+3Tﬂ<2 +2)

1 Toif (Toff  To I 70 /To | Ton |, Toff
gTﬂ(__+”_)+3Tm(E“%4 +7?)
(1D

2 2

Also, for the longitudinal case it is possible to establish
a maximum frequency limit for the validity of the above
formula. For the probabilities to be contained between 0 and
1, we must ensure that 7, < 7/3, 10 < 7/6 and t_ < T/3.
Either 7y or 7_ will give the limiting condition of the system.
In our particular case, given the numerical values of the ampli-
tude of the force A = 1.5 and the constant term Fiong = 1.8,
we will likely have 1y > t_, and 7_ will be the limiting factor.
The frequency limit is then

T 1

. <— > v —.

3 37_

12)
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FIG. 13. Translocation curves for polymer chains of N = 30 and
ky = 1.25, with square wave and sinusoidal drivings, along with
the fit of their low-frequency analytical functions [Eq. (11)]. The
legends show the values of the parameters used for the two cases
and calculated as discussed in the text.

To validate the analytical expression, a set of simulations
have been run with the longitudinal driving considering both
a square wave and a sinusoidal excitation. The results can
be visualized in Fig. 13, where a perfect agreement of the
curves over the data are plotted. The blue points correspond
to the square wave, with the green continuous line being its
associated analytical curve, the parameters of which can be
seen in the figure. These values for the three timescales have
been calculated from simulations performed at the different
possible amplitudes of the force +A, 0, and —A, and then used
to plot the analytical curve of the square wave driving.

The orange points and the red line correspond to the
simulations and analytical approximations of the sinusoidal
excitation, respectively. Both the 7, and t_ parameters have
been here fitted with Eq. (A3) by leaving tj as calculated in
the square wave simulations.

Considering the value of 7_ for the square wave, the for-
mula begins to fail at v &~ 10749,

C. Comparison between longitudinal and transversal drivings
1. Effect on the translocation times

Both drivings considered in this article exhibit a global
minima in the translocation times at a given frequency of
the oscillating force. However, their behaviors are completely
different. Figure 14 contains the curves for both longitudinal
and transversal driving, normalized by their high-frequency
values.

As can be seen, their behaviors appear very different: both
drivings generate a saturation trend for both regimes, low
and high frequencies, and both drivings produce the large
minimum region that reveals the RA optimization. However,
the relative behavior for each of the two drivings appears
very different, as the extreme values are opposite in value:
higher at high frequency than at low ones for the transver-
sal driving, and lower at high frequency for the longitudinal

T/THF

0.0 1.25 2.75
ko,
ol v vl vl vl el il
10°° 10-4 1073 1072 107! 10°
14

5.0

FIG. 14. Main plot: Translocation curves for polymer chains
with N = 30 and different k;, for both the transversal (bottom) and
longitudinal (top) regimes. The TTs are normalized with their corre-
sponding high-frequency values (tyr) to eliminate the effect of the
different constant terms of the force used. Left inset: Example of the
comparison between the non-normalized TTs for the two drivings
with N = 30 and k, = 1.25 with the common saturation trend at high
frequencies. Right inset: Comparison of the B values presented in
Tables I and II: The scaling coefficient with the chain length tends to
1 (straight stick) more easily under the transversal driving than under
the longitudinal one.

driving. These different behaviors are due to the fact that the
presence of the transversal driving always acts in favor of the
translocation due to the frans walls reaction, which always
acts in the x direction, so the highest 7 value is reached for
high frequency where the transversal force mediates to zero.
Conversely, in the longitudinal case, the translocation is either
helped or hindered depending on the phase of the cosine, thus
resulting in a general increase of the MTT at low frequencies
with respect to the saturating behavior at high ones.

The different behavior with &, can be appreciated from
Figs. 2 and 9. The longitudinal driving exhibits a monotonic
dependence with the bending parameter; chains with higher
kv present higher TTs on average, the plausible explanation
being given by the typical conformation of the chain after
thermalization: more rigid chains will tend to be elongated,
implying that they will have to traverse a higher distance to
achieve translocation.

For the transversal driving, this tendency varies with fre-
quency, presumably due to the interactions with the walls.
They are more relevant in the transversal driving, given that
the periodic force is applied in the y axis. At high frequencies,
since the periodic force felt by the chain averages to 0, the
tendency from the longitudinal case is recovered, whereas
for mid-frequency the opposite occurs: chains with higher ki,
exhibit lower TTs, given that the interactions of the walls
will be less common for the more rigid polymers. At low
frequency, as mentioned before, a clear tendency cannot be
derived for the transversal driving.

Regarding the scaling with the length of the chains N,
both drivings show a similar tendency; the effect of the pore,
given by N, in Eq. (7), is the same in both regimes, while
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the B coefficients, although similar, differ in value, although
following the monotonic tendency and limited to the range
characteristic of the Flory exponent. The comparison between
both, showing the Br values for the different &y, can be found
in the right inset of Fig. 14.

2. Differences between the o values

The absolute minima of the TTs present a clear linear
relation with its associated period for both the longitudinal
and transversal driving, the slope being encoded in the param-
eter . The origin of this linear relationship is rooted in the
condition for finding the existence of the minima: it appears
when a fraction of the period, T /4 for the transversal and
T /2 for the longitudinal, is equal to the minimum possible
translocation time of the chain, i.e., in the condition in which
the chain translocates during the maximum driving. In that
minima, the histogram of the translocation times for the chain
presents two peaks: one at 7 /4 (or T/2), and another at a
higher value of the translocation times, which results from
the average over all the initial phases that do not lead to
translocation with the minimum time, as shown in Fig. 4.
Making a rough approximation of the peaks, they next situate
3T /8 in the transversal and 37 /4 in the longitudinal.

The timescales for the longitudinal driving seem to be
double those involved in the transversal, since in the former
the negative force when applied on the x axis does not aid the
translocation like its positive counterpart, as happens in the
latter case. With this in mind, we expect the coefficient « in
the longitudinal driving to be one-half of that in the transversal
case. In fact, comparing the values, we find

trans

Cone = 1.36 £0.03 ~ 1.44 +0.02 = —=25
& 2

which seems to closely verify our assumption. Possible errors
may be related to either the calculation of the minima them-
selves or the need for more simulations of the process.

IV. SUMMARY AND CONCLUSIONS

In this article, we studied the translocation of a polymeric
chain through a extended pore under the action of a periodic
driving applied in two directions with respect to the pore
axis: transversal and longitudinal. We analyzed the effect of
the different force frequencies on the MTTs as shown in
Figs. 2 and 9, and found three different frequency regimes:
the high-frequency range, in which the periodic driving av-
erages effectively to 0, the low-frequency range, in which the
translocation forces are determined by the initial phase of each
simulation, and the mid-frequency range, in which a global
minimum of the translocation times is present.

The curves point out specific differences between the two
drivings. The choice of the transversal case immediately leads
to smaller MTTs than the high-frequency limit, whereas for
the longitudinal driving the MTT can be higher or lower
depending on the frequency, observing a decrease in the mid-
frequency region but an increase at low frequencies due to the
phase giving negative values of the time-dependent force.

Regarding the minimum region, it is obtained as the com-
bination of the RA effect, originating from the interactions

of the polymer with the walls of the pore, and classical
oscillations given the periodic nature of the driving. We find
that the optimum translocation for the transversal and the
longitudinal cases takes place when the period of the driving
verifies the condition Ty, = T/4 or tin = T /2, respectively,
with 7., being the minimum MTT, i.e., the average TT at
maximum driving values. This clear dependence allows for
the possibility of establishing a linear relationship between
the MTTs in the minimum and its associated period, with a
proportionality factor «, different for the two force directions
but independent of the physical parameters of the chains.

Different behaviors between the driving types when
changing the bending constants k, has been observed. The
longitudinal driving exhibits a monotonous dependence on
the bending parameter, with higher bending leading to higher
MTTs, whereas for the transversal driving the effect of k,
is different in each of the frequency regimes. This different
behavior may have its origin in the interactions with the walls
of the pore in the cis and frans side of the membrane, more
intense in the transversal case because the force is not applied
in the x axis.

A scaling law for different lengths of the chain was also
verified, with the form (N — N,)'*#, where B corresponds to
the Flory exponent for semiflexible chains. The fit parameters
for this scaling reveal the effect of the pore length on the
translocation, revealing the effective number of monomers
inside the pore N,, and imposing an effective length of the
chain, while the g coefficient is comprised in the limits of the
Flory exponent and increases monotonically with the bending
constant ky,.

Finally, an analytical expression for the low frequency
values of both drivings was derived, obtaining excellent agree-
ment between the simulations and the analytical functions.
The functions are derived for the the square wave drivings,
but the results are also suitable for the sinusoidal driving by
using proper fit parameters.

The observations and insights gained from the application
of these periodic end-pulling forces on polymers can be gen-
eralized and applied to several experimental setups, typically
associated to force spectroscopy procedures, such as in optical
and magnetic tweezers or atomic force microscopes. In fact,
these devices are, in principle, able to apply either the longitu-
dinal or the transversal drivings, as in the model here studied.

A extension of this article would consist of the study of
chains pulled at a given velocity, always maintaining the lon-
gitudinal or transversal character of the driving. This protocol
would represent an approach more closely related to force
spectroscopy experiments, whose purpose is to register the
pull force as a function of the polymer position.
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FIG. 15. Schematic depiction of the evolution of the absolute
value of the force with the period, both for the sinusoidal (grey) and
square wave (black). Subfigures 1—4 depict the four different possible
scenarios for the translocation with the square wave.

APPENDIX: DETERMINATION OF THE ANALYTIC MTT
CURVE AT LOW FREQUENCIES

1. Transversal driving

We consider a square wave analogous to the sinusoidal
driving we apply to our system, as shown in Fig. 15. Given
the fact that for the transversal translocation both extreme
values +A aid the translocation in the same way, we have
only two timescales to consider: 7,,, the time to translocate
with maximum driving, and 7.¢, when the force is disabled.

Depending on the value of the initial phase for each of the
trajectories, four possible scenarios can take place. Each of
them is shown in subfigures 1-4 of Fig. 15.

(1) The force starts at either —A or +A with a certain
probability P4 and remains there throughout the translocation
process. In this case, the TT is to,, and the probability to
remain in the £A value depends on the period 7 and on the
Very Top as Pasa = 1 — 150 /(T/3).

(2) The force starts at O with a probability Py and remains
there throughout the translocation process with probability
Poo=1— 1ot /(T/6).

(3) The force starts at A, changes to 0 and remains there
for the rest of the experiment. The probability switch in this
case is the complementary of case (1), which means Ps_,o =
Ton/(T/3).

(4) The force starts at 0, changes to either A and remains
there. The probability switch is then Py_.4 = 7o (7 /6), that
is, the complementary of case (2).

Under these approximations, that is, only 0 or 1 switches
in the actuating force, it is possible to write an analytical
estimation of the translocation time that takes into account the
possible dynamical combinations above described, with their
probability of occurrence, obtaining

<TT> = PutonPasa + PoTottPo—0
Ton Toff Ton Toff
+ Py > + 5 Jfa—o + Ry > + 5 Jfo—-a
(A1)
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FIG. 16. Schematic depiction of the evolution of the value of the
force with the period, both for the sinusoidal (grey) and square wave
(black). Subfigures 1-7 depict the seven different possible scenarios
for the translocation with the square wave.

where the translocation time with one switch is consid-
ered, in the ensemble average, equal to the average of the
time spent in both conditions, i.e., (Ton/2 + Tofr/2). Given
the distribution of the phases, we find that Py = 2P, = 2/3,
and the expression that results from substituting all the
probabilities is

2 Ton 1 Toff
TT) = - 1— - 1 — —
(TT) 37:0n( T/3>+ 37:0ff< T/6)
2 Ton (T Ty 4 Toft
373\2 T2 ) T3T6\ 2 T2

which works very well for low frequencies, as evidenced in
the curves from Fig. 7.

1 Toff (Ton Toff)
b

2. Longitudinal driving

A square wave following the extreme values of the si-
nusoidal is considered for the derivation of the analytical
formula. However, given that for the longitudinal transloca-
tion the values A and —A do not lead to the same results, three
different timescales must be considered: 7, the time taken
for the translocation to complete when the force value is +A;
79, the time it takes when the driving is 0; and 7_, the time
necessary to translocate when the amplitude of the force is at
its lowest point, —A. Depending on the initial phase of each
trajectory, we now have six possible scenarios to take into
account. All of them are contained in the different subfigures
of Fig. 16.

(1) The force starts at its minimum value —A with prob-
ability P_,, and remains there throughout the translocation
process. The TT is therefore 7_ and the probability to re-
main on that force value depends on the relation between
that timescale and the period of the force, finding P-4~ =
1 —1_/(T/3).
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(2) The force starts at its maximum value +A with prob-
ability P4+, and remains there throughout the translocation
process. The TT is T and the probability to remain Py+_ 4+ =
1 — 1 /(T/3).

(3) The force starts at 0 value value with probability Py
and remains there throughout the translocation. The TT is 1o,
and the probability to remain Py_.o = 1 — 7o /(T /6).

(4) The force starts at +A, changes to 0 and remains there
for the rest of the experiment. The probability to switch in
this case is the complementary of case (1), and thus Ps+_,o =
©/(T/3).

(5) The force starts at —A, changes to 0, and remains there
for the rest of the experiment. The probability to switch in this
case is the complementary of (2), and thus Ps-_.o = 79/(T/3).

(6) The force starts at 0, changes to —A, and remains
there for the rest of the experiment. Given that the phases are
distributed evenly, and because of the form of the square wave,
the probability of switching to the minimum driving will be
Poa- = (1/2)10/(T/6).

(7) The force starts at O, changes to +A, and remains
there for the rest of the experiment. The switching probability
to reach the maximum driving is the same as going to the
minimum for symmetry reasons, i.e., is the same as point (6):
Poar = Poa- = (1/2)10/(T/6).

With these considerations, and for low enough frequencies
to assume that just either zero or one changes takes place in
the force, it is possible to derive an analytical expression for
the average translocation time. Considering the conditional

probability to start at any of those regimes and switch 0 or
once into another, times their associated translocation times,
we can write

(TT) = Pa+ 14 Py p+ + PotoPoso + PA-T-Pr-a-

T— 70
+ P+ ( )PA+—>0 + Pa- (7 + 3)PA-—>0

T_ 70
— + _)P()*)A_ .

2 2
(A2)

T+ 70
2 +2

T+ T()
RS+ 3)Rn+ By

The translocation time associated to a switch is the aver-
ages of the two translocation timescales involved, given that
what we are computing is the ensemble average over the initial
phase. Substituting the values of the probabilities of jump-
ing, and taking the probability to start in one specific state
as Py = P4+ = Py- = 1/3 from the distribution of the initial
phases, we have the formula shown in the Results section:

(TT) 1 | Ty +1 | T_
= —T _—— —T_ —_—
3t T/3) " 3 T/3
1 T Il 7o /14 1
Z 1 — — T (=42
+3T°< T/6)+3T/3<2 +2)
| B AYS AR ) 1 v /70 T4+  T-
+3T/3(2 + 2>+3T/6<2 + 4 + 4)'
(A3)
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