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The fate and motion of cells is influenced by a variety of physical characteristics of their microenvironments.
Traditionally, mechanobiology focuses on external mechanical phenomena such as cell movement and envi-
ronmental sensing. However, cells are inherently dynamic, where internal waves and internal oscillations are
a hallmark of living cells observed under a microscope. We propose that these internal mechanical rhythms
provide valuable information about cell health. Therefore, it is valuable to capture the rhythms inside cells
and quantify how drugs or physical interventions affect a cell’s internal dynamics. One of the key dynamical
entities inside cells is the microtubule network. Typically, microtubule dynamics are measured by end-protein
tracking. In contrast, this paper introduces an easy-to-implement approach to measure the lateral motion of
the microtubule filaments embedded within dense networks with (at least) confocal resolution image sequences.
Our tool couples the computer vision algorithm Optical Flow with an anisotropic, rotating Laplacian of Gaussian
filtering to characterize the lateral motion of dense microtubule networks. We then showcase additional image
analytics used to understand the effect of microtubule orientation and regional location on lateral motion. We
argue that our tool and these additional metrics provide a fuller picture of the active forcing environment within
cells.
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I. INTRODUCTION

Microtubules (MTs) are stiff tubular filaments that com-
prise one of the main mechanical structures within eukaryotic
cells, similarly to the actin cortex. Much research concern-
ing MT dynamics focuses on the biochemical interactions
involved with single filaments or in vitro networks of MTs
[1–8]. However, MTs form cargo networks within a cell
body (due to their high relative stiffness); in other words,
MTs, enmeshed within a cell, must be regarded as a system
from which information regarding entire cell functionality and
health can be extracted. Indeed, quantifying this mechanical
network is of interest since mechanical disruption of these
highways affects cellular functionality [2,4,9–11]. In addition,
other aspects of cellular mechanoregulation are assumed to
functionally depend upon MT deformation [10,11]. One way
to create such mechanical disruption is through the major
chemotherapy drugs that aim to prevent cell division by tar-
geting MTs, most notably Nocodazole and Paxitaxel, which
destabilize and stabilize MTs, respectively [12–14]. Electric
fields are also known to affect MT structure, since tubulin
heterodimers are polar [15]; it is unknown whether electric
fields drive oscillatory behavior of MT networks.

Typically, the analysis of MTs in cells requires labeling
end-tip (EB) proteins. EB proteins are the end proteins of
MT filaments that form cometlike trajectories; the straight
trajectories of these ends allow one to quantify the dynamical
instability (polymerization and/or depolymerization) which

characterizes MT behavior [16]. Moreover, algorithms exist,
for example, PlusTipTracker [17], which allows one to quan-
tify the trajectories of such comets. However, analysis of the
dynamics of the MT filaments themselves in the literature
is poorly defined. Given that the MT network is contained
within a forcing environment (MTs respond to shear forcing,
hydrodynamic forcing, and cytoskeletal force generation from
kinesin and dynein; due to the high persistence length of
MTs, thermal forcing is negligible [1–8]), the motion of the
filaments will reflect the overall active forcing environment
around the MT network within the cell. As a result, we retain
a fuller picture of the internal rhythms of cellular mechanics
than just focusing on the growth mechanics of MTs them-
selves.

Here we introduce a filament displacement image analysis
method (FIDI) for quantifying lateral dynamics of MTs that
form a dense network. The image processing algorithms com-
bined in this method are anisotropic Laplacian of Gaussian
filtering (LoG), a second-order edge detection algorithm, and
optical flow (OF), a computer vision technique used to quan-
tify local motion at close to the pixel scale [18,19]. In previous
work, we used each of these tools separately. LoG filter-
ing identified orientation organization in static actin filament
networks [20] while OF quantified the dynamics of polymer-
ized actin [21]. In this paper, we combine these algorithms
(LoG+OF) for analyzing the dynamics of dense MT filament
networks. Although super-resolution has shown to benefit
researchers investigating cytoskeletal filaments [20,22], with
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just confocal imaging our tool is still able to capture the mo-
tions of MTs embedded within the active forcing environment.

FIDI is distinct from other tools used for understanding
bending dynamics of cytoskeletal filaments. Previous algo-
rithmic tools have been developed to track filaments along
their lengths and model the dynamics to quantify the persis-
tence length and bending rigidity of cytoskeletal filaments.
Indeed, other studies have devoted attention to the physical
modeling of these filamentous networks [23,24]. Even if the
density of the network renders individual filament tracking
impossible, lateral motion of the constituent filaments in the
MT network is still visible by eye. OF is not sufficient alone
to quantify this motion since motion of two crossing filaments
(frequently encountered in dense filamentous networks) will
generate artifacts in the OF field. As we are not tracking
filaments over time, LoG provides us with pixels belonging to
a MT filament while OF measures the movement of detected
pixels over time. In summary, we prefilter our data with LoG
and then further measure with OF, which allows us to (1)
identify pixels associated with MT filaments and (2) group
filamentous pixels with similar angles, and then subsequently
measure the lateral motion of such detected objects. Using
additional image processing tools, we can separately analyze
the motions of MT filaments depending upon the filament
angle (generated as output from LoG filtering) and the region
within cells.

II. EXPERIMENTAL METHODS

A. Cell culture

Rodent neuroblastoma-glioma cells [NG108-15
(108CC15) ATCC HB-12317, Manassas, VA] were cultured
at 37 ◦C in a humidified 95% air, 5% CO2 atmosphere in
Dulbecco’s Modified Eagle’s Medium (DMEM, 11965-092,
Invitrogen, Carlsbad, CA) containing no sodium pyruvate,
10% fetal bovine serum (FBS), 1 I.U./ml penicillin, 0.1
µg/ml streptomycin, 0.1 mM hypoxanthine, 400 nM
aminopterin, and 0.016 mM thymidine. Cells were harvested
between passages 20 and 30 and plated at a density of
104 cells/cm2 on poly-D-Lysine (100 µg/ml, Sigma P7886)
precoated glass-bottomed dishes (MatTek) in a serum-free
medium consisting of DMEM, 1 mM dibutyryl cyclic
AMP (Millipore-Sigma), and antibiotics. Differentiation
was induced 24 h after cell plating by replacing the growth
medium with a differentiating medium in which the FBS
had been substituted with B27 (Gibco 17504044) and
supplemented with 1 mM dibutyryl cAMP (Tocris 1141).
The differentiating medium was replaced every 48 h. Cells
were used for experiments after 7–14 days of differentiation.
Differentiated cells exhibited spontaneous action potentials
(APs), evoked by current injection in 50% and 70% of
the cells at 10 days post differentiation. Chinese Hamster
Ovarian-K1 (CHO-K1) was obtained from ATCC (Manassas,
Virginia). CHO-K1 cells were cultured in an F12 K medium
supplemented with 10% FBS, 2 mM l-glutamine, and
100 U/mL penicillin and/or streptomycin at 37 ◦C with
5% CO2 in air. Plasmids and cellular transfection L304-
EGFP-Tubulin-WT, which specifically labels tubulin, was a
gift from Weiping Han (Addgene plasmid No. 64060[25];

RRID:Addgene No. 64060). Plasmid DNA was prepared
using a Qiagen Plasmid Plus Maxi Kit (12963, Qiagen,
Germantown, MD). For the lentiviral construct (L304-EGFP-
Tubulin-WT), the plasmid was packaged into lentivirus and
amplified to 108 infectious units (IFU)/ml.

B. Generation EGFP-tubulin expressing lentivirus

The L304-EGFP-Tubulin-WT construct was packaged
in pseudoviral particles in 293TN producer cells (SBI,
LV900A-1); the supernatant containing pseudoviral particles
was collected at 48 h post transfection, filtered at 0.45µm
PVDF filters and centrifuged at 50 000Xg, 90 min at 4 ◦C.
Then, pseudoviral containing precipitate was resuspended in
a TNE buffer (50 mM Tris, pH 7.8, 130 mM NaCl, 1 mM
EDTA), the virus was stored in 100 µl aliquots at −80 ◦C.
Relative pseudoviral titer was determined by transducing cells
and by counting the number of cells expressing EGFP-Tub,
allowing 72 h for expression to start.

C. Microscopy

Image sequences were acquired using the Leica TCS SP5.
Confocal microscopy was performed with magnification of
40x water immersion objective. The conversion ratio from
pixel to micron ranged from 0.04 to 0.15 microns/pix. Image
sequences were acquired every 1.1 seconds, which is faster
than previous studies [23]. Images analyzed were of strips of
cells with image dimensions of 40 × 1024.

III. RESULTS

A. Anisotropic Laplacian of Gaussian filtering
highlights MT filaments

The data used for prototyping the algorithm contains im-
age sequences of Tubulin-GFP transfected NG108 cells as
seen in Fig. 1(a). Within these cells, we observe by eye a
dense network of microtubule filaments. These filaments are
oriented in several different directions within the cell body
as shown in the zoomed-in region in Fig. 1(b). After pre-
processing with a Gaussian filter, we convolve these data
with a rotating, anisotropic LoG kernel. Examples of rotations
of the kernel are shown in Fig. 1(c) (different orientations,
i.e., left-learning, right leaning, and vertical, in addition to
different shades and colors corresponding to different angles).
Due to the bidirectional nature of the kernel, we rotate the
kernel through π radians (as opposed to 2π radians) at a
discrete number of angles, a parameter chosen for accuracy
and speed. Given data with N columns and M rows, the
convolution results in a matrix with n columns and m rows,
where n, m = N − p, M − p (p is defined as the padding size
used to avoid artifacts). Edge effects occur when convolving
close to the edges of data frames where the convolution is
likely to extend beyond the image frame. We fix the padding
at 6 pixels based upon observation of edge anomalies. Due to
the nature of our data, as discussed later, we desire to retain
as much filament information as possible. The kernel for this
convolution is described in Eq. (1):

L(x, y) = −y2 + σy
2

σy
4

exp

(−x2/σx
2 − y2/σy

2

4πσxσy

)
. (1)
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FIG. 1. LoG algorithm extracts MT filaments in every frame.
(a) NG108 cell line with fluorescently labeled microtubule filaments.
This confocal image displays a MT network with representative
density of filaments. (b) Cytoskeletal networks containing filaments
oriented in different directions. Even with the relatively low image
resolution, the variety of microtubule orientations (some filaments
are tilted while others are horizontal) is apparent. (c) Anisotropic,
rotating Laplacian of Gaussian (LoG) filter with some rotation steps.
The rods (right leaning, left leaning, and vertical) in each of the
three images represent the LoG kernel with angle prescribed as
the closest area on the color wheel (different shading represents
different angles). These rods resemble the shapes of microtubules,
which showcases how microtubules are detected. Note that once
microtubule pixels are found above a threshold, each pixel is ascribed
an associated angle belonging to which kernel causes maximal value
in the max projection step. (d) Filament orientation map output
from convolving data in (a) with kernel in (c). This final output
shows all microtubule filaments detected. Note that there are spatial
homogeneities with neighboring pixels which amounts to filament
detection. Moreover, note that there are regions of white (correspond-
ing to pixels not valued as microtubules) within the image; areas
not white (different colors and shades) represent regions where the
algorithm has identified a filamentous pixel and has prescribed an
angle for this pixel. We found that LoG paramters of Refs. [1,7] for
the sigma in x̂ and ŷ as well as 30 rotations work well with our data.
Our scripts are provided in the GitHub link at the end of the paper.
Scale bars are 10 µm for (a) and (d); scale bar is 5 µm for (b).

The anisotropy of the LoG kernel results from the quadratic
prefactor and the different sigma parameters in the Gaussian.
To achieve a rodlike object for extraction of filamentlike ob-
jects, we induce anisotropy in the minor axis (ŷ) by penalizing
for extending in that direction. Indeed, notice that higher
values of y correspond to lower values of L in Eq. (1). This
anisotropy causes the rapid dropoff as seen in Fig. 1(c) [notice

the color (shade) of the rod remains relatively constant while
areas far away from the rod in the perpendicular direction
are darker]. Additionally, the different sigma parameters, σx

and σy, regulate the width of the kernel in x̂ and ŷ, which can
vary the thickness of the rod, furthering the anisotropic effect.
After convolution, a matrix with dimensions n,m,a results
(where a is defined as the discrete number of angles chosen
for kernel rotation); we have then a (N-p)x(M-p) frames and
we take the max projection of this matrix in thea dimension
to arrive at our final output matrix. Finally, we threshold these
maximal values to ensure they correspond to filaments. This
output matrix contains pixels which (1) have been detected
above the threshold and (2) have an angle, initially in the
range [0, 2π ], associated with them. An example output is
seen in Fig. 1(d), where the colors (shades) correspond to
the angles in the color wheel in Fig. 1(c). Our LoG filtering
detects filaments on a pixel basis. The use of pixel-by-pixel
detection foregoes the difficulty in tracking a filament with
fluctuating length and changing position over time. In this
sense, the algorithm measures changes in motion but is agnos-
tic as to which filaments are moving or had previously moved.
Moreover, our pixel detection method allows us to detect with
(sub)pixel accuracy MT fluctuation (even for a filament with
fixed length). We optimize our filter threshold to select those
pixels which belong to noticeable filaments and to minimize
the detected edges which do not belong to filaments in the
output data.

B. Capturing lateral motion of detected MT filaments
in dense networks using optical flow

We apply the Lucas-Kanade OF algorithm onto the pre-
processed data. OF measures the spatial changes in image
intensity over time, an example of applicable data for this
algorithm is shown in Fig. 2(a). The algorithm detects pixel
intensity changes between frames, as shown in Fig. 2(b), and
spatially defines these intensity changes; as such we are given
vectors that describe the motion. The OF output for the data
shown in Fig. 2(a) is produced in Fig. 2(c). In this way, we can
assess apparent motion within the fluorescently labeled cells.
Outputs from OF are a magnitude and orientation matrix,
which allow us to understand the speed of the motion as
well as its direction. For a more detailed explanation of OF,
please consult Ref. [21]. The equation for OF is referenced in
Eq. (2). We store the magnitude and orientation output from
convolution of the data set with OF. We use the filaments
detected by LoG as a mask overlaid upon the OF magni-
tude matrix. Additionally, we can further partition our LoG
output to specific angles of focus, as seen in the horizontal
and vertical detected filaments shown in Figs. 2(d) and 2(e).
Only those pixels which contain values (i.e., not not a number
(NaN) values) in both LoG and OF output correspond to bend-
ing motion. The metric for bending is calculated by taking
the portion of the OF vector perpendicular to the detected
filament, as this measures lateral motion. To restate, from
the OF vector, we are only using the component of the OF
vector that is perpendicular to those filaments detected in LoG
(regardless of the orientation of the filaments given from the
previously described LoG output). The process is shown in the
schematic and the ability to overcome crosslinking filaments
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FIG. 2. Lateral motion of detected filaments is quantified by coupling OF with LoG. (a) Two frames separated by time are shown overlaid
on top of each other. The minimal differences between the frames are shown by the green and magenta pixels (grayer shades–lighter from one
frame, darker for the other–correspond to differences in either frame, white regions are pixels shared by both frames). (b) The frame overlay
in (a) can be better represented as a difference image (a frame earlier in time subtracted from a frame later in time) where the pixels now
correspond to the magnitude of intensity changes over time. (c) Using Eq. (2), we generate vectors of motion as represented by the yellow
arrows [lighter regions with clusters of activity (arrows)]. Similarly to LoG, we find local neighborhoods for assessing motion. For our results,
we use a kernel width, in both x̂ and ŷ, as 5. [(d), (e)] These masks showcase horizontal and vertical filaments, respectively. Notice that with
our rotating LoG kernel, we are able to separately partition filaments to focus on specific orientations for analysis. (f) This schematic shows
filaments in one frame (tan undashed lines) and a subsequent frame (brown dashed lines). Due to the crosslinking of filaments, the overall
OF motion would normally be quantified by the larger black arrow. However, since we have access to the filament information (for which
the two tan undashed lines are oriented in different directions), we can decompose that larger black vector into components perpendicular to
each filament as shown by the smaller blue (lighter) arrows and analyze them separately (and we have access to the different filaments despite
the crosslinking based upon the different orientation output). In this regard, we overcome the difficulty of analyzing dense MT networks and
assess lateral motion. Scale bars are 3.5 µm.

is further explained in Fig. 2(f). For this reason, we claim we
are capturing the lateral motion of MTs. We achieve this by
taking the sine function of the angle between the filament’s
orientation and the OF vector (i.e., we take the cross product):

−�∇I · �v = ∂I

∂t
. (2)

C. Manual comparison of detected motion

To assess the reliability of our detection of the MT lateral
motion, we verify outputted values with a manual estimation
of movement. As shown in Fig. 3(a), the movement of the
strips of data collected for CHO cells results in differences
that are on the (sub)pixel level. Furthermore, the differences
in between the LoG output generated from slices t0 and t1
in Fig. 3(a) are minimal, but these differences can still be
seen by the eye, see Figs. 3(b) and 3(c) for comparison. To
properly verify FIDI, we binarize the difference image [those
values shown in neither white nor black in Fig. 3(c)] to ar-

rive at an absolute difference image. This absolute difference
corresponds to overall movement of filaments. From this dif-
ference image, we use MATLAB’s regionprops function to
extract an area estimate of all objects, i.e., detected objects
correspond to movements of filaments across frames. Since
we are interested only in the perpendicular motion of the
filaments, we estimate the motion by taking the square root
of all objects detected by the regionprops algorithm. We no-
tice that our algorithm accurately captures a majority of the
movement in a subpixel regime (note the lower bound of the
regionprops area values is 1). We conclude that the majority of
the movements correspond to the curve generated by manual
estimation. See Fig. 3(d).

D. Quantifying lateral motion to assess active
forcing environments

We use our FIDI tool to assess the active forcing envi-
ronment of MTs within cells. To achieve the best possible
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FIG. 3. Manual verification of FIDI. Comparison of the strips of
CHO filaments reveals the small (sub)pixel-level movements of these
clearly defined filaments. (a) Two frames at difference time points,
t0 and t1, separated vertically. The overlay of the two frames shows
the differences in movement. Most of this movement is small; pixels
from t0 and t1 are identified as green and magenta, respectively
[shades more gray but not dark represent regions of activity from
either frame; white represents regions of overlap. See (c) for more
detail]. (b) For the t0 and t1 frames shown in (a), we show the
LoG generated output (different colors and shades represent differ-
ent angles). The slight heterogeneity of angles within the filaments
is due to our pixel-level detection of filaments. Overall, however,
the general angle of the filament is well-defined by eye. The LoG
output overlaid below t1 showcases the agreement of our kernel
parameters with the actual data. (c) To verify whether our algorithm
is assessing motion with realistic output, a difference image of the
detected filaments [using the LoG outputs from (b)] is generated.
We further notice subpixel level differences. We quantify the area of
these objects, which correspond to motion, and take the square root
to mimic perpendicular motion relative to a filament. (d) We compare
the values of our algorithm with a manual calculation of the square
root of difference objects found. We notice that FIDI captures with
subpixel-level accuracy the movements of filaments across frames.

results with our tool, we use strips of areas of CHO-K1
cells. This filament motion analysis on dense MT networks
requires us to use approximately one-second frame rates and
at least diffraction-limited pixel resolution. These strips are
small (40 pix×1024 pix in dimension) and are not taken si-
multaneously. Since the cells themselves do not change shape
significantly during the imaging time, and since the average
location of MTs does not shift very rapidly, we combine strips
corresponding to the same cell into an aggregate composite
image sequence, as seen Fig. 4(a). Since each strip contains
different information, we analyze each strip separately while
gathering information about the entire object. This step is not a

necessary step in the FIDI algorithm. Given our strips of data,
we are able to generate 24 composite CHO-K1 cells across
nine independent experiments for this paper.

To further demonstrate the effects of the forcing environ-
ment on cells, we convert the angles of detected filaments to
contain more biological relevance. Previous work has indi-
cated that analyzing the orientation of filaments relative to the
nearest cell boundary can determine phenotypes within a data
set [20]. For each pixel, we identify its closest boundary point
and then use this boundary point to determine the relative
angle between the filament orientation θfila and the vector
pointing to the nearest boundary θbound. The schematic for
this conversion is shown in Fig. 4(b). Because the filament
orientation is bidirectional, we choose angles smaller than or
equal to 90 ◦, as shown in the example output in Fig. 4(c):

θrelat = min({θbound − θfila}, {θbound − θfila − π}). (3)

As the strips provide a qualitative depiction of the overall cell
shape, we manually create a boundary mask for the composite
cell. This allows us to quantify the overall cell boundary using
this hand-drawn mask of the cell, which is used to determine
the angle and distance to the nearest boundary point. The
strips are analyzed separately, which limits the pixels for
which we can carry out LoG filter analysis to fewer than
40 pixels wide, resulting in regions of the composite image for
which we cannot determine filament orientation, as previously
described. We erode the boundary mask to generate smaller
regions within the composite cell so we can identify generally
where the MTs in each strip belong globally. Each region
generated for this study comprises 1/3 the area of the total
composite cell. Each region is depicted with a different color
in Fig. 4(d). The overlay of these regions on the relative angle
output is shown in Fig. 4(e). Note, this regional analysis is
not necessary for the overall use of FIDI, but we argue that
analyzing the MTs in this fashion leads to more biologically
meaningful results.

We analyze the motion of parallel and perpendicular fila-
ments in three distinct cellular regions. We take the median
value of all filaments of interest (we define perpendicular fila-
ments as filaments whose angles relative to the cell boundary
are between 60–90 ◦; parallel 0–30◦ ) for every frame in the
composite image sequence, and then compute the mean of
the transverse filament speeds for all the frames. Figure 4(f)
shows a cell-by-cell comparison of transverse filament speeds
for 24 cells, contrasting the motion of filaments oriented par-
allel or perpendicular to the nearest boundary point vector.
For each cell, we compute the mean difference between these
mean filament speeds for each region of the cell. As shown in
Fig. 4(g), we find a small but statistically significant difference
in mean lateral motion in the boundary region (p = 0.0305).
The variability in motion, measured from the variance in the
mean distributions, is shown in Fig. 4(h). Across each region,
we notice a more prominent downward trend in speed variabil-
ity between parallel and perpendicular filaments. In Fig. 4(i),
we compute the difference in speed variance for each of the
three regions in the composite cells. We find that there is
a small but statistically significant difference in speed vari-
ance in both the boundary (p = 0.0028) and middle regions
(p = 0.0306). These results carry biological importance in
understanding that the active forcing environment may change
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FIG. 4. Composite dynamic microtubules in CHO cells reveal differences in lateral motion based upon orientation and location. (a) Strips
of CHO microtubules are taken. These strips have a higher frame rate and resolution than achieved with more standard confocal imaging. We
concatenate the strips as each strip contains different information of microtubule dynamics. Despite concatenating, we separately analyze each
strip to maximize the information from each cell. (b) To separate filaments into different groups, we find each filament’s orientation relative to
its closest boundary point. Given a pixel’s LoG outputted angle, we find the relative angle between the angle created from the vector normal
to the boundary and the unit vector created from the LoG angle. The leftmost arrow with the axis (dotted flat line) creates the boundary angle
(lowermost theta). The rightmost arrow with the axis represents the filament angle. The relative angle is represented by the theta in between
the two arrows. (c) The relative angle output from the composite image in (a) is shown. The color wheel displays angle colors corresponding
to [0, π/2] (lighter shades represent perpendicular angles, darker shades represent parallel angles). (d) The composite cell image is used to
generate mask from which angles relative to the boundary of the mask are generated. These regions are not meant to be exact but to provide a
qualitative assessment of regional differences. (e) We show the boundaries of the regions in (d) overlaid on the output in (c). (f) We compare
the mean speed of lateral motion for filaments that are considered parallel to the boundary versus filaments considered perpendicular to the
boundary. We display the mean speeds side by side to demonstrate differences. From left to right: Boundary, middle, and innermost dynamics
as shown in (d) above. (g) We find that only in the boundary region is there a significant difference. Filaments that are oriented parallel to the
boundary seem to have a higher motion than those perpendicular. (h) We assess the variability of the mean speed across differently oriented
filaments for both parallel and perpendicular filaments. We represent the difference similarly to (f). (i) We compute the difference in this
variability and find a statistically significant difference in the variability in both the boundary and middle regions of the composite cells. Scale
bars are 10 µm.
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depending upon location within a cell and may differently
affect filaments of different orientation (e.g., in the case of
torques generated within a cell acting on MTs).

IV. CONCLUSION

The MT network of a cell is highly dynamic mechanical
structure within the cell that contains vast information re-
garding cellular properties. The dynamics of this information
network need not be limited to the tip dynamics typically
studied. As a simple readout of the dynamic state of the
MT network, we have introduced a method for measuring
lateral motion of MT networks that can be applied to dense
networks. We argue that the lateral motions captured reflect
the active forcing environments generated within a cell body.
We can read out the nature of this environment via the MT
network. Our method for motion analysis leverages both a
rotating, anisotropic LoG filtering and optical flow by analyz-
ing the perpendicular motion of filamentous pixels detected.
We propose useful downstream analysis measures to ascertain
whether angle-specific regimes work collectively or in com-
petition with each other. We applied the technique to measure
MT dynamics in CHO-K1 cells and prototyped the method
on NG108 cells. We find that standard confocal microscope
images have high-enough spatial resolution to reveal MT ori-
entation, but must be acquired rapidly enough to capture MT
dynamics. In CHO-K1 cells, we find statistically significant

differences between the dynamics of MTs that are tangent or
normal to the closest boundary point. We also find that the
dynamics depends on the distance of the MT from the cell
edge.

FIDI is useful for detection of changes in MT mechan-
ics, which is readily perturbed by a variety of chemical,
mechanical, and electromagnetic probes. While our analysis
cannot differentiate changes in MT stiffness from changes in
active forcing due to motor proteins, FIDI provides a robust
approach to characterize the cytoskeleton, complementing
traditional biomechanical measurements that focus on forces
and stresses such as AFM. The statistics of MT motion are
also directly comparable with cellular scale simulations and
can serve as an important calibration point for simulations of
dynamic biomechanical structures.

The code for this paper is available at Ref. [26].
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