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The assumption of constant population size is central in population genetics. It led to a large body of results
that is robust to modeling choices and that has proven successful to understand evolutionary dynamics. In reality,
allele frequencies and population size are both determined by the interaction between a population and the
environment. Relaxing the constant-population assumption has two big drawbacks. It increases the technical
difficulty of the analysis, and it requires specifying a mechanism for the saturation of the population size,
possibly making the results contingent on model details. Here we develop a framework that encompasses a great
variety of systems with an arbitrary mechanism for population growth limitation. By using techniques based
on scale separation for stochastic processes, we are able to calculate analytically properties of evolutionary
trajectories, such as the fixation probability. Remarkably, these properties assume a universal form with respect
to our framework, which depends on only three parameters related to the intergeneration timescale, the invasion
fitness, and the carrying capacity of the strains. In other words, different systems, such as Lotka-Volterra or a
chemostat model (contained in our framework), share the same evolutionary outcomes after a proper remapping
of their parameters. An important and surprising consequence of our results is that the direction of selection can
be inverted, with a population evolving to reach lower values of invasion fitness.
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I. INTRODUCTION

Competition is a fundamental agent of natural selection.
The scarcity of resources (e.g., nutrient, water, or space)
limits population growth, determining a selection pressure.
Variants—strains in the following—that grow faster or more
efficiently spread within the population. The long history of
mathematical population genetics has produced several sem-
inal results that quantitatively describe these processes. The
vast majority of results are based on the assumption of con-
stant population size [1–8]. The success of this assumption
lies in the generality of the results. When the population size
is large enough, the diffusion limit developed independently
by Wright and Kolmogorov, pioneered in population genetics
by Malécot [9] and Kimura [1,10], is the convergence point
of several alternative models. In fact, while different pop-
ulation genetics models (Wrigh-Fisher [11,12], Moran [13],
conditional branching processes [14], and some Canning pro-
cesses [15]) start from radically different assumptions about
the genealogical and demographic structure of the population,
they share the same predictions, up to a simple rescaling
of timescales and parameters. For most of the theoretical
advances in population genetics, the total population size is
treated as an effective parameter of the model, which should
be fitted from data, and the strain frequencies are the only
dynamical degrees of freedom.

However, mechanistically, not only the strain frequen-
cies but also the total population size is determined by the

interaction between a. population and the environment. More-
over, experimental works [16,17] suggest that the variation
of the population size can play a role in the evolutionary
process, implying that its dynamics should not be neglected
in theoretical descriptions.

Nonstationary conditions are an important example where
the dynamics of population size cannot be neglected to un-
derstand how evolution—here intended as the dynamics of
relative frequencies of strains—unfolds. For instance, range
expansions leave a strong signature on the genetic diversity of
a population [18–20].

A classical deterministic approach to couple the population
growth and the frequencies of the strains is density-dependent
selection [21–24]. Another approach to study evolution under
varying total population sizes is to consider the dynamics of
the latter as decoupled from the strain frequency by assuming
a priori the dynamics of the total population [25–28]. Here
we instead focus on stochastic scenarios. This approaches
requires us to model how environmental constraints limit pop-
ulation growth, for instance by considering a Lotka-Volterra
dynamics [29–35] or generalizations of the Moran model [36].
In these kinds of models, the population size is a stochastic
variable itself that can fluctuate. Those fluctuations are not
independent of strain frequencies, leading to highly nontrivial
evolutionary dynamics.

The increased realism of these models undermines, at least
in principle, the generality of the standard population genet-
ics results. To what extent do the details of the competition
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structure determine the evolutionary outcome? For instance,
will a population whose growth is described by a logistic
model differ in its evolutionary trajectory from a population
described by Gompertz growth?

In this work, we address this question by introduc-
ing and considering a general ecological framework to
describe the dynamics of a haploid asexual population under
a single limiting factor. This approach encompasses several
alternative models of competition—from Lotka-Volterra to
consumer-resource models in a chemostat to Gompertzian
growth—under the same mathematical setup. In other words,
this ecological framework defines the mathematical details of
how the growth of a population is limited by competition for
limited resources.

Given the generality of our framework, one could in prin-
ciple expect that the evolutionary dynamics depend on the
specific details of the model considered to describe popu-
lation self-limitation. We show that evolutionary predictions
are instead robust and insensitive to the details of population
dynamics. Within our framework, evolutionary observables,
such as the fixation probability and the fixation time, are
universal and depend on only three parameters related to the
concepts of intergeneration timescale, invasion fitness, and
carrying capacity.

We first present the general framework in the model sec-
tion. We start to illustrate the deterministic limit, where basic
ideas of the framework can be easily grasped. We then derive
the stochastic dynamics, described as a system of Langevin
equations. In the limit of small fitness differences, a timescale
separation allows us to calculate analytically the properties
of the evolutionary dynamics. We describe the behavior of
these properties over evolutionary timescales. We also illus-
trate an explicit example of the chemostat model for resource
competition, showing how the previous general results can
lead to an evolutionary trajectory with decreasing fitness over
time.

II. MODEL

To help the reader to build their intuition on the presented
framework, we first introduce our framework in the case of
large population sizes (which allow neglecting stochasticity),
in the presence of a single clonal population. We then consider
the case of finite population size and introduce the stochas-
tic version for a clonal population. We then generalize our
framework to multiple strains in the deterministic limit and,
finally, multiple strains in the stochastic formulation, which is
the framework considered for the rest of the paper.

A. A general model for the growth of a clonal population
in presence of a limiting factor

We consider a clonal population whose growth is limited
by some resources. The growth curve of a clonal population
displays a typical sigmoid shape, as depicted in Fig. 1: a
rapid initial growth followed by a deceleration due to nutrient
limitation and, eventually, a convergence of the abundance
to a carrying capacity, determined by the availability and
quality of nutrients. Multiple models—such as logistic, Gom-
pertz, and von Bertalanffy—capture this phenomenology by

FIG. 1. Typical growth curve of a clonal population in isolation,
characterized by a carrying capacity Ki and a timescale to reach the
saturation Ti.

explicitly quantifying the dependence of per-capita growth
rates on population abundance. These models differ in the
specific functional form of the population growth trajectory.
For instance, in the logistic model, the per-capita growth rate
decreases linearly with population abundance, while in the
Gompertz model it decreases logarithmically.

This large class of models can be captured, in full general-
ity, by making the per-capita growth rate depend on the total
population abundance N through generic functions:

1

N

dN

dt
= 1

T
β

(
u

N

K

)[
1 − ω

(
N

K
u

)]
. (1)

The function β(·) and function ω(·) determine the specific
shape of growth curves, which distinguish between alternative
models (see below). The value u simply equals to ω−1(1), so
that ω(uN/K ) = 1 for N = K . The two parameters T and K
capture instead the dimensional components of these growth
curves. The carrying capacity K defines the values of popu-
lation abundance reached at large times. A timescale T sets
the speed of convergence of population curves to carrying
capacity. Figure 1 shows the example of two populations with
different strains, each characterized by different values of K
and T .

Equation (1) reduces to standard models under specific
choices of the two functions β(·) and ω(·). Logistic growth is
obtained using β(z) = 1 and ω(z) = z, the chemostat model
[37] with β(z) = 1/z and ω(z) = z, Gompertz growth for
β(z) = 1 and ω(z) = log(z), and the von Bertalanffy model
for β(z) = zα−1 and ω(z) = z1−α (see Appendix A).

To enforce the saturating phenomenology shown in Fig. 1,
few constraints are required for the two generic functions,
specifically that both are positive and that ω(·) is monoton-
ically increasing. This choice guarantees the existence of a
unique, globally stable, fixed point N∗ = K , to which the pop-
ulation abundance converges for large times. These choices
can be relaxed in the presence of more complex biological
and ecological mechanisms affecting population growth that
we will not consider in this paper. For instance, in the presence
of a strong Allee effect [38], the per-capita growth rate would
be negative at small population abundance, corresponding to
a nonmonotonicity of ω(·).

B. A general birth-death model for the growth
of a clonal population

Equation (1) can be seen as the continuous determinis-
tic limit, obtained for large population sizes, of a discrete
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stochastic process that describes the dynamics of abundance
of a finite number of individuals. It is natural to define such a
model as a birth-death process with microscopic rates,

N → N + 1 with rate b(N ) = N

T
β

(
u

N

K

)

N → N − 1 with rate d (N ) = N

T
β

(
u

N

K

)
ω

(
u

N

K

)
.

(2)

This formulation further clarifies the interpretation of the
parameters and the functions appearing in Eq. (1). The value
of T sets the unique timescale of the process, to which both the
birth and death rate are inversely proportional, and is directly
related to the generation time (see Appendix C for more
details). The function β(·) describes the density dependence
of the birth rate, while the function ω(·) sets the dependence
of the ratio between birth and death rate.

The constraints on the two functions that have been intro-
duced in the deterministic case have to be valid also in this
context. First, β(·) and ω(·) must be positive since the rates
must be positive. Second, the monotonicity of ω(·) enforces
the population saturation: The death rate exceed the birth rate
when ω( N

K u) becomes larger than 1, i.e., for N > K . The
phenomenology of this class of stochastic models have been
studied for specific choices of β(·) and ω(·). In particular,
extensive work has been done for logistic growth [β(z) = 1
and ω(z) = z] [39].

The stochastic dynamics of N can be divided into three
temporal phases. The first phase is dominated by a transient,
which depends on the initial condition and directly corre-
sponds to the transient of the deterministic dynamics depicted
in Fig. 1. In the case of logistic growth, this first phase requires
a time of the scale T log(K ). The second phase corresponds to
fluctuations around N = K and displays a variability of the or-
der of

√
K . Approximation for the quasistationary distribution

of these fluctuations is well known [40,41]. The timescale T
determines the typical autocorrelation time of these fluctua-
tions. The stability of the second phase is only apparent, as it
is a metastable phase. The stochastic process defined in Eq. (2)
has an absorbing state in N = 0 and very rare fluctuations
can drive the population to extinction, corresponding to the
third phase. The rate of extinction is very small for large
populations. The typical time to extinction—which, according
to our definitions, corresponds to the duration of the second
phase—scales exponentially with K . In the case of the logistic
model [39] this time is already astronomical for relatively
small population sizes. For instance, for K = 100 the average
time to extinction is on the order of 1032 generation times.

C. Deterministic limit in the case of multiple strains

We want now to focus on the evolutionary dynamics of
different strains that compete with each other by studying how
intrapopulation variability changes over time. We consider
therefore A strains that differ in their growth rates through
their demographic parameters. While K and T are enough
to specify the scales of the growth curves obtained in iso-
lation, they are in fact generally not enough to describe the
dynamics in cocultures. Figure 2 depicts the setting of a pair-
wise competition experiment, where a single individual (or a
small population) of a mutant is inoculated in a large resident

FIG. 2. Typical growth curves of two competitive strains, where
one tries to invade tho other one at carrying capacity. The invasion
success is determined by the invasion fitness φi. The lines are simu-
lated with Eq. (3), for different choices of the generic functions as in
Fig. 1.

population. In absence of multiple substitutable resources (or
other factors giving rise to frequency-dependent selection),
only one of the two strains—the one with the higher fitness—
survives.

To include this feature in our model, the deterministic
equation for the abundance of strain i reads

1

ni

dni

dt
= 1

Ti
β

⎛
⎝∑

j

n j

Kj
u j

⎞
⎠
⎡
⎣1 − 1

φi
ω

⎛
⎝∑

j

n j

Kj
u j

⎞
⎠
⎤
⎦, (3)

where ui = ω−1(φi ). The generic functions β(·) and ω(·) are
independent of the strain and obey the same constraints as
before. As described above, the values of Ti and Ki define the
growth curve of that particular strain in a clonal population as
shown in Fig. 1. The new crucial ingredient here is the param-
eter φi, which is related to the (invasion) fitness of strain i.

As shown in Appendix B, this system of nonlinear differ-
ential equations admits a unique, globally stable, fixed point
where only one strain survives reaching a population abun-
dance equal to its carrying capacity. The strain that survives
is the one characterized by the largest value of φ, which we,
therefore, identify as the fitness of a strain.

Consistently with the existence of a globally stable equilib-
rium, the outcomes of invasion experiments depend only on
the fitness φ of the strains involved. In particular, the growth
rate of the mutant strain (usually called “invasion fitness”) is
proportional to the difference between its fitness φ, and the
one of the resident population (see Fig. 2 and Appendix C).
It is important to remark that, in general, the invasion fitness
does not correspond to the Malthusian fitness [42] (i.e., the
per-capita growth rate in exponential growth) as the latter
refers only to growth in isolation. For instance, the Malthusian
fitness in the logistic model is equal to 1/Ti. Therefore the
strain that is expected to out-compete the others (the one
with the highest value of φ) is not necessarily the one with
the higher growth rate in the exponential phase (1/T for the
logistic model).

A particularly simple and paradigmatic case occurs when
Ti = 1/(τφi ) [43] and Ki = K for all i. In that case, in
fact, the dynamics of the total population abundance has
a globally stable fixed point N∗ = K independently of the
relative abundances of individual strains. This allows us to
write explicitly the dynamics for the relative population abun-
dances xi = ni/N , which, by imposing N = K , turns out to
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correspond to the replicator equation,

dxi

dt
= β(ū)(φi − φ̄), (4)

where ·̄ denotes the average over the population (e.g., φ̄ =∑
i φixi ).

D. Birth-death model for multiple strains

Finally, we generalize therefore Eq. (2) to describe the
coupled birth-death process of multiple strains, whose deter-
ministic dynamics is Eq. (3). The birth and death rates bi(n)
and di(n) depend on the abundance of all the other strains,
n = n1, . . . , nA, as all the individual compete—even if with
different ability—for the same limited resources. The rates
read

bi(n) = ni

Ti
β

⎛
⎝∑

j

n j

Kj
u j

⎞
⎠

di(n) = 1

φi

ni

Ti
β

⎛
⎝∑

j

n j

Kj
u j

⎞
⎠ω

⎛
⎝∑

j

n j

Kj
u j

⎞
⎠.

(5)

If φi = 1, Ti = T , and Ki = K for all i, then the population
abundance N = ∑

j n j is described by the rates of Eq. (2).
It is important to notice that in this model, contrarily to

standard models in population genetics that assume a fixed
population size N , both the relative abundances of each strain
ni/N and the total population size N = ∑

i ni are changing
stochastically over time in an interdependent manner. Even at
stationarity, the population size N is not fixed but oscillates
around a typical value, determined by the strains’ parameters.

The presented framework includes all the works based on a
competitive Lotka-Volterra with rank-1 interaction matrix (see
Sec. A 1 for more details) [29–35] [for β(z) = 1 and ω(z) = z]
and generalization of the Moran model [36] [for β(z) = 1 and
ω(z) = α(1 + z)].

III. STOCHASTIC DYNAMICS

While we want to include stochasticity in our description,
taking into account the effect of finite population sizes, we
are interested in the limit of large population sizes, which in
our context corresponds to Ki � 1. In this limit classic models
of population genetics (such as the Moran model or Wright-
Fisher model) converge to the same effective diffusive limit,
which corresponds to Kimura’s equation.

The birth-death process defined in Eq. (5) can be approxi-
mated by Itô stochastic differential equations as follows:

dni

dt
= bi(n) − di(n) +

√
bi(n) + di(n)ξi, (6)

where ξi is a Gaussian white noise, 〈ξi(t )〉 = 0, 〈ξi(t )ξ j (t ′)〉 =
δi jδ(t − t ′) (see Appendix D for the derivation).

A. Separation of ecological and evolutionary timescales

Equation (6) describes the stochastic dynamics in the limit
of large population sizes (Ki � 1). In addition to this limit,
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FIG. 3. (a) Example of the timescale separation in a Lotka-
Volterra for two species: β(z) = 1, ω(z) = z, K1 = K2 = 2000, t1 =
T2 = 1, φ1 = 1, and φ2 = 1.002. The variables ni/Ki are the abun-
dances rescaled by the carrying capacity. (b) The idea underlying
the projection of the dynamics onto the slow manifold: Infinitesimal
steps outside the manifold (in red) are mapped again on it by the fast
velocity field. As a result, to correctly take into account these effects,
the increment of the effective variable ñ (in green) corresponds to the
projection of 	dn along the velocity field.

we consider the limit of small fitness differences (|φi−φ j |/φi


 1). In this case, as depicted in Fig. 3, the dynamics sep-
arate in a fast transient followed by slow dynamics (see
Appendix E). The initial trajectory drives the system to a slow
manifold of solutions, corresponding to the equilibria of the
deterministic dynamics in absence of fitness differences. What
follows is a dynamic constrained on the slow manifold.

It is convenient to describe the dynamics on the slow
manifold in terms of the relative abundances xi = ni/

∑
j n j .

The replicator Eq. (4) describes the deterministic dynamics of
the relative abundances on the slow manifold only under the
specific parameter choices discussed in Sec. II C. Its deriva-
tion does not trivially generalize to the stochastic case and in
presence of fully general parameter combinations. The “slow”
dynamics is in fact determined by the combination of two
forces (see Fig. 3). Stochasticity (through genetic drift) pushes
the system away from the manifold of solutions. The deter-
ministic part of the dynamics is pushing the system back to
the manifold. These two forces do not act orthogonally to the
manifold, but the nonlinearity of population dynamics and the
multiplicative nature of demographic stochasticity result in a
nontrivial combination with a net force, which corresponds
to an effective frequency-dependent selection that drives the
evolution of the system.

In the following we consider two strains, where x ≡ x1

as the relative abundance of strain 1 and x2 = 1 − x. The
effective dynamics on the slow manifold reduces to

dx

dt
= γr,c(x)

x(1 − x)

T1

[
s − σr,c(x)

K2

]

+
√

x(1 − x)

K2T1
δr,c(x) · η(t ), (7)

where η(t ) is a white noise term (see Appendix E). In addition
to K2 and T1, the dynamics of the relative abundance x depends
on three parameters, s, r, c, through the three functions γr,c(x),
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σr,c(x), δr,c(x) specified below. These three quantities are re-
lated to the ratios between the parameters characterizing the
population dynamics of the two strains. In particular, s is the
selection coefficient s = (φ1 − φ2)/φ1 while r = T2/T1, and
c = K2/K1. The three functions read

γr,c(x) := 1 − x + xc

1 − x + xrc

σr,c(x) := (1 − r)(1 − x + xc)

(1 − x + crx)2
{1 − 2c − [3 + c(cr − 4)]x

+ 2(1 − c)(1 − cr)x2}

δr,c(x) := (1 − x + cx)3(1 − x + rx)

(1 − x + crx)2
. (8)

The trajectories of the relative abundances of two strains
growing together are therefore determined also by differ-
ences in intergeneration times (case r �= 1) and in carrying
capacities (case c �= 1). If the intergeneration times T and
the carrying capacities K are equal (i.e., if r = c = 1), then
Eq. (7) reduces to Kimura’s diffusion limit. In fact, γ1,1(x) =
δ1,1(x) = 1 and σ1,1(x) = 0.

The sign of the deterministic term of Eq. (7) depends on
the balance between two forces. The first term is the selection
coefficient s. The second one (equal to σr,c/K2) is absent in the
classic Kimura’s diffusion limit. It depends nontrivially on the
timescales, the carrying capacities, and strain frequencies.

To better understand this dependence, it is instructive to
consider the growth of a rare strain with relative abundance x.
Since the strain is rare the initial growth (or decline) will be
approximately described by a stochastic exponential growth,
which can be obtained by expanding Eq. (7) for x 
 1. In
particular, the average relative abundance 〈x〉 is determined by

d〈x〉
dt

= 〈x〉
T1

[
s − (2c − 1)(r − 1)

K2

]
. (9)

If the carrying capacity of the resident population is very
large, K2 → ∞, then the growth rate converges to the deter-
ministic limit s/T1, depicted in Fig. 2. More precisely, the de-
terministic limit is correct whenever sK2 � (1 − 2c)(1 − r).

On the other hand, the presence of large but finite popula-
tion sizes and large-enough trait variation drastically change
the relative abundance trajectories. A particularly interest-
ing scenario emerges when (2c−1)(r−1)

K2
< s < 0. In that case,

accordingly to standard results strain 2 would a selective
advantage over strain 1 (s < 0). However, the presence of
the other extraterm counterbalances the positive value of the
selection coefficient, making strain 1 able to invade. This
implies that, under some choices of c and r, it can happen
that an invader having smaller invasion fitness can grow on
average within the “fitter” resident population. To better quan-
tify this statement, in the next section we compare the fixation
probabilities of the two strains.

IV. CONSEQUENCES ON EVOLUTIONARY DYNAMICS

A. Carrying capacity, intergeneration times, and invasion
fitness control the evolutionary success

The evolutionary success of a strain in an environment de-
scribed by Eq. (7) can be quantified by the fixation probability:
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FIG. 4. How the fixation probability depends on the three param-
eters. (a) The surface log(p1fix/p2fix) = 0; (b) different sections of the
fixation probability log-ratio. A darker shade of green represents a
larger ratio.

The likelihood that one individual of a given strain is able to
invade a population of a second strain. The ratio between the
probability of fixation of one individual of the first strain p1fix

in a resident population of strain 2 and the fixation of one
individual of the second strain p2fix in a resident population of
strain 1 can be expressed analytically (see Appendix F) and
equals to

log
p1fix

p2fix
= sK2

r −1

r − c
+ sK2r(c −1) − (1− rc)(r − c)

(r − c)2
log

c

r
.

(10)

which in the singular case of r = c becomes log(p1fix/p2fix) =
r+1

r ( sK2
2 + 1 − r).

Despite the generality of the modeling framework
[Eq. (5)], this quantity depends on only three parameters: the
intergeneration times ratio r, the ratio between the carrying
capacities c, and the product between the selection coefficient
and the size of the second population at carrying capacity sK2.

Figure 4(a) shows the surface log(p1fix/p2fix) = 0, which
separates the regions of parameters between a more successful
first strain, p1fix > p2fix, and the opposite scenario. Note that,
differently from the deterministic approximation of Eq. (3),
invasion fitness does not unequivocally determine the most
likely evolutionary outcome. It exists in fact a region of pa-
rameters within the volume below the s = 0 plane and above
the log(p1fix/p2fix) = 0 surface of the Fig. 4 for which a the
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Gen.Moran model

Theory

Chemostat

Gompertz
Gen. logistic
Von Bertalanffy

sK2 = 0sK2 = 1

Logistic

FIG. 5. Collapse of competitive models on the same fixation
probability, given by Eq. (10), black lines. The simulations con-
sider the competitive Lotka-Volterra, a chemostat model [45]; the
Gompertz growth dynamics [46,47], a generalized Lotka-Volterra
[48] with exponent ν = 1/2; the von Bertalanffy model [49] with
α = 2/3; and the generalized Moran model [36] which is defined
only for sK2 = 0 and c = 1. For more details about the models see
Appendix A.

strain with negative selection coefficient is more likely to
invade than the one with higher invasion fitness.

In absence of differences in the intergeneration time
and carrying capacity (i.e., if r = c = 1), one recovers
the Kimura’s diffusion limit and the classical result
obtained under a constant total population size K2 [8]:
log(p1fix/p2fix) = K2s.

It can also be instructive to isolate the dependency on
the carrying capacities when intrinsic fitnesses and inter-
generation times do not vary (i.e., if s = 0 and r = 1). In
that case, p1fix/p2fix = 1/c = K1/K2. This implies that that
larger carrying capacities, corresponding to lower demo-
graphic fluctuations and genetic drift, are favored. If we still
keep r = 1 and assume that the first population has a larger
fitness, s > 0, but a smaller carrying capacity, c > 0, then
we have log p1fix/p2fix = [sK2/(c − 1) − 1] log c, which leads
to a successful second strain when s < 1/K1 − 1/K2. This
result exemplifies that differences in carrying capacities and,
in turn, in demographic fluctuations, can invert selection. This
particular case of our framework recovers a previous result
[44], in which a disadvantageous altruistic behavior can be
convenient if it sufficiently increases the population size.

If the selection coefficient equals 0 and the carrying ca-
pacity are equal between the strains (c = 1), then the ratio of
the fixation probabilities reduces to p1fix/p2fix = 1/r = T1/T2.
Also in this case, longer intergeneration times, which corre-
spond to lower per-capita birth and death rates at carrying
capacities, and therefore lower stochasticity, are favored.

B. The evolutionary outcome is independent of modeling details

One key result of our derivation is that the evolutionary
trajectories, described in the diffusion limit by Eq. (7), do
not depend on the specific modeling choices. More precisely,
Eq. (7) does not depend on the shape of the functions β(z) and
ω(z).

Figure 5 shows numerical simulations of the fixation prob-
ability in alternative models, differing for the mathematical
dependency of birth and death rates on strain abundances.
The figure shows that once these different models are mapped

onto our framework [Eq. (5)], all the invasion probabilities
collapse onto the same curves as predicted by Eq. (10). The
results of Fig. 4 are therefore general and do not depend on the
specific model considered. For instance, for c = 1 and s = 0
one recovers the fixation probability of Refs. [36] and [34].
Details about how the simulations are performed are shown in
Appendix G. The definitions of the simulated models and how
to map them in our framework are in Appendix A.

C. The asymmetry in total mutation rates induces an additional
dependency on population size and intergeneration timescale

The expected number of mutations per generation depends
on the population size. Since in our case the total population
size can vary depending on which strains are present and in
what abundance, also the total mutation rate depends on which
strains are present and in which abundance. This dependency
of the total mutation rate on population size induces an addi-
tional effect of the varying total population on the most likely
evolutionary trajectory.

Let us consider two strains and a symmetric mutation prob-
ability U 
 1. If we start with a clonal population of strain
2 at carrying capacity K2, then the birth and death rates of
5 are balanced by definition of steady state. The birth rate
reads therefore b2 = ρ2β[ω−1(φ)]K2. By multiplying this rate
by the mutation probability U one obtains the mutation rate,
which, in this simple case, corresponds to the rate at which
an individual of strain 1 appears. Therefore, one can compute
the rate at which strain 1 substitutes the resident population
composed of strain 2, which equals m1fix = Ub2 p1fix. The
ratio of this quantity for the two strains reads then

m1fix

m2fix
= Ub2 p1fix

Ub1 p2fix
= c

r

p1fix

p2fix
, (11)

where the ratio p1fix/p2fix is given by Eq. (10). Including
explicitely the effect of generation time and population size
on mutation introduces an additional dependency on c and r.

In the periodic selection regimes, i.e., when the time be-
tween two successful mutations is much longer than the time
to fixation of a successful mutation, this ratio is directly
related to the relative probability of finding the population
dominated by strain 1 vs strain 2.

Figure 6 shows the analytical behavior of this expression.
Also in this case there is a large range of parameters for which
the population evolves to lower values of invasion fitness.

D. Evolution in the chemostat model with metabolic trade-off
can revert the direction of evolution

As an example for the application of the previous results,
we consider a population growing in a chemostat on externally
provided resources [37]. We consider a birth-death process
where the birth-rate depends on the expected availability of
resources, while the death rate is a constant factor. In the
deterministic limit the equation reduces to

1

ni

dni

dt
= ηiαi

1
M

∑
j n jα j

− δi. (12)

The parameter αi represents the resource intake rate of strain
i, δi is a death or dilution rate, while Mηi is the efficiency
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FIG. 6. Behavior of the invasion probability through mutations.
The blue surface is log(m1fix/m1fix) = 0 defined in Eq. (11).

of resource-to-biomass conversion (equivalent to an inverse
yield) and M � 1 a parameter that sets the scale of the total
population size. One can then map this model into our gen-
eral framework for the choice β(z) = 1/z and ω(z) = z, as
described in Appendix A.

A particularly interesting scenario appears when α, δ, and η

are not independent, being subject to a trade-off. For instance,
yield (or, equivalently, efficiency) decreases during selection
in experimental evolution [50–52], giving rise to a trade-off
between growth rate and yield.

Specifically, we focus on mutations of the resource intake
rate α and consider the case δi/ηi = αi + α0. The positive
dependency of δi/ηi on α implements the trade-off. The pa-
rameter α0 (which we assume to be small, in principle of the
order of 1/M) represents the minimal value of δi/ηi (e.g., in
the case of growth-yield trade-off, α0 sets the maximum yield
obtained in the case of minimal uptake). This choice implies
that the population size at carrying capacity in a clonal pop-
ulation, i.e., Ki = Mηi/δi = M/(αi + α0), decreases with the
intake rate α, giving rise to the growth rate and yield trade-off.

In the deterministic limit, it is easy to see that strains
with higher intake rates [i.e., with higher invasion fitness
φi = αiηi/δi = αi/(αi + α0)] always invade populations with
lower values of α. By using Eqs. (10) and (11), we show that
the presence of a large, but finite, strain-dependent total popu-
lation size can invert this behavior. Moreover, the outcome of
the evolutionary process depends on whether the dependency
on α is included in the death rate or in the efficiency. We

Resource intake, α

A
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e
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e
s.
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ta
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e

Resource intake, α

(a) Single trajectory

(b) Average α over an
ensemble

(c) Distribution of α at 
stationarity

FIG. 7. Evolutionary dynamics of the chemostat with a constant
intake rate η0 = 1. The resource intake α can mutate to a neighbor
α + �α or α − �α with rate U = 2 × 10−5. It is constrained to be
in [0,3]. The other parameters are �α = 0.25, α0 = 0.01, M = 200.
(a) The number of individuals colored by their value of α of a Gille-
spie simulation. There is no clonal interference since, typically, there
is no coexistence of subpopulations with different α. (b) The average
resource intake over 300 realizations of two ensembles starting from
different initial conditions. (c) The distribution of α at stationarity of
the 300 realizations.

consider here the former case, while we discuss the latter,
which nevertheless leads to similar results (see Appendix H).

If the intake conversion from the resource to the biomass
is constant, η0, then the death rate per-capita can be expressed
as δi = η0(αi + α0). The computation of the timescale ratio
leads to r = c. In such a case, there is no difference between
external invasions, Eq. (10), or invasions through mutations,
Eq. (11). In particular, using Eq. (F9) [the special case r = c
of Eq. (10)] one obtains

log
p1fix

p2fix
= (α1 − α2)(α1 + α2)(α0M − 2α1α2)

2α2
1α

2
2

. (13)

Strain 1 is advantaged (p1fix/p2fix > 1) only if α0M −
2α1α2 > 0. If, without loss of generality, we assume α1 > α2,
then we obtain that strain 1 is advantaged over strain 2 in
the case α2 < α1 < Mα0/(2α2). Therefore if a strain i has a
value of intake rate αi such that αi = Mα0/(2αi ), no other
strain can be advantaged over it. This indicates the existence
of an optimal value of α, equal to

√
α0M/2, to which the

evolutionary trajectories converge.
Figure 7 shows a simulation of this scenario, where α

can mutate taking discrete, uniformly spaced, values {αi}.
The evolutionary trajectory, starting both above and below
the predicted optimal value converges to it in the long term.
Figure 7(b) shows that the expected value of the intake rate α

(and therefore the invasion fitness) decreases over time if the
population has initial values of α above the predicted value.
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The presence of stochasticity implies that the optimal value
is reached on average, with a fluctuating value of α around
the optimal value. Under the assumption of periodic selection,
one can predict the distribution p(α) at equilibrium by assum-
ing that evolution follows a jump process which satisfies the
detailed balance: p(αi )p(αi → αi+1) = p(αi+1)p(αi+1 → αi )
(details in Appendix H). The prediction for the average and
the full distribution is in agreement with the simulation in
Figs. 7(b) and 7(c).

V. DISCUSSION

Here we have studied the evolutionary trajectories of
populations in a broad class of models characterizing popu-
lation self-limitation. We introduced a population dynamics
framework that encompasses several known models (logistic,
Gompertz, Chemostat, and others). In the presence of large,
but finite, population sizes, we have shown that the evolution-
ary trajectories depend only on three quantities (timescale,
invasion fitness, and carrying capacity), irrespective of the
models’ specific form.

We obtained these results by assuming a timescale separa-
tion between the total population size and the strain (or alleles)
frequencies [29,32,34,36]. This assumption allows us to write
down an effective equation that describes the time evolution
of strain frequencies, which depends only on the values of the
three evolutionary relevant quantities. This effective descrip-
tion reduces to Kimura’s diffusion limit when strains differ
only in their invasion fitness or in the limit of strong selection.
In that case, variation in timescales and/or carrying capacities
become effectively irrelevant.

One especially interesting aspect of the effective equa-
tion we obtained is the role played by the (finite) population
size. In Kimura’s diffusion limit, population size influences
only the strength of genetic drift. While in that context drift
masks the effect of selection (e.g., a deleterious mutation has a
nonzero fixation probability), it never alters its direction (i.e.,
a beneficial mutation has always a larger fixation probability
than a deleterious one). In our setting, the existence of finite
population size might alter the course of evolution: Mutants
with lower invasion fitness might be more likely to invade than
strains with a higher invasion fitness.

We explicitly show this effect in the chemostat model in
the presence of a metabolic trade-off. In the deterministic
limit, larger resource intakes correspond to higher fitness,
and therefore evolution drives the population to higher and
higher resource intakes. In the presence of a large, yet fi-
nite, population size, the naive expectation obtained in the
deterministic case is not realized. The evolutionary trajectory
converges in fact to an optimal value of the intake rate, which
we analytically predict. If a clonal population has an initial
intake rate larger than the optimal one, then evolution will
drive the population to decrease the intake rate and therefore
invasion fitness.

Invasion fitness decreases over time because of the pres-
ence of a finite population size. This might be reminiscent of
Muller’s ratchet [53–55], but it has a radically different origin.
In the case of Muller’s ratchet, the decrease in fitness is deter-
mined by the fact that mutations only give rise to deleterious
mutations, which can get fixed because of the finite population

size. The presence of a small fraction of beneficial mutations
is enough to balance the effect of deleterious mutations and
lead to an overall increase in fitness [56].

In our case, the mechanism in play is radically different.
The presence of variation in the timescale and/or in the carry-
ing capacity creates an effective force driving the population
to higher values of the carrying capacity and lower values of
the intergeneration times. The parameter identified as inva-
sion fitness in the deterministic dynamics does not predict
the (likely) outcome of the evolutionary dynamics. Lower
carrying capacities correspond to a higher level of genetic
drift. The intuition is that the evolutionary trajectory drives the
population toward lower values of genetic drift. This effect is
alike to thermophoresis [57] or to what is observed in Brown-
ian motion in presence of a position-dependent diffusion: An
effective force drives the trajectories to lower values of noise
[58]. In our case, the effective force can counterbalance the
sign of the selection coefficient.

Previous works have found similar effects, where differ-
ences in stochasticity can introduce new effective evolutionary
forces. For example, invasion properties are altered by differ-
ent growth rates with a nonconstant population size [29,36], or
disadvantageous altruistic behaviors can be favored if they are
coupled to mechanisms that modify the system noise [44,59–
61]. Moreover, stochasticity can also alter epidemiological
trajectories in SIR models [62], ecological properties [63], or
host-pathogen coevolutionary properties [64]. This highlights
the relevance of genetic drift in shaping evolutionary trajecto-
ries that affects not only the speed of evolution [65] but also
its direction.

One remarkable aspect of our framework is that this effect
turns out to be model independent and determined only by
differences in the timescale and carrying capacity. The three
quantities (invasion fitness, carrying capacity, and timescale)
that effectively determine the trajectory of an evolving popu-
lation are not independent traits. Variation of a given trait can
influence one, two, or all three of them. For instance, in the
example of the chemostat model that we discussed, only one
trait, the resource intake, is under selection pressure. But since
it influences all three quantities, the result of evolution is far
from trivial.

Our predictions could be potentially tested in an experi-
mental setting. The three relevant parameters of a given strain
can be measured in cell cultures in isolation (carrying ca-
pacity, growth rate) and under competition (invasion fitness).
After having measured those parameters for two selected
strains, one can consider repeated competition experiments
of one rare strain invading a second resident strain (and vice
versa with the two populations switched). This can allow us to
estimate the invasion probabilities and directly test Eq. (10).
Clearly, successful invasions are rare events and this implies
that the number of repeated experiments should be very large.
Note that the interesting phenomenology described in this
paper appears when the population size is low enough. To
be more specific, a condition for the interesting regime to
occur [i.e., for the terms proportional to c and r in Eq. (10) to
matter] is that there need to exist some form of evolutionary
trade-off between growth rate and yield (i.e., that mutations
leading to higher invasion fitness correspond to lower carrying
capacities) and that such a trade-off is strong enough [i.e., in
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the extreme case, corresponding to a negative value in Eq. (10)
for a positive s].

Our results could be reminiscent of r/K selection [66,67],
but the connection is not obvious. In saturated environ-
ments, i.e., when populations are close to carrying capacities,
K-selection dominates, favoring strains with high-competitive
abilities (which in our setting correspond to higher values
of φ). In unsaturated environments, r-selection favors strains
with higher fecundity (in our setting, lower values of T ).
We considered the case of a saturated environment, study-
ing evolution when total population abundance was close to
carrying capacity. The effect of demographic stochasticity,
as opposed to environmental fluctuations at the core of r/K
selection, was responsible for nontrivial evolutionary effects
(e.g., the existence of an optimal intake rate in the chemo-
stat model) which disappear in the limit of large population
sizes.

Our results go in the direction of building a model-
independent ecoevolutionary theory. The extent to which the
specific details of ecological interactions influence the evo-
lutionary outcome is a major limitation to the development
of a comprehensive general understanding of ecoevolutionary
trajectories. Our results present a first step in this direction,
as they describe the evolution of a population limited by a
single factor. The next step will be to generalize our frame-
work by considering multiple limiting factors, giving rise to
the coexistence of different populations [68]. As a further
generalization, one can consider different interaction types,
going beyond the competition.

One important hypothesis of our analysis was to consider
the case of strain-independent functional forms of ω(·) and
β(·). This is a key assumption to obtain model-independent
evolutionary trajectories. One could consider the more general
scenario where the functional forms βi(·) and ωi(·) explicitly
depended on strain i in a way that could not be recast to the
one Eq. (3). While this case could be interesting for future
work from a theoretical standpoint, it is important to highlight
that all the commonly used models could be written in terms
of Eq. (3) and did not require introducing strain-dependant
functional forms. Another limitation of our framework, again
related to the choice of ω(·) and β(·), lies in the fact that we
restrict our analysis to a class of models that admit a Lyapunov
function, through the hypothesis of monotonic ω(·). This
framework does not allow to include mechanisms allowing
multistability (e.g., Allee effect).

In this work, we have only considered haploid populations.
The extension to diploid (or complex) traits is numerically
easy to implement, as our setting can be generalized fairly
simply. It is much more complicated to obtain closed equa-
tions for the diffusive limit under a separation of timescales.
Preliminary analysis of numerical examples shows, however,
that, also in the diploid case, evolutionary trajectories are
model independent.

To conclude, our work shows that several aspects of the
population dynamics are details that do not influence the tra-
jectories of an evolving population. Only three demographic
parameters effectively matter. Their variation is subject to
selection in a nontrivial, drift mediated, way, which might
lead to a decrease in what is usually identified as fitness
over time.

APPENDIX A: DEFINITION OF THE
ECOLOGICAL MODELS

1. Logistic growth and competitive Lotka-Volterra

Logistic growth is recovered for ω(z) = z and β(z) = 1.
In this case, the per-capita growth rate of a clonal population,
obtained from Eq. (1), reads

1

N

dN

dt
= 1

T

(
1 − N

K

)
. (A1)

In the case of multiple strains, Eq. (3), we obtain

1

ni

dni

dt
= 1

Ti

⎛
⎝1 −

∑
j

φ j

φi

n j

Kj

⎞
⎠

= 1

Ti

⎛
⎝1 −

∑
j

αi jn j

⎞
⎠. (A2)

This equation recovers a competitive Lotka-Volterra equa-
tion with a specific shape for the interaction-matrix elements:
αi j = φ j/(φiKj ), which constrains the matrix to have rank 1.
In general, the rank of the interaction matrix can be inter-
preted as the number of limiting factors. This is evident in
MacArthur derivation [69] of competitive Lotka-Volterra from
a consumer-resource model, which showed how the interac-
tion coefficients can be interpreted as overlaps in resource
preference. In that setting, the rank of the matrix can be at
most equal to the number of resources. It is not surprising
that our general framework leads to this specific case of com-
petitive Lotkca-Volterra under a single limiting factor, as the
presence of multiple factors would allow for the coexistence
of multiple strains, which is not encompassed in our model,
Eq. (B4).

2. Chemostat

To derive the chemostat dynamics, let us first consider a
clonal population. Let us assume that the per-capita birth rate
depends on the concentration R of some resource, b(N )/N =
αηH (R), where H (·) is some monotonic function of the con-
centration, an intake-rate α, and a conversion factor between
resource intake and biomass η. We assume that the per-
capita death rate is independent of abundance d (N )/N = δ.
The resource concentration changes accordingly to a classic
chemostat equation,

Ṙ = M − αH (R)N, (A3)

where the first term represents a constant influx of resources
and the second term is consumption. We assume that the
resource concentration R quickly reaches a stationary value,
which leads to H (R∗) = M/(Nα) at the stationary value. We
obtain therefore that b(N ) = ηM, from which we get

1

N

dN

dt
=

(
η

M

N
− δ

)
, (A4)

which corresponds to the case β(z) = 1/z and ω(z) = z.
This can be easily extented to multiple strains, following

Ref. [45] in the case of a single resource, by assuming that
αi, ηi, and δi have strain-dependent values, while resource
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concentration changes as

Ṙ = M − H (R)
∑

i

αini, (A5)

from which, after a timescale separation, we obtain Eq. (12).
This model maps in our general framework using Ti =

1/(αiηi), φi = αiηi/δi, and Ki = Mηi/δi.

3. Gompertz growth

Gompertz growth [47] of a clonal population is defined as

1

N

dN

dt
= α log

(
K

N

)
, (A6)

which corresponds to β(z) = 1 and ω(z) = log(z).
We generalize Gompertz growth to the case of multiple

strains as

1

ni

dni

dt
= αi log

(
ki∑

j χ jn j

)
, (A7)

which recovers the classical Gompertz growth dynamics in
the case of a single strain and χ1 = 1. The mapping with
the general framework is obtained uwing: Ti = 1/[αi log(ki )],
φi = log(ki ), and Ki = ki/χi.

4. Generalized Lotka-Volterra

The generalized logistic dynamics [48] in a clonal popula-
tion is defined as

1

N

dN

dt
= 1

Ti

[
1 −

(
N

K

)ν]
, (A8)

where ν is a positive exponent. The generalize logistic dynam-
ics correspond to the choice β(z) = 1 and ω(z) = zν .

The case of multiple strains can be written as follows:

1

ni

dni

dt
= 1

Ti

[
1 −

(∑
j χ jn j

ki

)ν]
, (A9)

whose mapping reads: φi = kν
i and Ki = ki/χi. The simula-

tions of Fig. 5 are obtained for ν = 1/2.

5. Von Bertalanffy model

The von Bertalanffy growth [49] is defined by the equation

1

N

dN

dt
= pNα−1 − q, (A10)

where α ∈ [0, 1). Von Bertalanffy growth corresponds to
β(z) = zα−1 and ω(z) = z1−α .

The natural extension to competing strains reads

1

ni

dni

dt
= pi

⎛
⎝∑

j

χ jn j

⎞
⎠α−1

− qi. (A11)

It is included in the general framework by choosing Ti = 1/pi,
φi = pi/qi, and Ki = (qi/pi )1/(α−1)/χi. The simulations of
Fig. 5 are obtained for α = 2/3.

6. Generalized Moran model

The generalized Moran model [36] is defined by the birth
and death rates,

ni → ni + 1 with rate
ni

Ti

ni → ni − 1 with rate
ni

Ti
α

⎛
⎝1 +

∑
j

n j

K

⎞
⎠,

(A12)

which corresponds to the case β(z) = 1 and ω(z) = α(1 + z),
where α is the same across strains. Note that, in this case,
Ki = K and φi = 1 for all strains.

This corresponds in fact to the “quasineutral” case, where
α, defined as the ratio of death and birth rate, is constant for
each genotype.

APPENDIX B: DETERMINISTIC DYNAMICS
OF MULTIPLE STRAINS

Equation (3) describes the deterministic limit of the dy-
namics in the case of multiple strains. A Lyapunov function
for the dynamical system of Eq. (3) reads

L = −
∑

i

ni

Ki
uiφi +

∫ ∑
j u j n j/Kj

0
dz ω(z), (B1)

where u j = ω−1(φ j ). One can in fact show that

dL

dt
=

∑
i

dni

dt

∂L

∂ni

= − ni

Ki

ui

Tiφi
β

⎛
⎝∑

j

u j
n j

Kj

⎞
⎠
⎡
⎣φi − ω

⎛
⎝∑

j

n j

Kj
u j

⎞
⎠
⎤
⎦2

� 0,

(B2)

under the assumption that β(·) is positive. The second deriva-
tives of L read

∂2L

∂ni∂n j
= 1

KiKj
ω′

⎛
⎝∑

j

n j

Kj
u j

⎞
⎠. (B3)

The Hessian is therefore positive definite if and only if the
function ω(·) is monotonically increasing, i.e., if ω′(·) is a
positive function. Under this assumption, the function L is
a convex function. The fact that the function ω(·) is mono-
tonically increasing also implies that the function defined in
Eq. (B1) is bounded from below.

The existence of a convex Lyapunov function implies that,
in the nondegenerate case (i.e., where multiple populations are
characterized by the same value of φ) there is a unique, glob-
ally stable, fixed point of Eq. (3). By minimizing Eq. (B1),
one obtains that the globally stable fixed point is

n∗
i =

{
Ki, if φi = max j φ j

0, otherwise . (B4)

Unless multiple strains are characterized by the same values
of φi, Eq. (3) does not, therefore, allow the coexistence of
multiple strains. For large times, the community is dominated
by the strain with the largest value of φi.
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APPENDIX C: INTERPRETATION OF PARAMETERS

The parameter Ki represent the carrying capacity of a strain
in isolation. In absence of others, in fact, the birth and death
rate of a strain [Eq. (5)] are equal to each other when ni = Ki.
In particular, they reads

bi(ni )

ni

∣∣∣∣
ni=Ki

= di(ni )

ni

∣∣∣∣
ni=Ki

= β[ω−1(φi )]

Ti
. (C1)

Up to the factor β[ω−1(φi )], the parameter Ti represents there-
fore the expected generation time, i.e., the average interval
between the birth of an individual and the birth of its offspring,
when the population is at carrying capacity. For instance, in
the case of the logistic growth [when β(z) = 1], Ti exactly
corresponds to the generation time at carrying capacity.

Moreover, when a clonal population is rare ni 
 Ki, the
average growth of strain i reads

dni

dt
≈ ni

Ti
β(0)

[
1 − ω(0)

φi

]
. (C2)

The population is therefore expected to grow exponentially,
with growth rate proportional to 1/Ti. The proportionality
constant is model dependent, and in particular depends on
the values ω(0) and β(0). For instance, in the logistic case,
since ω(0) = 0 and β(0) = 1, the growth rate is exactly equal
to 1/Ti. Note that for some of the models, β(z) and/or ω(z)
diverge in the limit z → 0. In those cases, the growth at small
populations abundances is not exponential.

As shown in Appendix B, the values of φ unequivocally
determine which strain survives in the long term and can
therefore be naturally interpreted as fitness. Such an inter-
pretation becomes more clear by considering a rare mutant
or invader spreading in the population in presence of a large
resident population at carrying capacity. Let the strain 1 be a
rare invader (i.e., with initial population n1 ≈ 1 
 K1) and 2
the type of the resident population. Up to small terms (of the
order 1/K1), the Eq. (3) for the invader reads:

dn1

dt
≈ n1

φ1T1
β[ω(φ2)−1](φ1 − φ2), (C3)

where the growth rate is proportional to (φ1 − φ2)/(φ1T1), as
also depicted in Fig. 2.

APPENDIX D: DIFFUSIVE LIMIT OF THE
BIRTH-DEATH PROCESS

Here we are interested in the limit Ki → ∞ of the birth-
death process 5. In such a limit, the stochastic process can be
approximated, via a diffusion limit, with a stochastic differen-
tial equation, which treats the abundances ni as continuous
variables. The diffusion limit can be formally obtained by
truncating the Kramers-Moyal expansion to the leading terms.
Here below we provide an intuitive derivation of the diffusion
limit in the case of one strain. The generalization to an arbi-
trary number of strains does not present any further conceptual
difficulty.

Let us consider a very small interval of time �t 

1/[b(n) + d (n)] such that it is very unlikely that more than
one birth and/or death events occur in �t . This allows us
to write down the probability of having n individuals at time

t + �t as

P(n, t + �t ) = b(n − 1)�tP(n − 1, t )

+ d (n + 1)�tP(n + 1, t )

+ {1 − �t[b(n) + d (n)]}P(n, t ). (D1)

Let us now consider the rescaled variable y = n/K , where
K is the carrying capacity of the strain. The functions that
depended on n ± 1, now depend on y ± 1/K . Since K � 1
we can consider y as a continuous variable and 1/K as a small
increment, which allows us to expand those functions in the
Taylor series. By expanding up to the second term, we obtain

∂t P =
(

b − ∂yb

K
+ ∂2

y b

2K2

)(
P − ∂yP

K
+ ∂2

y P

2K2

)

+
(

d + ∂yd

K
+ ∂2

y d

2K2

)(
P + ∂yP

K
+ ∂2

y P

2K2

)

+ −(b + d )P, (D2)

where we omitted the arguments (y, t ) from all the functions
for the sake of a simpler notation and neglected the terms of
order 1/K3 and higher. By regrouping the terms at different
orders of 1/K , one obtains

∂t P = − 1

K
[(b − d )∂yP + P∂y(b − d )]

+ 1

2K2

[
(b + d )∂2

y P + 2∂yP∂y(b + d ) + P∂2
y (b + d )

]
,

(D3)

which can be simplified to the following Fokker-Plank equa-
tion:

∂t P = 1

K
∂y[(b − d )P)] + 1

2K2
∂2

y [(b + d )P]. (D4)

From this expression one can obtain the deterministic co-
efficient, (b − d )/K , and the diffusion coefficient, (b +
d )/(2K2), and therefore the associated stochastic differential
equation. In the case of A strains, the resulting Fokker-Plank
reads

∂t P =
∑

i

1

Ki

∂

∂yi
[(b − d )P] +

∑
i

1

2K2
i

∂2

∂y2
i

[(b + d )P],

(D5)

which is equivalent to the following system of Itô SDEs:

ẏi = bi(n) − di(n)

K
+

√
bi(n) + di(n)

K2
· ξi

= yi
1

Ti
β[z(n)]

{
1 − ω[z(n)]

φi

}

+
√

yi

Ki

1

Ti
β[z(n)]

{
1 + ω[z(n)]

φi

}
· ξi, (D6)

where ξi is an uncorrelated normal random variable,
〈ξi(t )〉 = 0, 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′), and we defined z(n) =∑

j u jn j/Kj . From this expression one can easily obtain the
Eq. (6) by simply by change of variable ni = yiKi. In the limit
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K → ∞, the fluctuations become negligible and one obtains
the deterministic limit of Eq. (3).

APPENDIX E: SEPARATION OF ECOLOGICAL
AND EVOLUTIONARY TIMESCALES

Let us consider the diffusive dynamics derived above ẏi =
ayi + √

2Dyi · ξi, whose coefficients read:

ayi = yi

Ti
β(z)

[
1 − ω(z)

φi

]

Dyi = yi

2KiTi
β(z)

[
1 + ω(z)

φi

]
,

(E1)

where we have omitted the arguments n in z(n).
When fitness differences are small (i.e., |φi − φ j |/φ j 
 1)

the stochastic dynamics separates in two temporal phases,
depicted in Fig. 3. The first phase corresponds to a fast tran-
sient: The total population size N = ∑

i ni changes to reach
a value close to the carrying capacity. Fitness differences and
stochasticity are negligible in this first transient but determine
the dynamics of the second phase.

We introduce the selection coefficient si = (φ − φi )/φ of
strain i relative to strain 1, where φ = φ1. As we are interested
in the limit si 
 1 and Ki � 1, we can expand Eq. (E1). The
expansion up to the first first order in si and 1/Ki reads,

ayi = yi

Ti
β(z)

[
1 − ω(z)

φ

]
︸ ︷︷ ︸

Fast dynamics

− si
yi

Ti
β(z)

ω(z)

φ︸ ︷︷ ︸
Slow dynamics

Dyi = yi

2KiTi
β(z)

[
1 + ω(z)

φ

]
︸ ︷︷ ︸

Slow dynamics

.

(E2)

This expansion makes apparent the distinction between fast
and slow dynamics. The latter terms are proportional to si or
1/Ki, which are both small, while the former is not propor-
tional to those factors. The fast dynamics [see Fig. 3(a) for an
example with Lotka-Volterra dynamics] is determined by the
first deterministic term in Eq. (E2), independent of Ki and si.
This fast dynamics drives the system to a manifold of solu-
tions where ω(z) = φ, which implies

∑
i ni/Ki = ∑

i yi = 1.
The slow dynamics that follows is determined by the de-

terministic term linear in si and the stochastic term 1/Ki.
The timescale separation allows us to consider the effective
evolution along the slow manifold. Such effective dynamics is
nontrivial (see Fig. 3). The small stochastic terms of the orig-
inal dynamics are no longer negligible and kick the variable
outside the manifold. As soon as the abundances move away
from the manifold, the fast dynamics become relevant again,
and it pushes back—to a nontrivial position—the trajectory
onto the manifold.

To correctly take into account this tension between the
slow and fast terms, the increment of the effective variable
constrained to move along the manifold can be obtained by
projecting the original increment dy onto the manifold fol-
lowing the flow field of the fast dynamics. To perform this
calculation we take advantage of the fact that there exists a
conserved quantity of the fast dynamics. This simplifies a lot
the calculation in Ref. [70]. The derivation is similar to the
computation proposed in Ref. [34].

1. Fast transient and conserved quantity

The deterministic equation describing the fast transient
dynamics reads

dyi

dt
= yi

φTi
β[ω−1(φ)

∑
i

yi]

{
φ − ω

[
ω−1(φ)

∑
i

yi

]}
.

(E3)

This equation has a manifold of marginally stable fixed points,
identified by the simplex

∑
i yi = 1. Any point in this simplex

is a fixed point of Eq. (E3). The dynamics drive the system
to one of these solutions, which will differ depending on the
initial condition.

The existence of a manifold of fixed points is a conse-
quence of a symmetry in the dynamics of Eq. (E3) which
corresponds to the existence of a conserved quantity, which
reads

α(y) := exp

⎡
⎣ A∑

j=2

(
log y j − T1

Tj
log y1

)⎤⎦. (E4)

From which one obtains

dα(y)

dt
=

∑
i

dyi

dt

∂α

∂yi
= −dy1

dt

T1

y1

∑
j

1

Tj
+

A∑
j=2

1

y j

dy j

dt
= 0.

(E5)

In the simple case of two strains, the conserved quantity
reads:

α(y1, y2) = y−T1/T2
1 y2. (E6)

2. Effective slow dynamics

The value of the function (E4) does not change along the
flow field of the fast dynamics and it allows us to correctly cal-
culate the projection onto the slow manifold. In the following,
we consider the case of two strains.

Due to the presence of the terms proportional to si and 1/Ki

in Eq. (E2) the value of α(y) is not conserved during the slow
dynamics. The time evolution of α(y) can be obtained from
Eq. (E2) using Itô calculus,

dα

dt
= ∂α

∂y1

(
ay1 + √

2Dy1 · ξ1
)

+ ∂α

∂y2

(
ay2 + √

2Dy2 · ξ2
) + 1

2

∂2α

∂y2
1

2Dy1 , (E7)

where a and D are the deterministic and diffusion terms ap-
pearing in Eq. (E2): dyi/dt = ayi + √

2Dyi · ξi. The term with
a second-order derivative of y2 is equal to zero because α is
linear in y2. The term with mixed y1 and y2 derivatives equals
zero because the two noises are uncorrelated. By writing ex-
plicitly all the terms, one obtains:

dα

dt
= β(z)

α(y1, y2)

T2

[
ω + φ

φ

c(1 + r)

2K2y1r
− s

ω

φ

]

+ α(y1, y2)

√
β(z)

ry1 + cy2

2y1y2rT2K2

ω + φ

φ
· η, (E8)
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where η is a white Gaussian noise and r = T2/T1, c = K2/K1,
and s = s2 
 1.

The key point of the derivation that follows is that the
change of α outside the manifold is the same on the man-
ifold for a variable projected through the flow field. Let us
parametrize the position on the manifold as �(y) = (ỹ, 1 − ỹ),
where the variable ỹ corresponds to y1 when constrained to be
on the slow manifold. The change in α for the full dynamics
is equivalent to the one obtained by constraining the dynamics
on the slow manifold

dα(y1, y2) = dα(ỹ, 1 − ỹ). (E9)

This implies that the dynamics of α, evaluated for the vari-
ables on the manifold, follow Eq. (E8),

dα

dt

∣∣∣∣
�

= β[ω−1(φ)]
α(ỹ)

T2

[
c(1 + r)

K2ỹ r
− s

]

+ α(ỹ)

√
β[ω−1(φ)]

rỹ + c(1 − ỹ)

ỹ(1 − ỹ)rT2K2
· η. (E10)

In the following we will remove the term β[ω−1(φ)] as it can
always be reabsorbed in the definition of β(·).

One can then derive the expression for the rescaled abun-
dance on the slow manifold ỹ using the Itô formula from
Eq. (E10):

dỹ

dt
= dỹ

dα
(aα +

√
2Dα · η) + 1

2

d2ỹ

dα2
2Dα. (E11)

To perform the calculation, one needs to compute the first
and second derivatives by using the derivatives of the inverse
function α(y):

dy

dα
=

(
dα

dy

)−1 d2y

dα2
= −

(
dα

dy

)−3 d2α

dy2
. (E12)

Putting everything together, the final expression for the slow
variable is the following:

dỹ

dt
= ỹ(1 − ỹ)

(1 − ỹ + rỹ) T1

{
s + 1

K2(1 − ỹ + rỹ)

×
[

1 − rc + r(1 − c)

(1 − ỹ + rỹ)

]}

+
√

ỹ(1 − ỹ)

K2 (1 − ỹ + rỹ)2 T1
[rỹ + c(1 − ỹ)] · η. (E13)

One can express the dynamics in terms of the frequency
x = n1/(n1 + n2), which is related with the rescaled abun-
dance ỹ = n1/K1 as x = ỹ/[c + ỹ(1 − c)]. By using again Itô
calculus, one finally obtains

dx

dt
= x(1 − x)c

T1cr

{
s + − c

K2cr

×
[

rc − 1 − (1 − c)

(
rc

cr
− 2r

)]}
+

√
x(1− x)c3r

T1K2cr2 · η,

(E14)

where we used the notation f = x f + 1 − x This equation is
equivalent to Eq. (7).

APPENDIX F: INVASION PROBABILITY

The question that we address now is whether a mutant
strain that appears in a population composed of only one res-
ident strain can invade and overcome the original population.
To this end, we need the fixation probability π1(ỹ), i.e., the
probability that, given the initial rescaled abundance ỹ, the
species will reach ỹ = 1 [notice that the same computation
can be done starting from the frequencies (E14) leading to the
same result].

The fixation probability can be obtained by solving the
differential equation L+π1(ỹ) = 0, where L+ is the backward
operator of the stochastic process, and the boundary condi-
tions are π1(0) = 0 and π1(1) = 1. This leads to the following
formula:

aỹ
dπ1

dỹ
+ Dỹ

d2π1

dỹ2
= 0, (F1)

The solution of this equation reads:

π1(ỹ) = L(ỹ)

L(1)
, (F2)

where

L(ỹ) =
∫ ỹ

0
exp[−I (y′)]dy′, (F3)

and

I (y) =
∫ y ay(y′)

Dy(y′)
dy′. (F4)

The invasion probability for the first species, p1 fix, is the fixa-
tion probability starting from one individual n1 = 1, then ỹ =
1/K1. Since 1/K1 
 1 we can try to compute it by expanding
in the Taylor series the fixation probability around zero. In this
way, we can simplify the integrals (which can be expressed
exactly as a combination of hypergeometric functions):

p1 fix = π1

(
1

K1

)
� π1(0) + 1

K1

dπ1

dy
(0)

= exp[−I (0)]

K1L(1)
(F5)

One can obtain also the invasion probability of the second
species by noting that the fixation probability reads π2(1 −
ỹ) = 1 − π1(ỹ). The fixation probability has to be evaluated at
ỹ = 1 − 1/K2, when there is only one individual of the second
species and the first one is at carrying capacity. Similarly as
before, one can obtain the invasion probability by expanding
for 1/K2 
 1:

p2 fix � 1 − π1(1) + 1

K2

dπ1

dy
(1) = exp [−I (1)]

K2L(1)
. (F6)

If one considers the ratio between these two probabilities [and
neglecting the terms O(1/K2)], then the dependency with the
integral L disappears:

p1 fix

p2 fix
= c exp [I (1) − I (0)], (F7)
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which leads to

log
p1 fix

p2 fix
= sK2

r − 1

r − c

+ sK2 r(c − 1) − (1 − rc)(r − c)

(r − c)2
log

c

r
. (F8)

One can notice that in the case r = c this expression is odd
defined. The case r = c can be obtained by repeating the full
calculation for r = c. One obtains

log
p1 fix

p2 fix

∣∣∣∣
r=c

= r + 1

r

(
sK2

2
+ 1 − r

)
. (F9)

APPENDIX G: SIMULATION OF THE
INVASION PROBABILITY

All the trajectories used in the simulations are generated
through a standard Gillespie algorithm for the birth-death
process under study.

A straightforward approach can be to generate R indepen-
dent trajectories, where the first strain starts at n1 = 1, and the
abundance of the second strain is sampled from the stationary
distribution of the process without type 1: ñ2 ∼ Pstat 2. The
invasion probability is then just

p1 fix =
∑

n2

Pstat 2(n2)P(n2 → 0|1, n2)

≈
∑

ñ2∼Pstat 2

I(n2 → 0|1, ñ2)

R
,

(G1)

where P(n2 → 0|n1, n2) represents the probability of the
event n2 → 0, i.e., the second population gets extinct, given
an initial number of individuals (n1, n2). I(n2 → 0|n1, n2)
is the indicator function that is 1 if the event n2 → 0 for
a trajectory starting from (n1, n2) does occur. However, this
approach is very inefficient, since these counts in a simulation
are very small (for the parameter setting typically considered,
an invasion event is very rare), and a long computational time
is needed to have a sufficient amount of samples.

We consider an alternative approach. First, one can observe
that, using Bayes rule and the fact that the process is Marko-
vian, the invasion probability can be rewritten by splitting the
extinction of the second strain in the probability that the first
species reaches a given threshold n1 = k or not:

P(n2 → 0|1, n2) = P(n2 → 0 & n1 → k|1, n2)

+ P(n2 → 0 & ¬(n1 → k)|1, n2), (G2)

where & is the logical and ¬ is the logical negation. The event
n1 → k means that the trajectory has reached (at least once in
the past) the value k. One can then split the simulation in two
parts. One simulates R trajectories starting from n1 = 1 and
n2 sampled from Pstat 2 as before. Then one counts the events
of extinction of the second species when the first one does not
cross k, giving an estimate of the second addendum above.
Otherwise, if n1 reaches k, then the simulation is stopped,
and the number of individuals of the second type is recorded
in a set of values {nk

2}. The second part of the simulation
consists in generating new R trajectories starting from n1 = k
and n2 sampled at random from the list {nk

2}. Note that R
is greater (or equal) than the number of trajectories that in

the previous simulation have reached n1 → k. However, the
sampling from {nk

2} ensures that the statistics of n2 when n1

hits k is reliable, and, therefore, these new trajectories behave
like continuations of the previous ones. Given this new set of
R trajectories, the count of the events of the second species
extinction estimates the first addendum of the equation above.
Note that, in this way, when n1 starts from k, the extinction
probability is larger, and the counts for its computation in-
crease, leading to better precision. In symbols:

p1 fix ≈
∑

ñ2∼Pstat 2

I(n2 → 0 & ¬(n1 → k)|1, ñ2)

R

+ I(n2 → 0 & n1 → k|1, ñ2)

R

∑
ñk

2∼{nk
2}

I
(
n2 → 0|k, ñk

2

)
R

.

(G3)

To further improve the statistics, one can add several increas-
ing thresholds (k1, . . . , kK ), and the invasion probability can
be obtained with the following iterative formula:

p1 fix(ki ) ≈
∑

ñ
ki
2 ∼{nki

2 }

I(n2 → 0 & ¬(
n1 → ki+1)

∣∣ki, ñki
2

)
R

+ I
(
n2 → 0 & n1 → ki+1

∣∣ki, ñki
2

R
p1 fix(ki+1),

(G4)

where p1 fix(k0) = p1 fix.

APPENDIX H: EVOLUTION IN THE CHEMOSTAT MODEL

We consider the chemostat model

ni → ni + 1 with rate ni
ηiαiM∑

j α jn j

ni → ni − 1 with rate niδi,

(H1)

with one constraint to the parameters of the model: δi/ηi =
αi + α0, with α0 
 1. The question that we address is which
evolutionary outcome one can expect when the parameter α

can mutate. The answer depends on the details of how the two
parameters δi and ηi depend on α, and also if one considers
invasions through or without mutations.

Let us first map the chemostat parameters into the gen-
eral framework. The carrying capacity ratio c and the
parameter sK2 read as follows: c = α1/α2, sK2 ≈ Mα0(α1 −
α2)/(α1α

2
2 ). The timescale ratio r depends instead on how δ

and η depends on α. In particular, we need to separate the
cases in which the dependency is contained in the death rate
or in the efficiency.

In the main text we consider the case δi = η0(αi + α0) and
ηi = η0, which corresponds to, at the leading order in α0, r =
c = α1/α2 and leads to Eq. (13).

The other case considers a constant death rate δ0, and
ηi = δ0/(αi − α0). This leads to r = 1 and c = α1/α2. Using
Eq. (10) we obtain the ratio of the invasion probabilities
is larger than one if α2 < α1 < Mα0/α2. The evolutionary
equilibrium situation is obtained when α∗ = √

α0M, which
differs from the constant-efficiency case by a constant factor.
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A different scenario appears if one instead considers invasions
through mutation, as described by Eq. (11). One can obtain
that the invasion is always possible if α1 > α2, implying that
evolution drives the system to larger and larger values of the
intake rate α.

Deriving the distribution of intake rate

In the simulation of Fig. 4 of the main text, α can mutate
taking discrete-equispaced values, {αi}, with a very small mu-
tation probability that guarantees that the periodic selection
regime holds. In this case, one can predict the distribution
p(α) at equilibrium assuming a jump process which satisfies

the detailed balance: p(αi )p(αi → αi+1) = p(αi+1)p(αi+1 →
αi ). The transition probabilities are exactly the invasion prob-
abilities through mutations of Eq. (11):

p(αi → αi+1)

p(αi+1 → αi )
= m fix(αi, αi+1)

m fix(αi+1, αi )
(H2)

where m fix(α1, α2) is the invasion probability through mu-
tations of a population having intake rate α1 in a resident
population having α2. Since this ratio is given by Eqs. (11)
and (10), one can derive all the ratios between consecutive
rates p(αi )/p(αi+1). All these conditions plus the normaliza-
tion allow finding all the values of the probability distribution
p(αi ).
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