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Uncovering the effect of RNA polymerase steric interactions on gene expression noise: Analytical
distributions of nascent and mature RNA numbers
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The telegraph model is the standard model of stochastic gene expression, which can be solved exactly to
obtain the distribution of mature RNA numbers per cell. A modification of this model also leads to an analytical
distribution of nascent RNA numbers. These solutions are routinely used for the analysis of single-cell data,
including the inference of transcriptional parameters. However, these models neglect important mechanistic
features of transcription elongation, such as the stochastic movement of RNA polymerases and their steric
(excluded-volume) interactions. Here we construct a model of gene expression describing promoter switching
between inactive and active states, binding of RNA polymerases in the active state, their stochastic movement
including steric interactions along the gene, and their unbinding leading to a mature transcript that subsequently
decays. We derive the steady-state distributions of the nascent and mature RNA numbers in two important
limiting cases: constitutive expression and slow promoter switching. We show that RNA fluctuations are
suppressed by steric interactions between RNA polymerases, and that this suppression can in some instances even
lead to sub-Poissonian fluctuations; these effects are most pronounced for nascent RNA and less prominent for
mature RNA, since the latter is not a direct sensor of transcription. We find a relationship between the parameters
of our microscopic mechanistic model and those of the standard models that ensures excellent consistency in their
prediction of the first and second RNA number moments over vast regions of parameter space, encompassing
slow, intermediate, and rapid promoter switching, provided the RNA number distributions are Poissonian or
super-Poissonian. Furthermore, we identify the limitations of inference from mature RNA data, specifically
showing that it cannot differentiate between highly distinct RNA polymerase traffic patterns on a gene.
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I. INTRODUCTION

The widespread availability of RNA data in single cells has
spurred a large amount of theoretical work on gene expres-
sion over the past two decades [1–9]. Snapshot measurements
of the transcript numbers over a population of cells reveal
large cell-to-cell variability in bacteria [10], yeast [11], and
mammalian cells [12]. This variability can be more directly
appreciated by following transcription dynamics in a single
cell, which demonstrates that transcription does not occur
continuously, but rather at random times and in bursts [13].
A main focus of mathematical models of gene expression has
been to understand the origin of this noise, and also how cells
tolerate, control, and possibly exploit it from the perspective
of biological function [14–17].

Stochastic models of gene expression are predominantly
based on the (random) telegraph model [18], which describes
switching between two promoter states (active and inactive),
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synthesis of a mature transcript from the active state and its
subsequent degradation. By assuming that the dynamics are
Markovian, one can write a time-evolution equation for the
joint probability distribution of the promoter state and the
number of RNA molecules, which can be solved exactly in
steady state and also in time [19]. It has become common to
fit the steady-state solution of this model to distributions of the
number of RNA per cell obtained from single molecule fluo-
rescence in situ hybridization (smFISH) [11,20] or single-cell
RNA sequencing (scRNA-seq) experiments [21,22]. Provided
the RNA decay rate is estimated experimentally, this fitting
leads to estimates of the transcriptional parameters (the rate
of switching to the active state, the rate of switching to the off
state and the synthesis rate) for any gene of interest.

A criticism of this fitting procedure is that mature RNA
numbers are not a direct sensor of transcription, as they are
affected by other processes downstream of transcription, such
as splicing and nuclear export. To overcome this criticism,
models were developed to predict the distributions of nascent
RNA, i.e., RNA that is attached to transcribing RNA poly-
merases (RNAPs) moving along a gene during transcriptional
elongation [23,24]. These models are non-Markovian because
nascent RNA does not decay via a first-order reaction (as
mature RNA), but rather its removal is assumed to occur after
a fixed deterministic time equal to the total time of elongation
and termination. Fitting the steady-state solution to single-cell
nascent RNA data also leads to estimation of transcriptional
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parameters, which may differ significantly from those esti-
mated using mature mRNA data [25]. This makes a strong
case for developing more accurate mathematical models of
nascent RNA fluctuations.

A disadvantage of current stochastic models of nascent
RNA dynamics with explicit analytical solutions [23,24,26–
29] is that they implicitly assume RNAPs move determin-
istically along the gene, hence they do not interact with
each other. This is clearly an over-simplification, since the
frequency of such interactions should at least be significant
for highly transcribed genes [30]. A significant number of
computational studies have been undertaken to model the
fine-scale dynamics of transcriptional elongation, such as
volume-excluded (steric) interactions between RNAPs, ubiq-
uitous pausing and backtracking, interaction of RNAPs with
nucleosomes, and the mechanochemical cycle of RNAP
movement [30–46]. However, none of these studies have an-
alytically derived the steady-state single-cell distributions of
nascent and mature RNA numbers.

In this paper, we take a first step toward achieving
this goal by deriving the nascent and mature RNA num-
ber distributions for a stochastic model of gene expression
that explicitly includes volume-excluded interactions between
RNAPs. Specifically, the movement of RNAPs in this model
is the same as that of the well known totally asymmetric
simple exclusion process (TASEP) with uniform hopping
rates [47,48]. While our model does not have all the detailed
fine-scale biological detail of some of the aforementioned
simulation-based studies, it provides a minimalist description
of RNAP traffic on a gene that makes the transcript number
distributions analytically tractable.

The paper is structured as follows. The constitutive model
with RNAP volume exclusion is studied in Sec. II. The
telegraph model with RNAP volume exclusion is studied in
Sec. III. The results from the two models are summarized and
discussed in Sec. IV.

II. CONSTITUTIVE MODEL WITH RNAP VOLUME
EXCLUSION

We first consider a model of constitutive gene expression,
i.e., a gene that is constantly expressed and is not subject to
regulation. The gene body is coarse-grained into L segments
of length � ≈ 35 nucleotides, which is the footprint size of
RNAP [49–51]. Hence, each segment i = 1, . . . , L is either
empty or is occupied by an RNAP. Transcription starts by
the binding of an RNAP to a promoter, which is followed
by a sequence of steps, including promoter opening, promoter
escape, promoter-proximal pausing, and pause release, after
which the elongation of the nascent transcript starts. We lump
all these initiation phase processes together into a single-step
reaction with rate α. We note that the elongation phase can
only start, i.e., RNAP can only be released into the first
segment, provided this segment is empty. Subsequently, the
RNAP moves forward stochastically one segment at a time,
provided the neighboring segment in front of the RNAP is
empty. We denote by ω the hopping rate at which the RNAP
moves from a segment to the next one. This rate has units of
inverse time, and it is related to the measured elongation rate
in the absence of volume exclusion (in nucleotides per second)

FIG. 1. Illustration of the constitutive model of transcription with
RNAP volume exclusion. The gene is divided into L segments, each
having a size equal to the footprint of a single RNAP. Transcription
initiation is modelled by a single-step reaction that occurs at rate α,
provided the first segment is empty. RNAPs move along the gene
with rate ω, provided the segment in front is empty. As elongation
progresses, the nascent RNA tail attached to the RNAP grows. Ter-
mination with rate β leads to the unbinding of the RNAP-nascent
RNA complex (transcription elongation complex) from the gene and
its dissociation into the free RNAP and the free RNA (mature RNA)
that is subsequently degraded with rate dM .

by the formula

ω = elongation rate [nt/s]

RNAP footprint size [nt]
. (1)

Transcription termination occurs at the rate β from the last
segment, after which the RNAP is removed from the lattice
and a mature RNA is produced. The mature RNA degrades
stochastically with rate dM . The model is schematically pre-
sented in Fig. 1. The full model can be summarized as

free RNAP + ∅1
α−→ RNAP1, (2a)

RNAPi + ∅i+1
ω−→ ∅i + RNAPi+1, i ∈ [1, L − 1] (2b)

RNAPL
β−→ ∅L + free RNAP + RNA, (2c)

RNA
dM−→ ∅, (2d)

where free RNAP denotes an RNAP that is not actively en-
gaged in transcription, RNAPi denotes an RNAP positioned at
the segment i, ∅i denotes that the segment i is empty, and RNA
denotes the mature RNA. Since the number of free RNAPs
is large, we can approximate the second-order reaction in
Eq. (2a) by a quasi first-order reaction ∅1 −→ RNAP1, where
the rate α is proportional to the number of free RNAPs.

We note that a subset of the model describing the RNAP
dynamics [Eqs. (2a)–(2c)] has been studied in various con-
texts, some of which are nonbiological, and is known as the
totally asymmetric simple exclusion process (TASEP) [52].
In the TASEP, there is no explicit tracking of mature RNA.
Hence, to clearly distinguish our model from the TASEP and
from other models that we consider later on, we refer to the
model defined by Eqs. (2a)–(2d) as the constitutive model
with RNAP volume exclusion (vCM for short). We note that
since our model describes movement on the coarse length
scale of an RNAP, not at the single nucleotide level, it does not
have an explicit description of processes occurring over few
base pairs such as backtracking or pausing; to some extent,
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these processes can be captured by a suitable renormalization
of the hopping rate (see Sec. IV for further discussion).

To track RNAPs along the gene, we introduce a variable τi

such that τi = 0 if the segment i is empty, and τi = 1 if the
segment i is occupied by an RNAP. The number of RNAPs on
the gene, denoted by n, is given by

n =
L∑

i=1

τi. (3)

We denote the number of mature RNA by m. We refer to
C = {τ1, . . . , τL} as a configuration of RNAPs along the gene.
The joint probability to find RNAPs in a configuration C and
m copies of mature RNA at time t is denoted by P(C, m, t ).
We are interested in the steady state, in which case we drop
the time dependence and consider only the joint probabil-
ity P(C, m). The marginal distribution of RNAPs along the
gene is obtained by summing P(C, m) over all m, P(C) =∑∞

m=0 P(C, m). We define a local density of RNAPs at a
segment i as

ρi = 〈τi〉 =
∑

C

P(C)δτi,1, (4)

where δi, j is the Kronecker delta. The transcription rate at
which new mature RNA is produced is defined as the local
density ρL, multiplied by the termination rate β, ksyn = ρLβ.
In the steady state, the transcription rate is equal to the current
of RNAPs along the gene,

ksyn = J = α(1 − 〈τ1〉) = ω〈τi(1 − τi+1)〉 = βρL. (5)

The probability distributions of the number of RNAPs on the
gene and the number of mature RNA are defined as, respec-
tively,

PN (n) =
∑

C

P(C)δ∑
i τi,n, (6a)

PM (m) =
∑

C

P(C, m). (6b)

We note that the distribution of the number of RNAPs on the
gene is the same as the distribution of the number of nascent
RNA since to each gene-bound RNAP, a nascent RNA tail is
attached. Analytical results are known for P(C), J and ρi from
the exact solution of the TASEP [48], and are summarized in
Sec. II B. Results for the distributions PN (n) and PM (m) are
new, and are derived in Secs. II C and II D, respectively.

Before we present the results for PN (n) and PM (m), we
consider a much simpler model in which elongation and termi-
nation processes are assumed to be deterministic, and in which
there are no RNAP volume-exclusion effects. This model is
exactly solvable and will serve as a useful benchmark for un-
derstanding the effect of RNAP collisions on the distributions
of nascent and mature RNA numbers.

A. Delay constitutive model

This model approximates elongation and termination by
a series of delay reactions (indicated by double arrows) that
take a fixed amount of time to finish. The model is effectively

defined by the reaction scheme

free RNAP
α−→ RNAP1, (7a)

RNAPi
1/ω	⇒ RNAPi+1 for i ∈ [1, L − 1], (7b)

RNAPL
1/β	⇒ free RNAP + RNA, (7c)

RNA
dM−→ ∅. (7d)

Here, 1/ω is the fixed time it takes an RNAP to move across
one segment, and 1/β is the fixed time it takes an RNAP to
terminate from the last segment. As before, we assume that
the number of free RNAPs is large so that it can be absorbed
in the initiation rate α. We refer to this model as the delay
constitutive model.

The total time of elongation and termination is fixed and
equal to

Tel = L − 1

ω
+ 1

β
. (8)

Since elongation and termination are deterministic, the tran-
scription rate ksyn equals the rate of initiation α,

ksyn = α. (9)

The local density of RNAPs on the gene can be computed
from that fact that the number of initiation events in a given
time interval t is a Poisson random variable with parameter αt .
The time an RNAP stays in the segment i is equal to 1/ω for
i = 1, . . . , L − 1 and 1/β for i = L, hence the local density ρi

is equal to

ρi =
{

α
ω

i = 1, . . . , L − 1,
α
β
, i = L.

(10)

Since the model ignores excluded volume interactions be-
tween RNAPs, the local density ρi becomes larger than 1
if α > ω or α > β, which is not physical. This model is
therefore justified only for α < ω and α < β.

The number of RNAPs on the gene n is equal to the number
of initiations in the time interval Tel, hence

PN (n) = (αTel )n

n!
e−αTel . (11)

The mean and the variance of this distribution are

μN = αTel, σ 2
N = αTel, (12)

and the Fano factor FFN (the variance divided by the mean) is
equal to 1. Combining Eqs. (9) and (12) gives

μN = ksynTel. (13)

In queuing theory, this relationship is known as Little’s law
[53,54], which states that the long-time average number of
customers in a queue is equal to the arrival rate ksyn multiplied
by the long-time average of the time spent in the queue, Tel.

Due to the deterministic nature of elongation and termina-
tion, the mature RNA effectively follows a birth-death process
with the birth rate equal to α and the death rate equal to dM ,

∅ α−→ RNA
dM−→ ∅. (14)
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TABLE I. Different regimes of the steady-state TASEP.

Regime Parameter range Local RNAP density ρi Transcription rate J

Initiation-limited regime (IL) α < ω/2 and β > α α/ω α(1 − α/ω)
Termination-limited regime (TL) β < ω/2 and α > β 1 − β/ω β(1 − β/ω)
Coexistence line (IL/TL) α = β < ω/2 Linearly increasing α(1 − α/ω)
Elongation-limited regime (EL) α, β > ω/2 1/2 ω/4

The steady-state probability distribution PM (m) is the Poisson
distribution with the parameter α/dM ,

PM (m) = (α/dM )m

m!
e−α/dM . (15)

The mean and the variance of this distribution are

μM = α

dM
, σ 2

M = α

dM
, (16)

and the Fano factor FFM is equal to 1.

B. Summary of known results for the TASEP in the steady state

The steady-state probability P(C) is known exactly and can
be written in the following matrix-product form [48],

P(τi, . . . , τL ) = 1

ZL
〈W |

L∏
i=1

[τiD + (1 − τi )E ]|V 〉, (17)

where D and E are infinite-dimensional matrices that satisfy

DE = D + E , (18)

〈W | and |V 〉 are infinite-dimensional vectors that satisfy

〈W |E = ω

α
〈W |, D|V 〉 = ω

β
|V 〉, (19)

and ZL is the normalization,

ZL = 〈W |(D + E )L|V 〉. (20)

We note that the matrices D and E are not uniquely defined
[48]; however, the relations above are sufficient for all practi-
cal calculations.

An explicit formula for ZL in terms of α, β, and ω is

ZL =
L∑

p=0

BL,p

p∑
q=0

(ω

α

)q
(

ω

β

)p−q

, (21)

where

Bk,p =
{

p
2k−p

(2k−p
k

)
, p = 1, . . . , k,

0 otherwise.
(22)

The steady-state RNAP current J , which equals the transcrip-
tion rate ksyn, reads

ksyn = J = β〈W |(D + E )L−1D|V 〉
ZL

= ωZL−1

ZL
, (23)

and the local RNAP density ρi is given by

ρi = 1

ZL
〈W |(D + E )i−1D(D + E )L−i|V 〉

=
L−i∑
p=1

Bp,1
ZL−p

ZL
+ Zi−1

ZL

L−i∑
p=1

BL−i,p

β p+1
. (24)

In the limit L → ∞, J simplifies to

J =

⎧⎪⎪⎨
⎪⎪⎩

α
(
1 − α

ω

)
, α < ω

2 , β > α,

β
(
1 − β

ω

)
, β < ω

2 , α > β,

ω
4 , α, β > ω

2 .

(25)

Away from the boundaries, the local density ρi is approxi-
mately constant and equal to

ρ =

⎧⎪⎪⎨
⎪⎪⎩

α
ω
, α < ω

2 , β > α,

1 − β

ω
, β < ω

2 , α > β,

1
2 , α, β > ω

2 .

(26)

The exception is for α = β < ω/2, for which the local density
increases linearly from α/ω at the left boundary to 1 − β/ω

at the right boundary.
Different regimes of the TASEP depending on the initiation

and termination rates with respect to the hopping rate ω are
summarized in Table I. In the low-density or initiation-limited
(IL) regime (α < ω/2 and β > α), ρ = α/ω and the tran-
scription rate is controlled by the initiation rate, ksyn = α(1 −
α/ω). In this regime, transcription is rate-limited by initiation,
which is usually stated as the most likely scenario under
physiological conditions. In the high-density or termination-
limited (TL) regime (β < ω/2 and α > β), ρ = 1 − β/ω, and
the transcription rate is controlled by the termination rate,
ksyn = β(1 − β/ω). In this regime, there is a long queue of
RNAPs spanning from the termination site toward the be-
ginning of the gene. We are unaware of such scenario being
observed in vivo, though. On the coexistence (IL/TL) line
between these two phases (α = β < ω/2), the local density
increases linearly along the gene and the transcription rate is
equal to ksyn = α(1 − α/ω). This is a very specific regime that
occurs only when the initiation rate is equal to the termination
rate. Finally, in the maximum-current or elongation-limited
(EL) regime (α > ω/2 and β > ω/2), ρ = 1/2, and the tran-
scription rate depends only on the hopping rate ω, ksyn = ω/4.
In this regime, transcription dynamics is fully controlled by
the elongation rate ω. Any further increase in the initiation
and termination rates has no effect on the dynamics.

In comparison to these results, the delay constitutive model
predicts ρ = α/ω and ksyn = α, which makes sense only if
α < ω.

C. Probability distribution of the number of nascent RNA

Our strategy is to compute the probability generating func-
tion GN defined as

GN (z) =
L∑

n=0

PN (n)zn. (27)
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Using Eqs. (6a) and (17), it is straightforward to show that

GN (z) = 1

ZL
〈W |(zD + E )L|V 〉. (28)

The calculation of GN (z) is presented in Appendix A, and the
final result is

GN (z) = 1

ZL

L∑
k=1

k

L
uL−k,L(z)vk (z), (29)

where up,n(z) and vk (z) are given by

up,n(z) =
n∑

m=1

(
n

m

)(
p + m − 1

p

)
(z − 1)n−m, (30a)

v0(z) = 1, (30b)

vk (z) =
k∑

i=0

(
αz − α + 1

αz

)i 1

βk−i

− z − 1

z

k−1∑
i=0

(
αz − α + 1

αz

)i 1

βk−1−i
, k � 1. (30c)

From here, we get PN (n) by expanding GN (z) in z and collect-
ing the terms containing zn,

PN (n) = 1

n!

dn

dzn
GN (z)

∣∣∣∣
z=0

. (31)

The mean μN is equal to the spatial average of the local
density ρi given by Eq. (24),

μN = 1

L

L∑
i=1

ρi, (32)

and the variance σ 2
N can be computed from

σ 2
N = d2GN (z)

dz2

∣∣∣∣
z=1

+ μN (1 − μN ). (33)

The Fano factor of the nascent RNA number is given by

FFN = 1 − μN + 1

μN

d2GN (z)

dz2

∣∣∣∣
z=1

. (34)

We were not able to find a simple expression for the variance
and the Fano factor FFN for arbitrary α/ω and β/ω. For
the special case α/ω = β/ω = 1, σ 2

N = L(L + 2)/(8L + 4)
was computed previously in Ref. [55]. In the limit in which
L → ∞, this result yields FFN = 1/4. We have checked nu-
merically for L = 100 that FFN ≈ 1/4 for other values of α

and β in the elongation-limited regime.
While the distribution PN (n) does not seem to be related to

any known distribution, we know from the exact solution of
the TASEP that for α + β = ω, P(τ1, . . . , τL ) simplifies to a
product of Bernoulli distributions [56],

P(τ1, . . . , τL ) =
L∏

i=1

[τiρ + (1 − τi )(1 − ρ)], (35)

where ρ = α/ω = 1 − β/ω. For this distribution, the local
density ρi is equal to ρ at any segment, i.e., the density

of RNAP is uniform along the gene body. By inserting this
distribution into Eq. (6a), we get a binomial distribution

PN (n) =
(

L

n

)
ρn(1 − ρ)L−n. (36)

The mean and the variance of this binomial distribution are
Lρ and Lρ(1 − ρ), respectively, and the Fano factor is given
by

FFN = 1 − ρ. (37)

This Fano factor is always less than 1, and becomes vanish-
ingly small in the limit ρ → 1. The skewness of the binomial
distribution in Eq. (36) is given by (1 − 2ρ)/

√
ρ(1 − ρ)L,

hence the distribution is right-skewed for ρ < 1/2, symmet-
rical for ρ = 1/2, and left-skewed for ρ > 1/2. In the limit
in which L → ∞ and ρ → 0 such that λ ≡ Lρ is fixed, the
binomial distribution becomes the Poisson distribution with
the rate parameter λ. This limit corresponds to the delay
constitutive model.

To check how well the binomial distribution [Eq. (36) with
ρ given by Eq. (26)] approximates the exact one [Eq. (31)]
across the parameter space, i.e., without imposing the condi-
tion α + β = ω, we computed the Hellinger distance (which
varies between 0 and 1) between these two distributions
for 2500 combinations of α/ω and β/ω, equally spaced
between 0 and 1 [Fig. 2(a)]. As expected, the Hellinger
distance is small in the initiation-limited and termination-
limited regimes away from the regime boundaries [Figs. 2(b)
and 2(c)], and is exactly zero on the special line α + β =
ω. The largest difference between the distributions is ob-
served at the coexistence line between the initiation-limited
and termination-limited regimes (α = β < ω/2) [Fig. 2(d)],
where the local density has a linear profile [48]. Significant
differences are also observed at the boundaries between the
initiation-limited and the elongation-limited regimes, between
the termination-limited and the elongation-limited regimes,
and in the entire elongation-limited regime [Fig. 2(e)]. These
discrepancies are due to the algebraic decay of the local
density toward its value of 1/2 in the middle of the gene
[48]. In the elongation-limited regime, the Fano factor is ap-
proximately equal to 1/4, whereas the binomial distribution
predicts the value of 1/2. Simulations in Fig. 2 also confirm
the theoretical transition from the left-skewed to the right-
skewed nascent RNA distributions as ρ crosses the threshold
of 1/2 [Figs. 2(b) and 2(c)]—similar transitions have been
reported in studies of crowding-induced phenomena in other
chemical reaction systems [57]. The simulations in Fig. 2 and
in the rest of the paper were performed using the Gillespie
algorithm [58].

From Eq. (12), it follows that the mean number of nascent
RNA predicted by the delay constitutive model is αTel ≈
Lα/ω. Comparing this result to that from the constitutive
model with RNAP exclusion, ρL, we conclude that the two
match only in the initiation-limited regime for small α, such
that J ≈ α and ρ = α/ω. It is, however, possible to extend
the constitutive delay model such that its mean nascent RNA
number matches that of the constitutive model with RNAP
beyond this regime. This can be achieved by replacing the
initiation rate α in the delay model with an effective initiation
rate given by αeff = J , where J is the transcription rate in the
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FIG. 2. Accuracy of the binomial approximation for the steady-state nascent RNA number distribution in the constitutive model with
RNAP volume exclusion. (a) Heat map of the Hellinger distance (HD) between the exact probability distribution PN (n) in Eq. (31) and the
binomial distribution in Eq. (36). Solid black lines are regime boundaries and the dashed black line is α + β = ω, in which case the Hellinger
distance is exactly zero. (b–e) Compare the nascent RNA number distribution obtained using stochastic simulations (blue points), the exact
distribution given by Eq. (31) (solid blue lines) and the binomial distribution approximation given by Eq. (36) (dashed orange lines). The
number of segments is L = 100. (b) Initiation-limited regime (IL, α/ω = 0.1, β/ω = 0.7). (c) Termination-limited regime (TL, α/ω = 0.7,
β/ω = 0.1). (d) Coexistence line (IL/TL, α/ω = β/ω = 0.1). (e) Elongation-limited regime (EL, α/ω = 0.7, β/ω = 0.7).

constitutive model with RNAP volume exclusion [Eq. (23)].
Similarly, we define an effective hopping rate at segment i
as ωeff,i = J/ρi, where ρi is the local RNAP density in the
constitutive model with RNAP volume exclusion [Eq. (24)].
Finally, to satisfy Little’s law, we define the effective elonga-
tion and termination time Tel,eff = ∑L

i=1 1/ωeff,i. We refer to
the constitutive delay model with these parameters as the ef-
fective delay constitutive model (edCM for short). Assuming
ρi ≈ ρ, which is true for large L and outside the coexistence
line where ρi is linearly increasing, we get ωeff,i ≈ ω(1 − ρ)
and Tel,eff ≈ L/ωeff. We note that the effective hopping rate
ωeff is the “true” rate of nascent RNA elongation taking into
account slowing down of RNAP due to other RNAPs on the
gene, whereas ω is the “bare” hopping rate in the absence of
other RNAPs.

D. Probability distribution of the number of mature RNA

We cannot compute PM (m) directly from Eq. (6b), because
the joint distribution P(C, m) is unknown. Instead, we find an
approximate expression for PM (m) by replacing the process of
RNA production and degradation with the following queuing
process,

∅ fter (t )−−→ M
dM−→ ∅. (38)

Here, fter(t ) is the probability density function (pdf) of the
waiting time between two successive termination events, and
dM is the degradation rate of mature RNA. This process is
known as a G/M/∞ queue in Kendall’s notation [59], where
G stands for general interarrival distribution [mature RNAs
arrive at time intervals distributed according to fter(t )], M
stands for Markovian service process (service times are expo-
nentially distributed with rate dM), and the number of servers

is infinite (the RNA degradation machinery is assumed to be
abundant).

We note that the queuing process described by Eq. (38)
is not an exact representation of the original model. In the
queuing process, the waiting times between successive termi-
nation events are mutually independent, which is not true in
the original model. Therefore, we will refer to Eq. (38) as the
renewal approximation of the original process, because the
production of mature RNA in this approximation constitutes a
renewal process (a generalization of the Poisson process to an
arbitrary interarrival time distribution).

The advantage of this approximation is that the steady-state
distribution of the number of customers (the number of mature
RNA in our case) in a G/M/∞ queue can be computed analyt-
ically for any f (t ) whose mean interarrival time is finite [60].
Here we write the final result for PM (m) and refer the reader
to the original paper for the derivation. We denote by f̃ (s)
the Laplace transform of f (t ), and by μ the mean interarrival
time,

f̃ (s) =
∫ ∞

0
dt f (t )e−st , μ =

∫ ∞

0
dt t f (t ) < ∞. (39)

Next, we define a coefficient Ci as

C0 = 1, Ci =
i∏

j=1

f̃ ( jdM )

1 − f̃ ( jdM )
, i = 1, 2, 3 . . . . (40)

The steady-state distribution of the mature RNA number m is
then given by

PM (0) = 1 −
∞∑

k=1

(−1)k−1 Ck−1

μdMk
, (41a)

PM (m) =
∞∑

k=m

(−1)k−m

(
k

m

)
Ck−1

μdMk
, m � 1. (41b)

034405-6



UNCOVERING THE EFFECT OF RNA POLYMERASE … PHYSICAL REVIEW E 108, 034405 (2023)

Hence, to compute PM (m) we need to compute the pdf
fter(t ) of the waiting time between two successive termination
events.

To this end, we denote by G the set of all configurations
C = {τ1, . . . , τL} in which the last segment is occupied by an
RNAP, G = {C | τL(C) = 1}. For a configuration C ∈ G, we
define the gap size g(C) as the number of consecutive empty
segments in front of the last segment. For example, g(C) = 0
if the closest RNAP trailing behind is at the segment L − 1,
and g(C) = L − 1 if there are no trailing RNAPs. Next, we
denote by Pgap(k, L) the probability that a configuration C ∈ G
has a gap of size k,

Pgap(k; L) =
∑

C∈A P(C)δg(C),k∑
C∈A P(C)

, (42)

where δi, j is the Kronecker delta. Note that the denominator is
equal to the local density ρL.

Let us now assume that an RNAP terminated transcription
at time t = 0, and that the gap size right before that was
equal to k. We denote by rk (t ) the pdf of the waiting time
t until the next termination event. The pdf fter(t ) is then
equal to Pgap(k; L) multiplied by rk (t ) and summed over all
k = 0, . . . , L − 1,

fter(t ) =
L−1∑
k=0

Pgap(k; L)rk (t ). (43)

For k < L − 1, the time between two successive termination
events is equal to the time it takes an RNAP at the segment
L − k − 1 to move k + 1 segments and terminate from the last
segment. Hence, the pdf rk (t ) is a convolution of the Erlang
distribution with shape k + 1 and rate ω, and the exponential
distribution with rate β, which gives

rk (t ) = βe−βt

(
ω

ω − β

)k+1
γ (k + 1, (ω − β )t )

�(k + 1)
, (44)

where γ (n, x) is a lower incomplete Gamma function. For k =
L − 1, the time between two successive termination events is
equal to the time it takes a free RNAP to initiate transcription,
move L − 1 segments, and terminate from the last segment.
Hence, the pdf rL−1(t ) is given by a convolution of rL−2(t ) and
the exponential distribution with the rate parameter α, which
gives

rL−1(t ) = αβ

α − β
e−βt

(
ω

ω − β

)L−1
γ (L − 1, (ω − β )t )

�(L − 1)

− αβ

α − β
e−αt

(
ω

ω − α

)L−1
γ (L − 1, (ω − α)t )

�(L − 1)
.

(45)

The final expression for fter(t ) is complicated, so we consider
the asymptotic limit of L → ∞, in which fter(t ) becomes

fter,as(t ) =
∞∑

k=0

Pgap(k)rk (t ), (46)

where Pgap(k) = limL→∞ Pgap(k; L). The gap-size distribution
Pgap(k, L) and the limiting distribution Pgap(k) were previ-
ously derived in Ref. [61]. The limiting distribution Pgap(k)

reads

Pgap(k) = α

β

(
1 − α

ω

)k+1 β − α

ω − 2α
+ ω − α

β

(α

ω

)k+1

×
(

1 − β − α

ω − 2α

)
, α <

ω

2
, β > α, (47a)

Pgap(k) =
(

1 − β

ω

)(
β

ω

)k

, β <
ω

2
, α � β, (47b)

Pgap(k) = ω

β2k+1

(
1 − k

2
+ βk

ω

)
, α, β >

ω

2
. (47c)

This limiting distribution is valid as long as the typical gap
size is much less than L and L is large, in which case extend-
ing L to infinity does not have much impact on the gap-size
distribution. If we now insert Eqs. (44) and (47) into Eq. (46),
then we get a remarkably simple result for fter,as(t ),

fter,as(t ) = ων(1 − ν)

1 − 2ν
(e−ωνt − e−ω(1−ν)t ), (48)

where ν is given by

ν =

⎧⎪⎪⎨
⎪⎪⎩

α
ω
, α < ω

2 , β > α,

1 − β

ω
, β < ω

2 , α � β,

1
2 , α, β > ω

2 .

(49)

There is a subtle difference between ν in Eq. (49) and ρ in
Eq. (26): ν = ρ everywhere except at the coexistence line α =
β < 1/2 for which ν = 1 − β/ω, whereas ρ is not properly
defined on this line (the local density increases linearly from
α/ω at the left boundary to 1 − α/β at the right boundary).
The expression similar to the one in Eq. (48) was previously
derived for the discrete-time TASEP with parallel [32,62] and
random-sequential [63] hopping.

Equation (48) describes a hypoexponential pdf of the sum
of two exponentially distributed random variables with rates
ων and ω(1 − ν). As expected, the mean waiting time μter

is equal to 1/J , where J is the transcription rate given by
Eq. (25). Note that fter,as(t ) is invariant to the exchange of ν ↔
1 − ν. In the elongation-limited regime, fter,as(t ) becomes the
gamma distribution with the shape parameter 2 and the rate
parameter ω/2.

We are now ready to compute the probability distribution
of the number of mature RNA in the renewal approximation
of our model. The Laplace transform of fter,as(t ) in Eq. (48) is
given by

f̃ter,as(s) = ω2ν(1 − ν)

(s + ων)[s + ω(1 − ν)]
. (50)

Inserting this expression into Eq. (41) yields the following
expression for the mature RNA distribution in the constitutive
model,

PM (m) = (ab)m

m!(a + b)m
0F1(a + b + m,−ab), (51)

where (x)n = �(x + n)/�(x) is the Pochhammer symbol, 0F1

is the confluent hypergeometric limit function, and a and b are
given by

a = ων

dM
, b = ω(1 − ν)

dM
. (52)
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FIG. 3. Accuracy of the theoretical results for the gap-size distribution, the waiting-time distribution between successive termination events
and the mature RNA number distribution in the constitutive model with RNAP volume exclusion. [(a)–(d)] Compare the gap-size distribution
Pgap(k; L) computed using stochastic simulations (blue points) and Pgap(k) computed from the asymptotic theory in Eq. (47) (dashed orange
line). [(e)–(h)] Compare the pdf fter(t ) of the waiting time between two successive termination events computed using stochastic simulations
(blue solid line) and fter,as(t ) computed from the asymptotic theory in Eq. (48) (dashed orange line). [(i)–(l)] compare the mature RNA number
distribution PM (m) computed using stochastic simulations (blue points) and the one computed from the renewal approximation in Eq. (51)
(dashed orange line). Note that the renewal approximation theory is also based on the asymptotic theory for the waiting time between two
successive termination events. The parameters are: α = 0.1 s−1, β = 0.7 s−1, ω = 1.0 s−1, and dM = 0.01 s−1 for the initiation-limited regime
(IL, first column); α = 0.7 s−1, β = 0.1 s−1, ω = 1.0 s−1, and dM = 0.01 s−1 for the termination-limited regime (TL, second column); α =
0.1 s−1, β = 0.1 s−1, ω = 1.0 s−1, and dM = 0.01 s−1 for the coexistence line (IL/TL, third column); and α = 0.7 s−1, β = 0.7 s−1, ω =
1.0 s−1, and dM = 0.01 s−1 for the elongation-limited regime (EL, fourth column). The system size is L = 100.

The waiting-time distribution matching procedure that we
used to obtain an expression for the approximate mature RNA
distribution is similar in principle to the model reduction
technique described in Ref. [28]. The probability generating
function for PM (m) reads

GM (z) =
∞∑

m=0

PM (m)zm = 0F1[a + b, ab(z − 1)]. (53)

The mean and the variance of the RNA number m are given
by

μM = J

dM
, σ 2

M = μM

(
1 − J

ω + dM

)
. (54)

The Fano factor of the mature RNA number in the renewal
approximation is equal to

FFM = 1 − J

ω + dM
= 1 − ωρ(1 − ρ)

ω + dM
� 1. (55)

The Fano factor is always less than 1, which means that
the RNA number distribution is sub-Poissonian. When ω is
much larger than dM , we get a simple expression for FFM

that depends only on ρ, FFM = 1 − ρ(1 − ρ). We note that
FFM = 1 in the (effective) delay constitutive model. Hence,
the deviation of the mature RNA distribution from the Poisson
distribution is directly related to the level of RNAP traffic on
the gene, as measured by the RNAP density ρ. By comparison
of Eqs. (37) and (55), it is also clear that the Fano factor of the
nascent RNA number is always less than that of the mature
RNA number distribution. This indicates that RNAP volume
exclusion effects become less apparent for RNA involved in
processes downstream of transcription.

In Fig. 3, we compare the predictions of our asymptotic
theory for Pgap(k), fter,as(t ), and PM (m) with the results of
stochastic simulations. The results were obtained for four
sets of parameters α, β, and ω representing the initiation-
limited regime (IL), the termination-limited regime (TL), the
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FIG. 4. Heat map of the Fano factor (FF) of the mature RNA
distribution for the constitutive model with RNAP volume exclusion,
computed from the renewal approximation given by Eq. (55). The
Fano factor is bounded between 3/4 and 1. The model parameters
are: L = 100, ω = 1 s−1, and dM = 0.01 s−1 (ω � dM is common
for many genes).

coexistence line (IL/TL), and the elongation-limited regime
(EL), respectively. We find an excellent agreement between
Pgap(k, L) obtained using stochastic simulations and Pgap(k)
predicted by Eq. (47) (the top row). Consequently, the pdf
fter,as(t ) computed from Eq. (48) and the one obtained using
stochastic simulations are practically indistinguishable (the
middle row). The analytical and simulated results for the
mature RNA distribution PM (m) agree in all the regimes,
however a small but noticeable disagreement is observed in
the elongation-limited regime (the bottom row). Since fter(t )
is well approximated by fter,as(t ) in the elongation-limited
regime [Fig. 3(h)], we conclude that this disagreement must
have originated from the renewal approximation (the assump-
tion that the waiting times between successive termination
events are uncorrelated).

We emphasize that the good agreement of theory and sim-
ulations for L = 100 implies that the asymptotic theory for
the waiting-time distributions between successive termination
events and the renewal theory for mature RNA distributions
provide accurate results for genes of length larger than ap-
proximately 3500 bp (since each segment is the length of
an RNAP footprint). This value is much smaller than the
typical gene length in humans (the median value is 26.4 kb for
protein-coding and 11.2 kb for noncoding genes, respectively
[64]), but larger than the typical gene length in Saccharomyces
cerevisiae (the average gene length is 1.4 kb). For such short
genes, the asymptotic result in Eq. (48) may not be applicable
if the mean gap size is of the order of the system size L, which
occurs if the initiation rate is sufficiently small. However, in
that case the RNAP volume exclusion can be ignored, and the
results of the delay constitutive model can be used instead.

In Fig. 4, we show the Fano factor FFM computed from
Eq. (55) across the whole phase diagram of the constitu-
tive model. The smallest value of 3/4 is achieved in the

FIG. 5. Illustration of the telegraph model of transcription with
RNAP volume exclusion. The gene is divided into L segments,
whereby one segment equals in size to one RNAP footprint size
(≈35 bp). The gene switches between two states of activity and
inactivity with rates kon and koff. Transcription initiation occurs from
the active state at rate α, provided the first segment is empty. RNAPs
move along the gene at rate ω segments per unit time, provided the
segment in front is empty. The rates of termination and mature RNA
degradation are β and dM , respectively.

elongation-limited regime in which ρ = 1/2, whereas the
largest value 1 is achieved in the limit of small transcription
rate J , which is either when the initiation rate α or the termi-
nation rate β are much smaller than the hopping rate ω.

III. TELEGRAPH MODEL WITH RNAP VOLUME
EXCLUSION

Next, we consider an extension of the constitutive model
of gene expression that allows for promoter switching (transi-
tions between two states of activity and inactivity). A cartoon
illustrating the new model is shown in Fig. 5. We denote by
kon the rate at which the gene switches to the active state,
and by koff the rate at which the gene switches to the in-
active state. Initiation occurs at the rate α if the gene is in
the active state, and the first segment is empty. As in the
original telegraph model of gene expression [18], the gene
remains in the active state immediately after the initiation. The
elongation, termination, and RNA degradation proceed as in
the constitutive model. The model can be summarized by the
following reactions:

Goff
kon−⇀↽−
koff

Gon, (56a)

Gon + free RNAP + ∅1
α−→ Gon + RNAP1, (56b)

RNAPi + ∅i+1
ω−→ ∅i + RNAPi+1, i ∈ [1, L − 1],

(56c)

RNAPL
β−→ ∅L + free RNAP + RNA, (56d)

RNA
dM−→ ∅, (56e)

Similar to the constitutive model, we can approximate the
second-order reaction in Eq. (56b) by a quasi-first-order re-
action Gon → Gon + RNAP1, where the rate α is proportional
to the number of free RNAPs. Henceforth, we refer to this
model as the telegraph model with RNAP volume exclusion.

We introduce a random variable σ describing promoter
activity, whereby σ = 0 when the promoter is inactive and
σ = 1 when the promoter is active. As before, C denotes the
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configuration of RNAPs on the gene, n the number of RNAPs
that are actively engaged in transcription, and m the number
of mature RNAs. The probability to find the gene in state σ

and configuration C, along with m copies of mature RNA, is
denoted by P(σ,C, m). We are interested in computing the
distributions PN (n) and PM (m) defined by

PN (n) =
∑

C

∑
σ=0,1

P(σ,C)δ∑
i τi,n, (57a)

PM (m) =
∑

C

∑
σ=0,1

P(σ,C, m). (57b)

Before we present results for the telegraph model with
RNAP volume exclusion, we consider a simpler bench-
mark model in which RNAPs move deterministically on the
gene, which can be solved in full for any choice of model
parameters.

A. Delay telegraph model

In this model, elongation and termination take a fixed
amount of time to finish, and the excluded-volume interac-
tions between RNAPs are ignored. The reactions for this
model are

Goff
kon−⇀↽−
koff

Gon, (58a)

Gon + free RNAP
α−→ Gon + RNAP1, (58b)

RNAPi
1/ω	⇒ RNAPi+1, i ∈ [1, L − 1], (58c)

RNAPL
1/β	⇒ free RNAP + RNA, (58d)

RNA
dM−→ ∅. (58e)

As before, double arrows denote a delay reaction that takes a
fixed amount of time to finish. We refer to this model as the
delay telegraph model.

This model can be solved using renewal theory, which
generalizes the Poisson process to an arbitrary distribution
of interarrival times [65]. To this end, we denote by fin(t )
the probability density function of the waiting time between
two successive initiation events, which has been computed
in Ref. [37]. The mean waiting time between two successive
initiation events is given by

μin = koff + kon

αkon
, (59)

and the transcription rate ksyn is equal to 1/μin,

ksyn = 1

μin
= αkon

kon + koff
. (60)

The number of RNAPs that reside at segment i at time t is
equal to the number of initiation events that occurred between
t − i/ω and t − (i − 1)/ω. According to renewal theory, the
mean number of initiation events in an interval �t in the
steady state is equal to �t/μin [65], from which it follows
that the local density ρi = 1/(μinω) for i = 1, . . . , L − 1 and
ρL = 1/(μinβ ). Using the expression for μin in Eq. (59), we

get that

ρi =
{

α
ω

kon
kon+koff

, i = 1, . . . , L − 1,

α
β

kon
kon+koff

, i = L.
(61)

The probability distribution of the total number of nascent
RNA can be computed by noting that the elongation and
termination steps can be grouped into one delayed reaction
of duration Tel given by Eq. (8). The distribution PN (n) for
this process has been derived in Refs. [24,29]. Alternatively,
PN (n) can be computed from the Taylor expansion of the
probability generating function of the nascent RNA number
given by

GN (u) = e−κ (u)T

2(kon + koff )δ(u)
{(kon + koff )δ(u)

× [eδ(u)Tel + 1] + [(kon + koff )
2 + αu(kon − koff )]

× [eδ(u)Tel − 1]}, (62)

where u = z − 1, κ (u) = [kon + koff − ksynu + δ(u)]/2, and
δ(u) =

√
(kon + koff − αu)2 + 4konαu. The mean and the vari-

ance of the number of RNAPs are equal to

μN = Tel

μin
= ksynTel = αkonTel

kon + koff
, (63a)

σ 2
N = μN

{
1 + 2αkoff

Tel(kon + koff )3
[e−(kon+koff )Tel

−1 + (kon + koff )Tel]

}
. (63b)

The Fano factor of the nascent RNA number is

FFN = 1 + 2αkoff

Tel(kon + koff )3
[e−(kon+koff )Tel − 1

+ (kon + koff )Tel]. (64)

Note that because exp(x) � 1 + x for any real x, it follows
that FFN � 1.

Since elongation and termination are deterministic, the
waiting time between two mature RNA production events is
the same as the waiting time between two RNAP binding
events, hence the probability distribution of the number of
mature RNA is that of the telegraph model [18,66],

PM (m) = (α/dM )me−α/dM

m!

(kon/dM )m

(kon/dM + koff/dM )m

× M(koff/dM , kon/dM + koff/dM + m, α/dM ),
(65)

where (x)n = �(x + n)/�(x) is the Pochhammer symbol and
M is Kummer’s (confluent hypergeometric) function. In par-
ticular, the mean and the variance of this distribution are

μM = kon

kon + koff

α

dM
, (66a)

σ 2
M = μM

[
1 + αkoff

(kon + koff )(kon + koff + dM )

]
, (66b)
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and the Fano factor FFM is given by

FFM = 1 + αkoff

(kon + koff )(kon + koff + dM )
� 1. (67)

B. Telegraph model with RNAP volume exclusion
in the slow-switching regime

The steady-state probability distribution P(C) is known for
the constitutive model with RNAP volume exclusion, but not
for the telegraph model with RNAP volume exclusion. To
make progress, we therefore need to apply some approxima-
tion method. Inspired by the success of timescale separation
methods to simplify stochastic models of gene regulatory
networks (where RNAP dynamics is not explicitly taken
into account) [67,68], here we focus on the regime of slow
switching.

In the slow-switching regime, we require that the nascent
RNA in each gene state reaches the steady state of the TASEP
corresponding to that gene state in the absence of switching,
before the gene switches its state again. We discuss these
conditions and the constraints they impose on the parameters
of the telegraph model with RNAP volume exclusion in detail
in Appendix B. In general, we find that transcription is in the
slow-switching regime if the mean time the gene spends in
the on and off states is much larger than the total time of
elongation and termination of a single RNAP.

To put these conditions in the context of eukaryotic tran-
scription, we analyzed a large dataset of the on and off rates
that were inferred from single-cell RNA sequencing data in
mouse fibroblasts [22]. We performed the analysis for three
values of the elongation rate (0.6, 1.8, and 2.4 kb/min), which
were reported in Ref. [69]. Of 3236 genes from the dataset,
the slow-switching conditions were met in 40% of the genes
at 0.6 kb/min, 62% of the genes at 1.8 kb/min, and 66% of
the genes at 2.4 kb/min. Details of this analysis are presented
in Appendix B.

The advantage of the slow-switching regime is that the
calculation of the RNAP distribution P(C) is simplified, since
the conditional probability P(C|σ ) can be approximated by

P(C|σ = 0) ≈
{

1, τ1 = · · · = τL = 0,

0, otherwise, (68a)

P(C|σ = 1) ≈ P(C)
∣∣
vCM, (68b)

where P(C)|vCM is the RNAP distribution in the constitutive
model with RNAP exclusion [Eq. (17)]. In simple terms,
Eqs. (68a) and (68b) are the steady states of the TASEP in
which the initiation rates has been set to zero and α, respec-
tively. The probability distribution P(C) can be now computed
from

P(C) =
∑

σ=0,1

P(σ )P(C|σ ), (69)

where P(σ ) is the probability to find the gene in the state σ =
0, 1,

P(σ ) = konσ + koff(1 − σ )

kon + koff
. (70)

1. Local RNAP density, transcription rate and the nascent RNA
number distribution

Using Eq. (69) yields the following expressions for the
local density ρi, the transcription rate ksyn and the nascent
RNA number distribution PN (n), respectively,

ρi = kon

kon + koff
ρi

∣∣
vCM, i = 1, . . . , L, (71a)

ksyn = kon

kon + koff
J, (71b)

PN (n) = kon

kon + koff
PN (n)

∣∣
vCM + koff

kon + koff
δn,0, (71c)

where ρi|vCM is the local RNAP density [Eq. (24)], J is the
transcription rate [Eq. (23)] and PN (n)|vCM is the nascent RNA
number distribution [Eq. (31)] predicted by the constitutive
model with RNAP volume exclusion. The expressions for the
mean and the variance of n are

μN = kon

kon + koff
μN

∣∣
vCM, (72a)

σ 2
N = kon

kon + koff
σ 2

N

∣∣
vCM + konkoff

(kon + koff )2
μN

∣∣
vCM, (72b)

where μN |vCM and σ 2
M |vCM are given by Eqs. (32) and (33),

respectively. The Fano factor FFN is thus given by

FFN = FFN

∣∣
vCM + koff

kon + koff
μN

∣∣
vCM, (73)

where FFN |vCM is given by Eq. (34). Note that since
FFN |vCM < 1, the nascent RNA number distribution can be
(depending on the model parameters) either sub-Poissonian
(FFN < 1) or super-Poissonian (FFN > 1) distribution. The
transition from the sub-Poissonian to the super-Poissonian
behavior occurs at the ratio koff/kon � 1/L in the initiation-
limited and termination-limited regimes, and at the ratio
koff/kon � 3/(2L) in the elongation-limited regime.

It is instructive to compare these results to those of the
delay telegraph model analyzed in Sec. III A. Using the ef-
fective parameters discussed in Sec. II C, we find that the
two models agree on the local RNAP density, transcription
rate and mean nascent RNA number, but differ on the Fano
factor of the nascent RNA number. To see this, we compute
the Fano factor for the delay constitutive model in the slow-
switching regime by expanding the right-hand side of Eq. (64)
in (kon + koff )Tel,eff, which gives up to the leading order

FFN

∣∣
edTM = 1 + koff

kon + koff
μN

∣∣
vCM, (74)

where “edTM” stands for the effective delay telegraph model.
Comparing Eqs. (73) and (74), we conclude that the Fano
factor in the telegraph model with RNAP volume exclusion
is always smaller than the Fano factor in the effective delay
telegraph model.

In Fig. 6, we compare PN (n) obtained using stochastic
simulations with the predictions of our slow-switching theory
and the effective delay telegraph model. The simulations of
the reaction scheme in Eq. (56) were performed in the slow-
switching regime for three sets of parameters corresponding to
the initiation-limited [IL, Fig. 6(a)], termination-limited [TL,
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FIG. 6. Accuracy of the theoretical prediction of the nascent RNA number distribution PN (n) in the telegraph model with RNAP volume
exclusion in the slow-switching regime. The blue points are from stochastic simulations of the reaction scheme in Eq. (56), the dashed orange
lines are the slow-switching prediction computed from Eq. (71c) and the dot-dashed gray lines are the prediction from the effective delay
telegraph model. Note that the effective delay telegraph model has the same mean nascent RNA number as the telegraph model with RNAP
volume exclusion (see main text for details). The slow-switching theory provides accurate results for all levels of RNAP traffic, whereas
the effective delay telegraph model is only accurate in the initiation-limited regime. The parameters are: (a) α = 0.1 s−1, β = 0.7 s−1, ω =
1.0 s−1, kon = 8 × 10−4 s−1, koff = 0.001 s−1, and dM = 0.01 s−1 (the initiation-limited regime, IL); (b) α = 0.7 s−1, β = 0.1 s−1, ω = 1.0 s−1,
kon = 10−4 s−1, koff = 2 × 10−4 s−1, and dM = 0.01 s−1 (the termination-limited regime, TL); and (c) α = 0.7 s−1, β = 0.7 s−1, ω = 1.0 s−1,
kon = 5 × 10−4 s−1, koff = 10−4 s−1, and dM = 0.01 s−1 (the elongation-limited regime, EL). The system size is L = 100 for all plots.

Fig. 6(b)], and elongation-limited regimes [Fig. 6(c)]. Our
slow-switching theory agrees well with the simulations for all
three levels of RNAP traffic. In contrast, the effective delay
telegraph model correctly predicts the nascent RNA number
distribution in the initiation-limited regime, but fails to do
so in the termination-limited and elongation-limited regimes,
which can be explained as follows. In the slow-switching
regime, the nascent RNA number distribution predicted by
the effective delay telegraph model is a mixture distribu-
tion of the delta function at n = 0 (corresponding to the off
state), and the Poisson distribution with the rate parameter ρL
(corresponding to the on state). However, the nascent RNA
number distribution in the on state, PN (n)|vCM, is close to the
Poisson distribution only in the initiation-limited regime, and
it is markedly sub-Poissonian in the termination-limited and
elongation-limited regimes.

2. Mature RNA number distribution

To compute the probability distribution of mature RNA
number, we replace the TASEP with the following stochastic
process for the turnover of mature RNA,

Goff
kon−⇀↽−
koff

Gon
fter,as (t )−−−→ Gon + M, M

dM−→ ∅, (75)

where fter,as(t ) is given by Eq. (48). The assumption of slow
switching is crucial here, otherwise the pdf of the waiting time
between two successive termination events conditioned on not
leaving the on state is not necessarily described by fter,as(t ),
which was derived for the TASEP in the steady state. Since
we are interested in the probability distribution of the mature
RNA number m irrespective of the gene state, we can rewrite
this process as the following queuing process,

∅ h(t )−−→ M
dM−→ ∅, (76)

where h(t ) is the waiting-time distribution between two suc-
cessive mature RNA production events in the process defined
by Eq. (75). The steady-state distribution of the mature RNA
number m for the queuing process (76) is given by Eq. (41)
in which f̃ (s) is replaced by h̃(s), the Laplace transform of

h(t ). The calculation of h̃(s) is presented in Appendix C, and
the final result is given by Eq. (C16). Inserting Eq. (C16) into
Eq. (41) yields

PM (0) = 1 − b1b2

μhKa1a2

×
[

1 − 2F2

(
a1

dM
,

a2

dM
;

b1

dM
,

b2

dM
; − K

dM

)]
, (77a)

PM (m) = b1b2
(

K
dM

)m( a1
dM

)
m

( a2
dM

)
m

μhKa1a2(m!)
( b1

dM

)
m

( b2
dM

)
m

× 2F2

(
a1

dM
+ m,

a2

dM
+ m;

b1

dM
+ m,

b2

dM
+ m; − K

dM

)
, m � 1. (77b)

In the expression above, μh is the first moment of h(t ),

μh = (koff + kon)(koff + ω)

konJω
. (78)

Note that 2F2 is a generalized hypergeometric function, and
the constants K , a1, a2, b1 and b2 are defined through the
factorization of the polynomials in h̃/[1 − h̃(s)] such that

h̃(s)

1 − h̃(s)
= K (s + a1)(s + a2)

s(s + b1)(s + b2)
. (79)

The mean and the variance of the mature RNA number m are
given by

μM = 1

μhdM
= kon

(kon + koff )

Jω

dM (ω + koff )
, (80a)

σ 2
M = 1

μhdM

[
1 + h̃(dM )

1 − h̃(dM )
− 1

μhdM

]
, (80b)

from which we get the following expression for the Fano
factor FFM

FFM = 1 + h̃(dM )

1 − h̃(dM )
− 1

μhdM
. (81)
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FIG. 7. Accuracy of the theoretical predictions of the statistics of the time between termination events and of mature RNA numbers in the
slow-switching regime of the telegraph model with RNAP volume exclusion. [(a)–(c)] Compare the pdf h(t ) of the waiting-time distribution
between two successive termination events computed using stochastic simulations (solid blue lines), the slow-switching prediction obtained
from h̃(s) in Eq. (C16) (dashed orange lines), and the prediction of the effective delay telegraph model (dash-dotted gray lines). [(d)–(f)]
Compare the mature RNA number distribution PM (m) computed using stochastic simulations (blue points), the slow-switching prediction
computed from Eq. (77) (dashed orange line), and the prediction of the effective delay telegraph model (dash-dotted gray line). Note that the
effective delay telegraph model has the same mean nascent and mature RNA numbers as the telegraph model with RNAP volume exclusion
(see main text for details). The parameters are: (a),(d) α = 0.1 s−1, β = 0.7 s−1, ω = 1.0 s−1, kon = 8 × 10−4 s−1, koff = 0.001 s−1, and
dM = 0.01 s−1 (the initiation-limited regime, IL); (b),(e) α = 0.7 s−1, β = 0.1 s−1, ω = 1.0 s−1, kon = 10−4 s−1, koff = 2 × 10−4 s−1, and
dM = 0.01 s−1 (the termination-limited regime, TL); and (c),(f) α = 0.7 s−1, β = 0.7 s−1, ω = 1.0 s−1, kon = 5 × 10−4 s−1, koff = 10−4 s−1,
and dM = 0.01 s−1 (the elongation-limited regime, EL). The system size is L = 100 for all plots.

Interestingly, the mean mature RNA number in Eq. (80a)
differs from the one predicted by the effective delay tele-
graph model [Eq. (66a)]—the former is smaller by a factor of
ω/(ω + koff ), which is close to 1 only when koff � ω. Given
that the elongation rate is typically in the range of 10–100 nt/s
(corresponding to the hopping rate ω in the range of 0.3–3.0
segments/s), this condition requires that the average time the
gene spends in the on state is much larger than a few seconds,
which is in line with values reported in the literature that mea-
sure in minutes. Following this argument, we set ω = koff/x
and expand the Fano factor of the mature RNA number given
by Eq. (81) in x, keeping the first two terms. The calculation,
not shown here, reveals that the leading term is precisely the
Fano factor predicted by the delay telegraph model [Eq. (67)],
whereas the leading correction is always negative. Hence, in
the biologically relevant regime of koff � ω, the Fano factor
of the mature RNA number predicted by the telegraph model
with RNAP volume exclusion is smaller than the one pre-
dicted by the delay telegraph model.

In Fig. 7, we compare h(t ) and PM (m) obtained using
stochastic simulations with the predictions of our slow-
switching theory and the effective delay telegraph model. The
simulations of the reaction scheme in Eq. (56) were performed
in the slow-switching regime for the same three sets of pa-
rameters as in Fig. 6 corresponding to the initiation-limited,
termination-limited and elongation-limited regimes. Overall,
our slow-switching theory agrees well with the simulations for
all three levels of RNAP traffic. (A small discrepancy between

the slow-switching theory and the simulations is found in
the elongation-limited regime, which is due to the renewal
approximation that ignores correlations between successive
termination events.)

The mature RNA number distribution predicted by the
effective delay telegraph model matches closely that of
the telegraph model with RNAP volume exclusion, espe-
cially in the initiation-limited and termination-limited regimes
[Figs. 7(d) and 7(e)], whereas a small but visible discrepancy
between the distributions is found in the elongation-limited
regime [Fig. 7(f)]. While this agreement may seem surprising,
we note that the results were obtained in the biologically rele-
vant regime of koff � ω in which the mean and the variance of
the mature RNA number, as well as the first three moments of
the waiting-time distribution, agree between the two models
(provided the delay telegraph model is used with the effective
parameters discussed in Sec. II C).

We note that besides the effective delay telegraph model
here considered, there are other ways of finding a reduced
model for the mature RNA distributions which might lead to
equally good fits to the telegraph model with RNAP volume
exclusion. For example, following the approach in Ref. [70],
one could find parameters of the conventional telegraph model
(promoter switching and synthesis rate) such that its pre-
dictions for the fraction of time that the gene is active, the
mean mature RNA number and the variance of the mature
RNA fluctuations agree with those of the reaction scheme in
Eq. (56).
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FIG. 8. Accuracy of the theoretical predictions for the Fano factor of nascent and mature RNA numbers in the telegraph model with RNA
volume exclusion as a function of the switching off rate. [(a)–(c)] Compare the Fano factor FFN of the nascent RNA number distribution
computed using stochastic simulations (blue points), the slow-switching prediction obtained from Eq. (73) (dashed orange lines) and the
prediction of the effective delay telegraph model (dash-dotted gray lines). [(d)–(f)] Compare the Fano factor FFM of the mature RNA number
distribution computed using stochastic simulations (blue points), the slow-switching prediction computed from Eq. (81) (dashed orange line),
and the prediction of the effective delay telegraph model (dash-dotted gray line). The dashed gray line is at the value of 1, marking a transition
from the sub-Poissonian to the super-Poissonian behavior. The parameters are: (a),(d) α = 0.1 s−1, β = 0.7 s−1, ω = 1.0 s−1, kon = 10−3 s−1,
and dM = 0.02 s−1 (the initiation-limited regime, IL); (b),(e) α = 0.3 s−1, β = 0.1 s−1, ω = 1.0 s−1, kon = 10−4 s−1, and dM = 0.02 s−1 (the
termination-limited regime, TL); and (c),(f) α = 0.7 s−1, β = 0.7 s−1, ω = 1.0 s−1, kon = 5 × 10−4 s−1, and dM = 0.02 s−1 (the elongation-
limited regime, EL). The system size is L = 100 for all plots.

C. Telegraph model with RNAP volume exclusion outside
the slow-switching regime

We consider here what happens when we relax the slow-
switching condition in Eq. (B8), but keep the condition in
Eq. (B1) satisfied. Relaxing the condition in Eq. (B8) means
that the RNAP distribution in the on state is no longer given by
the steady-state distribution of the TASEP [Eq. (17)], whereas
keeping the condition in Eq. (B1) satisfied means that the gene
in the off state has no active RNAPs. The motivation to study
this regime comes from mammalian genes which stay inactive
for hours, but are active only for few minutes, which may not
be enough for the RNAP dynamics to reach the steady state.

In Fig. 8, we show the Fano factor of the nascent and
mature RNA numbers obtained using stochastic simulations
for various values of the off rate koff, including values outside
the slow-switching regime. These results are compared to the
predictions of the slow-switching theory and the predictions
of the effective delay telegraph model. As can be seen from
Figs. 8(a)–8(c) depicting the Fano factor FFN dependence
on koff, the slow-switching theory eventually fails as koff is
increased, whereas the effective delay telegraph model pre-
diction provides a good fit for all values of koff, except for
a small but visible disagreement in the termination-limited
regime [Fig. 8(b)]. In contrast, the Fano factor of the mature
RNA number is well accounted for by both the slow-switching
theory and the effective delay telegraph model.

We emphasize that an implicit reason for the agreement of
the effective delay telegraph model and the telegraph model
with RNAP volume exclusion in Fig. 8 is that for all the

values of koff considered (except the value of koff = 0), the
RNA fluctuations in the latter model are super-Poissonian.
If the parameters were such that the RNA fluctuations are
sub-Poissonian (by choosing koff to be much less than kon),
then this model matching would be impossible.

The agreement between the models can be understood by
looking at the time evolution of the TASEP, starting from an
empty lattice (the initial state at the time of switching to the
on state). We note that this problem was previously studied in
the context of mRNA translation [71] and stochastic resetting
[72]. We begin with the initiation-limited regime in which α <

ω/2 and β > α [Figs. 8(a) and 8(d)]. In this case, the RNAP
density is a shock wave of density α/ω traveling at the speed
of ω(1 − α/ω). The nascent RNA production rate is given
by α(1 − α/ω), and the total time it takes the RNAP density
wave to travel across the gene is equal to L/[ω(1 − α/ω)].
We note that the RNAP density of α/ω is compatible with
the termination rate β > α. Hence, once the RNAP density
wave reaches the end of the gene, the RNAP density does not
change, and the rate of mature RNA production is given by
α(1 − α/ω). This explains why the effective delay telegraph
model provides a good fit for all values of koff.

We next consider the termination-limited regime in which
β < ω/2 and α > β [Figs. 8(b) and 8(e)]. For α < ω/2, the
RNAP density wave is a shock wave of density α/ω as in
the initiation-limited regime. Once the RNAP density wave
reaches the end of the gene, the RNAPs begin to accumulate,
creating a second shock wave of density 1 − β/ω that travels
backwards toward the promoter. This happens because the
termination rate β < α is not compatible with the density of
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α/ω. Because the RNAP density at the end of the gene is
now equal to 1 − β/ω, the rate of mature RNA production
is given by β(1 − β/ω). Once the second shock wave reaches
the start of the gene, provided the gene stays in the on state
long enough, the rate of nascent RNA production changes
from α(1 − α/ω) to β(1 − β/ω). Otherwise, the RNAP den-
sity becomes nonuniform along the gene, which explains why
the Fano factor of the nascent RNA number predicted by
the effective delay telegraph model does not quite match the
simulations for large values of koff [Fig. 8(b)].

Finally, we consider the elongation-limited regime in
which α > ω/2 and β > ω/2 [Figs. 8(b) and 8(e)]. In this
case, the RNAP density is not a shock wave, i.e., the initiation
rate of α has no influence on the RNAP density. Instead, the
RNAP density is a rarefaction wave that decays linearly along
the gene, and the rate of nascent RNA production is given
by ω/4. Once the tip of the RNAP density wave reaches the
end of the gene, which happens after time L/ω, the RNAP
density begins to increase toward its steady-state value of 1/2.
If the gene stays long enough for this to happen, then the total
time of elongation and termination is equal to 2L/ω, and the
rate of mature RNA production is given by ω/4. We would
therefore expect the effective delay telegraph model not to
provide a good fit for large values of koff. However, that is
not what we see in Figs. 8(b) and 8(e), i.e., the effective delay
telegraph model fits the data obtained using simulations even
for large values of koff (up to 10% value of the elongation
rate ω). Presently, we do not have a good explanation for this
agreement.

IV. SUMMARY AND DISCUSSION

The main question we asked in this study is how the
excluded volume interactions between RNAPs affect the dis-
tributions of nascent and mature RNA numbers. To answer
this question, we developed a stochastic model of gene ex-
pression that accounts for: (i) transcription initiation, (ii)
transcription elongation by RNAPs moving along the gene,
(iii) transcription termination and nascent RNA processing
into a mature RNA, and (iv) degradation of mature RNA. The
movement of RNAPs was modelled by the totally asymmetric
simple exclusion process (TASEP) in which each lattice site
corresponded to ≈35 bp (the footprint of RNAP) and RNAPs
could only move forward with nonzero probability if the next
segment is free. We considered two initiation mechanisms,
one in which the gene is always active (the constitutive model
with RNAP volume exclusion, see Sec. II), and the other in
which the gene switches between two states of activity and
inactivity (the telegraph model with RNAP volume exclusion,
Sec. III). To determine the importance of RNAP volume ex-
clusion, we compared these models with another set of models
in which RNAPs move deterministically and do not interact
with each other (the delay constitutive and telegraph models).

A. Constitutive model with RNAP volume exclusion

For the constitutive model with RNAP volume exclu-
sion, we obtained an exact expression for the distribution
of nascent RNA number in the steady state. The shape of

this distribution is strongly determined by the RNAP density
ρ, which equals the average probability of a gene segment
being occupied by an RNAP. The distribution is very close
to a binomial distribution in the initiation-limited (ρ < 1/2)
and termination-limited (ρ > 1/2) regimes, but differs sub-
stantially from the binomial distribution at the coexistence
line between the initiation-limited and termination-limited
regimes, and in the elongation-limited regime (ρ = 1/2). A
direct consequence of the excluded volume interactions be-
tween RNAPs is that the nascent RNA number distribution is
sub-Poissonian. Consequently, the Fano factor of the nascent
RNA number ranges between 0 when ρ → 1 and 1 when ρ →
0. In contrast, the delay constitutive model predicts a Poisson
distribution of the nascent RNA number whose Fano factor
equals exactly 1. We note that the Poisson distribution is a spe-
cial limit of the binomial distribution when the RNAP density
is small and the gene length is large. Hence, the two models
are expected to agree when the RNAP density is low. A sim-
ilar result that the nascent RNA number distribution becomes
sub-Poissonian due to excluded-volume interaction has been
obtained before using stochastic simulations of the TASEP in
which RNAPs occupy more than one lattice site [44].

The distribution of the mature RNA number was computed
in the renewal approximation, in which the correlations be-
tween waiting times between successive termination events
are ignored. This approximation allowed us to map the pro-
duction and degradation of mature RNA to a queuing process.
The distribution of mature RNA number was computed an-
alytically using known results from queuing theory. This
distribution is also sub-Poissonian, whereby its Fano factor
ranges from 3/4 in the elongation-limited regime to 1 when
ρ → 0 or ρ → 1. In contrast, the delay constitutive model
predicts a Poisson distribution whose Fano factor equals ex-
actly 1. Our results also show that the Fano factor of the
nascent RNA number is less than that of the mature RNA
number, implying that a signature of RNAP volume exclusion
effects (the sub-Poissonian nature of fluctuations) is gradually
erased as RNA progresses through its lifecycle.

It is important here to note that experimentally observed
sub-Poissonian fluctuations in nascent and nuclear transcript
numbers are generally not solely due to RNAP volume exclu-
sion effects; they can also be caused by multiple rate-limiting
steps in initiation [28,73,74], which we have not considered
in this paper. In particular, the same waiting-time distribution
between two mature RNA production events that was ob-
tained in the constitutive model with RNAP volume exclusion
[the hypoexponential distribution in Eq. (48)], can also be
obtained in a constitutive model with no RNAP volume ex-
clusion, but with a two-step initiation mechanism of the type:
G0 → G1 → G0 + RNA, RNA → ∅ (Gi are the promoter
states).

Furthermore, we note that the mature RNA distribu-
tion is invariant to ρ ↔ 1 − ρ, which originates from the
waiting-time distribution between two successive termina-
tion events possessing the same symmetry. This implies
a fundamental limitation to the accurate estimation of the
RNAP density from experimental measurements of mature
RNA number alone, i.e., without measuring the nascent RNA
number.
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B. Telegraph model with RNAP volume exclusion

Similarly, for the telegraph model with RNAP volume ex-
clusion, we obtained analytical expressions for the nascent
and mature RNA distributions in the slow-switching regime,
in which case the TASEP has enough time to reach the steady
state it would relax to in the absence of switching, before
the next switching event occurs. In this regime, the nascent
RNA number distribution simplified to a mixture distribution
of the delta function at zero and the nascent RNA number dis-
tribution derived for the constitutive model. To compare this
distribution to the one predicted by the delay telegraph model,
we adjusted the initiation rate and the elongation time of the
delay telegraph model to match those predicted by the TASEP,
which we called the effective delay telegraph model. This
made sure that the two nascent RNA number distributions had
the same mean. Nevertheless, significant deviations between
the two distributions were observed in the termination-limited
and elongation-limited regimes, suggesting that caution is
needed when inferring parameters by fitting nascent RNA
data to the delay telegraph model [25,75,76]. In contrast, the
two models agreed on the mature RNA number distribution
both in the initiation-limited and termination-limited regimes,
whereas a small discrepancy between the distribution was
found in the elongation-limited regime. We also found that
the slow promoter switching causes the Fano factor of the
nascent RNA number to be larger than in the constitutive
model, potentially changing the nature of the fluctuations
from sub-Poissonian to super-Poissonian. This transition oc-
curs when koff/kon � 1/L, i.e., when the gene spends most
of the time in the on state. As koff increases and becomes
much larger than kon, a condition that is often associated with
bursty gene expression [6,12], the effects of RNAP volume
exclusion on the nascent RNA fluctuations are expected to
diminish.

Outside the slow-switching regime, limited results were
obtained, as the telegraph model with RNAP volume ex-
clusion becomes difficult to solve analytically. Motivated by
mammalian genes which have short periods of activity fol-
lowed by long periods of inactivity, we focused on the regime
in which the nascent RNA reaches the steady state in the off
state (an empty lattice), but not necessarily in the on state.
We computed the Fano factor of the nascent and mature RNA
numbers using stochastic simulations, and compared it to the
predictions of the effective delay telegraph model. We showed
that the effective delay telegraph model provides a good match
for the telegraph model with RNAP volume exclusion well
beyond the slow-switching regime.

C. Model-based inference of transcription kinetics
from single-cell mature RNA data

Although nascent RNA is a direct reflection of the tran-
scription process, most of the gene expression data comes
from measuring the mature RNA. The question is then, what
can the mature RNA data tell us about transcription kinetics
and in particular about the RNAP density (assuming mature
RNA fluctuations are not dominated by post-transcriptional
noise)?

For the constitutive expression and for the slow promoter
switching, the mature RNA number distribution is determined
by the waiting-time distribution between two successive
termination events, and the degradation rate dm. The waiting-
time distribution is parametrized by ωρ and ω(1 − ρ), and
is invariant under the exchange of ρ ↔ 1 − ρ, where ρ is
the RNAP density in the on state. Hence, it is not possible
to distinguish from the mature RNA data alone whether the
transcription is in the initiation-limited or termination-limited
regime.

The same is true outside the slow-switching regime. We
remind the reader that in this case, the effective delay tele-
graph model provides a reasonably good fit to the mature RNA
number distribution. For this model, the effective transcription
rate in the on state is equal to J , the RNAP current of the
TASEP [Eq. (25)]. Since J is invariant under the exchange
of α ↔ β, inferring the value of J from the mature RNA
data is not enough to determine whether the transcription is
in the initiation-limited or termination-limited regime. There
is a fundamental loss of information due to the downstream
processing of nascent RNA, which makes it difficult to infer
transcriptional dynamics from the mature RNA data.

If one is interested in the estimation of transcriptional
parameters, then one can use the nascent RNA number dis-
tributions derived in this paper to construct the likelihood
function. The maximization of this function, given the mea-
sured single-cell nascent RNA data, leads to the desired
estimates. This approach is presently limited to constitutive
expression and the slow-switching regime, for which we have
derived analytical expressions for the nascent RNA number
distributions. For genes with a substantial RNAP traffic, this
approach may produce more accurate estimates than models
of nascent RNA dynamics that ignore steric interactions. Ex-
amples of such genes are the ribosomal genes. In Escherichia
coli, one RNA polymerase was observed every 85 bp on rRNA
operons [77], which is equivalent to the RNAP density of
41%. In yeast, between 30 and 70 RNA polymerases were
observed on the 35S rRNA gene [46], which given the gene
length of 6858 bp amounts to the RNAP density in the range
of 15–36%. Other genes which might have a large amount of
RNAP traffic might be those whose transcription rate scales
with the cell volume, particularly when the volume is large
[78].

D. Possible extensions to include more details of transcription
initiation and elongation

In general, there might be more than two promoter
states [79], for example, to describe off duration times
that are nonexponential, which has been measured in some
mammalian cells [12]. As well, extra promoter states could
capture multiple rate-limiting steps in initiation [29,74]. The
promoter-proximal pausing of RNAP II in metazoans, which
occurs within 100 bp from the transcription start site, can
also be considered as one of the promoter states since the
paused RNAP blocks another RNAP from being recruited to
the promoter [28,80]. The methods developed in this paper
can be extended in these directions, provided the RNAP dis-
tribution is allowed to reach the steady state in each of the
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promoter states much sooner than the next change of state
occurs.

Since our model describes the movement of RNAPs at the
resolution of ≈35 bp (the footprint length of the RNAP), it
does not have an explicit description of the processes occur-
ring at the single nucleotide level, such as ubiquitous pausing
and backtracking. These processes can be included implicitly
in our model by setting ω to 1/(�τ ), where τ is the mean
residence time the RNAP spends at each nucleotide and � is
the footprint length of the RNAP. For example, in a model
with ubiquitous pausing in which an RNAP enters the paused
state at rate kp, returns to the active state at rate ka, and moves
to the next nucleotide in the active state at rate ε [30], the
mean residence time τ is equal to (kp + ka)/(kaε). Backtrack-
ing is usually modelled as a biased random walk, in which
case τ is equal to the mean first-passage time it takes the
RNAP to return to the original position it backtracked from
[33]. We note that setting ω to 1/(�τ ) in these examples will
work only if the RNAP pausing does not cause a substantial
queuing of the RNAPs. Otherwise, the mean residence time
τ is not only determined by the pausing process, but also by
the time the RNAP spends waiting in a queue. Finally, we
note that our model does not account for long-range coopera-
tion between RNAPs during transcription elongation [81,82].
This cooperation results in a reduced elongation time when
multiple RNAPs transcribe the gene at the same time. Sev-
eral theoretical studies have been put forward to explain this
cooperation via DNA supercoiling [42,83–85]. However, the
RNAP density at which these effects become evident is poorly
understood. For example, a several-fold increase in RNAP
density on lacZ operon showed no effect on the elongation
rate [82]. Future work will focus on resolving how the afore-
mentioned mechanistic details affect the nascent and mature
RNA number distributions.

In conclusion, we have developed a theory of stochastic
gene expression that elucidates the link between fluctuations
in RNA numbers and the strength of mechanical interactions
between RNAPs. The specialty of the model is its analytic
tractability, which enables us to make several predictions of
physical and biological relevance. The theory (i) uncovers a
fundamental limitation in the deduction of RNA polymerase
traffic patterns on a gene from the steady-state distribution
of mature RNA numbers; (ii) proves that steric interactions
result in a suppression of fluctuations in the RNA numbers,
potentially even leading to sub-Poissonian fluctuations; (iii)
provides a novel interpretation of standard models of gene
expression by expressing their parameters in terms of the
kinetic parameters controlling the microscopic processes of
transcription. Our work shows that there is a wealth of infor-
mation about transcriptional processes hidden in the nascent
RNA number fluctuations. This information can be extracted
using statistical-mechanical techniques previously developed
for the TASEP, giving us in turn an unprecedented view of
stochastic gene expression.
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APPENDIX A: THE PROBABILITY GENERATING
FUNCTION GN (n) IN THE CONSTITUTIVE MODEL

WITH RNAP VOLUME EXCLUSION

Starting from Eq. (28), we introduce

YL(z) = 〈W |(zD + E )L|V 〉, (A1)

and denote by H (w, z) the generating function for YL(z),

H (w, z) =
∞∑

L=0

YL(z)wL

= 〈W |[1 − w(zD + E )]−1|V 〉. (A2)

Next, we note that since DE = D + E , we can write

1 − w(zD + E ) = (1 − aD)(1 − bE ), (A3)

where a and b satisfy

wz = a(1 − b), w = b(1 − a). (A4)

Hence, the inverse of 1 − w(zD + E ) is given by

[1 − w(zD + E )]−1 = (1 − bE )−1(1 − aD)−1. (A5)

Using Eq. (A4), we express b in terms of a and z, which gives
b = a/(z − za + a). Altogether,

H (a, z) = 1 − (
z−1

z

)
a[

1 − (
αz−α+1

αz

)
a
](

1 − 1
β

a
) , (A6)

where a is a function of w and z defined implicitly by the
equation

w = a(1 − a − z)

z(1 − a)
. (A7)

To find YL(z), we look for the coefficient of wL in the Taylor
expansion of H (w, z) around w = 0,

YL(z) = [wL]H (w, z) = 1

L!

∂LH

∂wL

∣∣∣∣
w=0

, (A8)

where [wL] is an operator which extracts the coefficient
of wL in the Taylor series of a function of w. According
to the Lagrange inversion formula, if we can find a func-
tion φ(a, z) such that w = a/φ(a, z) whereby φ(0, z) �= 0,
then

[wL]H (w, z) = 1

L
[aL−1]

(
∂H (a, z)

∂a
[φ(a, z)]L

)
. (A9)

The advantage of this formula is that the right-hand side is
much easier to calculate than the left-hand side. According to
Eq. (A7),

w = a

φ(a, z)
and φ(a, z) = z − 1 + 1

1 − a
. (A10)

By expanding the right-hand side of Eq. (A9) and collect-
ing the terms of the same order in a yields GN (z) given by
Eqs. (29).

APPENDIX B: SLOW-SWITCHING CONDITIONS
AND THEIR PREVALENCE IN MAMMALIAN GENES

We consider the TASEP in the absence of switching and
with the initiation rate set to α. We assume that the TASEP
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is initially in the steady state, i.e., the RNAP distribution is
given by Eq. (17). At time t = 0, we set the initiation rate
to zero, and observe the relaxation of the TASEP to the new
steady state in which the lattice is empty. We denote by Toff

the mean time it takes the TASEP to reach that state. For the
approximation in Eq. (68a) to hold, we require that

Toff � 1

kon
, (B1)

where 1/kon is the mean time that the gene spends in the
off state. To compute Toff, we denote by k the position of
the leftmost RNAP on the lattice at t = 0, and by P1(k) the
probability distribution of k. The mean time Toff is then given
by

Toff =
L∑

k=1

P1(k)
L∑

i=k

ρi

J
, (B2)

where
∑L

i=k ρi/J is the mean time it takes the leftmost RNAP
at the segment k to leave the gene. The probability distribution
P1(k) can be written as

P1(k) = 〈W |Ek−1DCL−k|V 〉
ZL

, k = 1, . . . , L. (B3)

For k = L, we get

P1(L) = 1

ZL

(ω

α

)L−1 ω

β
, (B4)

where ZL is given by Eq. (21). For k = 1, . . . , L − 1, we use
the following identity [48]:

DCL−k =
L−k−1∑

i=0

Bi+1,1C
L−k−i +

L−k+1∑
i=2

BL−k,i−1Di, (B5)

where Bk,p is defined in Eq. (22). This gives

P1(k) =
(ω

α

)k−1 L−k−1∑
i=0

Bi+1,1
ZL−k−i

ZL

+
(ω

α

)k−1 L−k+1∑
i=2

BL−k,i−1
1

ZL

(
ω

β

)i

. (B6)

If we assume that ρi ≈ ρ, then P1(k) = (1 − ρ)k−1ρ, in which
case the expression for Toff simplifies to

Toff = L

ω(1 − ρ)
− 1

ωρ
[1 − (1 − ρ)L]. (B7)

We now consider the TASEP in the absence of switching
and with the initiation rate set to zero. We assume that the
TASEP is initially in the steady state, i.e., the lattice is empty.
At time t = 0, we set the initiation rate to α, and observe
the relaxation of the TASEP to the new steady state in which
the RNAP probability distribution is given by Eq. (17). We
denote by Ton the mean time it takes the TASEP to reach that
state. For the approximation in Eq. (68b) to hold, we require
that

Ton � 1

koff
. (B8)

The time-evolution of the TASEP from an empty lattice has
been studied in the context of mRNA translation [71,86], and

more recently in the context of stochastic resetting [72]. In
the initiation-limited regime, Ton = Tel, where Tel ≈ L/[ω(1 −
ρ)] is the mean time of elongation and termination of a single
RNAP. For the expression for Ton in the termination-limited
regime, we refer to Ref. [72]. Unfortunately, no analytical
expression for Ton is available on the coexistence line and
in the elongation-limited regime. However, we know that
the large-time relaxation of the TASEP is determined by the
eigenvectors of the transition matrix with the largest real parts
of the corresponding eigenvalues (note that the real parts of all
eigenvalues are nonpositive) [87]. On the coexistence line, the
spectral gap � (the difference between the zero eigenvalue
corresponding to the steady state and the next largest eigen-
value) approaches zero as L−2 for large L, signaling a diffusive
relaxation time �−1 ∝ L2, whereas in the elongation-limited
regime the spectral gap approaches zero as L−3/2 for large
L [87]. Hence, we expect Ton to scale with L2 on the
coexistence line, and with L3/2 in the elongation-limited
regime.

The conditions (B1) and (B8) were tested on a large dataset
of the on and off rates inferred from single-cell RNA sequenc-
ing data in mouse fibroblasts [22]. Gene lengths for each gene
in the dataset were obtained from the GRCm39 genome as-
sembly for Mus musculus published by Ensembl (release 106,
Nov. 2022) using gffutils package in Python. The data was
analyzed for three values of the elongation rate (0.6, 1.8, and
2.4 kb/min) reported for this type of cells in Ref. [69]. These
elongation rates were measured by observing the depletion of
RNAPs after stopping new transcription initiation, therefore
we assumed that these values represent the effective elonga-
tion rates ωeff = ω(1 − ρ), rather than the bare ones (ω). The
conditions (B1) and (B8) were tested assuming Ton � Tel and
Toff � Tel, where Tel ≈ L/[ω(1 − ρ)]. A gene was considered
to be in the slow-switching regime if both kon/Tel < 0.2 and
koff/Tel < 0.2 conditions were satisfied.

Of 3236 genes, 78% of the genes at 0.6 kb/min, 96%
of the genes at 1.8 kb/min, and 98% of the genes at 2.4
kb/min satisfied the condition (B1), meaning that for most
genes the off state should last long enough for all RNAPs to
leave the gene before the gene switches back to the on state.
This also means that most of the genes will have only one
transcriptional burst of RNAPs active on the gene. In contrast,
the conditions (B1) and (B8) were simultaneously satisfied
in 40% of the genes at 0.6 kb/min, 62% of the genes at 1.8
kb/min, and 66% of the genes at 2.4 kb/min.

APPENDIX C: WAITING-TIME DISTRIBUTION h(t )
BETWEEN TWO SUCCESSIVE TERMINATION EVENTS

IN THE TELEGRAPH MODEL WITH RNAP VOLUME
EXCLUSION

For the process described in Eq. (75), we define the prob-
ability density functions f0→1(t ), f1→0(t ), and f1→2(t ) as
follows: f0→1(t ) is the probability density function of the
waiting time in the off state, after which the gene switches to
the on state, f1→0(t ) is the probability density function of the
waiting time in the on state after which the gene switches to
the off state, and f1→2(t ) is the probability density function of
the waiting time in the on state, after which the gene produces
a nascent RNA (and remains in the on state). We denote
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their respective Laplace transforms by f̃0→1(s), f̃1→0(s), and
f̃1→2(s).

Using these definitions, the Laplace transform of h(t ), de-
noted by h̃(s), can be written as

h̃(s) =
∞∑

n=0

[ f̃1→0(s) f̃0→1(s)]n f̃1→2(s)

= f̃1→2(s)

1 − f̃1→0(s) f̃0→1(s)
. (C1)

The expression in the square brackets accounts for the pro-
gression through the cycle Gon → Goff → Gon during which
no nascent RNA is produced. The integer n denotes the num-
ber of such cycles before a nascent RNA is produced, and the
summation goes over all n � 0.

The remaining problem is to compute f̃0→1(s), f̃1→0(s),
and f̃1→2(s). Since the waiting time in the off state is expo-
nentially distributed, and there is only one reaction that leads
from the off state, f̃0→1(s) is given by

f̃0→1(s) =
∫ ∞

0
kone−(s+kon )t = kon

s + kon
. (C2)

From the definitions of f̃1→0(s) and f̃1→2(s), it follows that

f1→0(t ) = P(1 → 0)p(t ), (C3)

f1→2(t ) = P(1 → 2)p(t ), (C4)

where p(t ) is the probability density function of the waiting
time in the on state until the gene either switches to the off
state or produces a nascent RNA, P(1 → 0) is the probability
that the gene switches to off state, and P(1 → 2) is the prob-
ability that the gene produces a nascent RNA in the on state.
We note that∫ ∞

0
p(t )dt = 1, P(1 → 0) + P(1 → 2) = 1. (C5)

To find p(t ), we denote by t1 a random variable whose pdf is
given by f1(t1) and by t2 a random variable whose pdf is given
by f2(t ), where f1(t1) and f2(t2) are given by

f1(t1) = koffe
−kofft , f2(t2) = fter,as(t2), (C6)

and fter,as(t ) is given by Eq. (48). The waiting time t in the
on state before either switching to the off state or producing
a nascent RNA is the minimum of t1 and t2, t = min{t1, t2}.
Hence,

P(t > x) = e−koff P2(t2 > x). (C7)

From here, we get p(x) by taking the derivative of P(t � x) =
1 − P(t > x),

p(x) = e−koffx[koffP2(t2 > x) + f2(x)]. (C8)

The probability P(1 → 0) can be found from the condition
that t1 < t2,

P(1 → 0) = P(t1 < t2) =
∫ ∞

0
dt1 f1(t1)

∫ ∞

t1

dt2 f2(t2)

= koff

∫ ∞

0
dt1e−kofft1 P2(t2 > t1). (C9)

Similarly, P(1 → 2) follows from the condition that t2 < t1,

P(1 → 2) = P(t2 < t1) =
∫ ∞

0
dt2 f2(t2)

∫ ∞

t2

dt1 f1(t1)

=
∫ ∞

0
dt2e−kofft2 f2(t2). (C10)

It is convenient to introduce λ1 = ων and λ2 = ω(1 − ν), in
which case fter,as(t ) can be written as

fter,as(t ) = λ1λ2

λ1 − λ2
(e−λ2t − e−λ1t ). (C11)

Inserting this expression into the expressions for p(t ), P(1 →
0), and P(1 → 2) yields

p(t ) = λ2(koff + λ1)

λ2 − λ1
e−(koff+λ1 )t

−λ1(koff + λ2)

λ2 − λ1
e−(koff+λ2 )t , (C12)

P(1 → 0) = koff(koff + λ1 + λ2)

(koff + λ1)(koff + λ2)
, (C13)

P(1 → 2) = λ1λ2

(koff + λ1)(koff + λ2)
. (C14)

From Eq. (C12), it follows that the Laplace transform of p(t )
is given by

p̃(s) = koffs + (koff + λ1)(koff + λ2)

(koff + λ1 + s)(koff + λ2 + s)
. (C15)

Inserting p̃(s) into f̃1→0(s) = P(1 → 0) p̃(s) and f̃1→2(s) =
P(1 → 2) p̃(s), and then in the expression for h̃(s) yields

h̃(s) = A(s)

B(s)
, (C16)

where A(s) and B(s) are given by

A(s) = λ1λ2(s + kon)[koffs + (koff + λ1)(koff + λ2)], (C17a)

B(s) = (koff + λ1)(koff + λ2)(s + koff + λ1)(s + koff + λ2)

× (s + kon) − konkoff(koff + λ1 + λ2)

× [koffs + (koff + λ1)(koff + λ2)]. (C17b)

This expression can be inverted to get h(t ) by find-
ing the roots of B(s) and performing the partial fraction
decomposition.
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