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Periodic temporal environmental variations induce coexistence in resource competition models
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Natural ecosystems, in particular on the microbial scale, are inhabited by a large number of species. The
population size of each species is affected by interactions of individuals with each other and by spatial and
temporal changes in environmental conditions, such as resource abundance. Here, we use a generic population
dynamics model to study how, and under what conditions, a periodic temporal environmental variation can
alter an ecosystem’s composition and biodiversity. We demonstrate that using timescale separation allows one
to qualitatively predict the long-term population dynamics of interacting species in varying environments. We
show that the notion of Tilman’s R* rule, a well-known principle that applies for constant environments, can
be extended to periodically varying environments if the timescale of environmental changes (e.g., seasonal
variations) is much faster than the timescale of population growth (doubling time in bacteria). When these
timescales are similar, our analysis shows that a varying environment deters the system from reaching a steady
state, and stable coexistence between multiple species becomes possible. Our results posit that biodiversity can
in part be attributed to natural environmental variations.
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I. INTRODUCTION

In a healthy ecosystem, a wide variety of species coexist,
interacting with each other through cooperative or compet-
itive behavior [1,2]. These interactions tend to be complex
and entangled: the causal chain between a modification of
the ecosystem and the corresponding observable effects, in
particular on the biodiversity, are not always obvious [3–6].
To describe how the population sizes of interacting species
change over time for specific systems, various models have
been developed (for a comparison, see, for example, Ref. [7]).
Among those, the Monod model [8] is presumably the most
widely used model, as it includes the effect of growth-
restricting parameters (usually a limiting resource) in the
model. When multiple species compete for such a limiting
resource in a constant environment Tilman’s R* rule [9] in-
dicates which species will outcompete all others.

Only few models, however, account for the fact that the
vast majority of ecosystems occurring in nature are subject to
an external temporal structure [10], such as light availability
during day-night cycles [11], temperature variations during
the change of the seasons [12], or the circadian rhythm of
vertebrate gut microbiota [13], despite accumulating evidence
that organisms are strongly affected by such external temporal
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periodic variations. For example, gene expression in the fun-
gus Neurospora crassa can be coupled to periodic temperature
variations (entrainment) [14], and knock-out experiments on
the bacterium Rhodopseudomonas palustris identified a pro-
tein that enhances cell growth when exposed to light-dark
cycles, but does not provide any advantage in constant en-
vironments [15]. On the level of microbial communities, it
was shown that the composition of the mouse gut micro-
biome can be affected by an externally imposed day-night
cycle [16] or a time-restricted feeding schedule [17,18]. The
strong statement of Tilman’s R* rule does not hold anymore
in variable environments, with Hutchinson’s proposed solu-
tion to the “paradox of the plankton” as the most prominent
counterexample [19,20].

Theoretical models for population dynamics that consider
external temporal structures mainly investigate the growth
dynamics of a single population [21–29], or study the in-
teractions between multiple populations for fairly specific
biological systems [11,29–40], with recently revived focus
on stochastically varying environments [41–53] and peri-
odic resource cycles [18,54–56]. These existing approaches
show how populations change over time in specific systems;
however, as they are often tailored to a certain biological ap-
plication, they cannot be applied in general to understand how
interacting populations are affected by a varying environment,
especially in terms of their long-term ability to coexist. A no-
table exception is Chesson’s widely used coexistence theory
[3,57] which has also been extended to temporally varying
environments [58]. Chesson’s framework provides a rigorous
mathematical analysis of ecological diversity and introduces
useful concepts to theoretically assess multispecies coexis-
tence. However, the rather technical formulation, revisions of
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FIG. 1. Illustration of the resource competition model with peri-
odically switching resource abundance. Yellow (or light gray) and
blue (or gray) balls represent individuals of distinct species. Di-
amonds indicate available resource units. For a fraction of each
period, an abundant amount of resources are available (left). For the
remainder of the period, few or no resources are available (right),
inhibiting the growth of the populations.

theoretical concepts, and a lack of intuitive explanations for
the analysis has lead to much confusion [59]. Here, we aim to
complement Chesson’s foundations by providing an intuitive
explanation and a physical perspective for a central question
in the field: How can a periodic temporal structure in general
alter an ecosystem’s ability to sustain or enhance biodiversity?

To address this question, we study a simple yet fairly
general growth model that forbids coexistence in a constant
environment according to the competitive exclusion principle
[60,61]. We focus on the qualitative differences that appear
when the environment is made explicitly time-dependent.
Our analysis reveals a mechanism by which the competitive
exclusion can be overcome by periodically changing the envi-
ronment for a system hosting multiple species (Fig. 1).

This paper is structured as follows: We start in Sec. II by
introducing a resource competition model, which is used as
an example throughout this paper, along with a generalized
growth model. In Sec. III, we discuss the most important
features of the generalized model and the implications of
the competitive exclusion principle and Tilman’s R* rule [9]
in a time-independent environment. We then study a system
with two competing species that are subject to a periodic
modulation of the environment, which is accounted for via
a time-dependent resource abundance. Finally, we extend the
analysis to systems with more than two species, and study how
a general external temporal periodic pattern impacts a more
diverse ecosystem in Sec. IV. We conclude with a concise
summary and an outlook.

II. MODEL

A. The autonomous chemostat model

Consider a population with M distinct species, each with
a population size ni(t ), i ∈ {1, . . . , M}. Population growth is
assumed to follow the Monod model [8], with a maximum per
capita growth rate μi. All species, totalling a population size
of N (t ) = ∑

i ni(t ), uniformly feed on and compete for a sin-
gle common abiotic resource R. The term “abiotic” refers to
the resource abundance being constant or having an externally
imposed time dependence, rather than being a dynamic quan-
tity. The resource is assumed to be replenished immediately
after it is consumed (as a limiting case of a biotic resource,
discussed in Appendix A), such that the limiting factor for
population growth is the amount of excess resources R − N (t ).

FIG. 2. Representative flow diagram showing the time evolution
of the population sizes of two competing species. The dashed line
represents a subspace of constant total population size N = R, and
the dotted lines represent subspaces of constant total population size
N = N̄1 and N = N̄2. Light gray arrows indicate the overall flow. The
pink (or gray) trajectory represents the heteroclinic orbit connecting
the two nontrivial fixed points. For two competing species, there
are one stable (filled circle) and two unstable fixed points (open
circles). Following the R* rule, the stable fixed point corresponds
to the species with the smallest resource buffer K̄i. The purple (dark
gray) line represents a specific trajectory initially favoring the species
with larger resource buffer, but finally resulting in the survival of the
species with the smaller resource buffer, following the R* rule.

Growth is only possible if there are excess resources available,
which is made explicit by only allowing nonnegative values
of the excess resources. The impact of resource scarcity is
quantified by the species-dependent half-saturation constants
Ki [60]. Furthermore, the population size of each species is
assumed to decrease at a per capita rate δi. Altogether, the dy-
namics of the population sizes are described by the following
chemostat model [62,63]:

d

dt
ni(t ) = ni(t )

(
μi

max(R − N (t ), 0)

max(R − N (t ), 0) + Ki
− δi

)
. (1)

The choice of this chemostat model with an abiotic resource
as a showcase is motivated by its simplicity and the clear
intuition conveyed by each term. Due to the limited resource
availability, each species i has a carrying capacity N̄i at which
the population growth is exactly levelled by decay. This popu-
lation size is given by N̄i = R − K̄i, where the offset K̄i can be
interpreted as a resource buffer, denoting the amount of excess
resources when species i reaches the steady state (Fig. 2);
derivation in Appendix B. This resource buffer is conceptually
similar to the equilibrium resource density R* [9], in the sense
that both quantities specify the equilibrium solution of the
system. Note that the index i in the symbol N̄i refers to the fact
that the population ni can not grow if the total population size
is larger than the carrying capacity of species i, i.e., if N > N̄i;
a different species j may still grow at this total population
size if N̄j > N . In the chemostat model, when a species does
not face competition, this carrying capacity N̄i is equal to the
steady-state population size n∗

i (fixed point), and survival is
only feasible for strictly positive carrying capacity.
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Note that in Eq. (1) we assume that all species consume
the same amount of resources per capita, which can be de-
rived from a more general version by appropriate rescaling as
shown in Appendix A. One could further reduce the number
of parameters by nondimensionalizing the model, e.g., by
expressing the timescale in terms of the death rates, however
here we stick to the dimensional quantities to highlight the
role of each of the parameters in the following analysis.

B. The nonautonomous chemostat model

The model in Eq. (1) describes an ecosystem that has
no external temporal structures so that all model parameters
remain constant in time, referred to as an autonomous system.
Here, however, we are interested in a periodically varying
environment (nonautonomous), which we will incorporate via
a time-dependent abiotic resource R(t ). In principle, any of
the model parameters may depend on time, and one could
also arrive at the following results using a time depen-
dence other than the resource abundance; see, for example,
Refs. [37,46,63,64]. However, it is more illustrative and bi-
ologically relevant [11,18,65] to study the case where the
resource varies over time.

For simplicity, we assume that R(t ) switches periodically
between two constant values Ra and Rs, with a period duration
of T , reminiscent of a seasonal cycle. To further simplify
the analysis, we explain the effect of an externally imposed
time dependence for the case Rs = 0 first, and generalize
to 0 � Rs < Ra later. The time window where resources are
abundant (R(t ) = Ra) is assumed to last a proportion νT of
the total period, with the activity ratio ν ∈ [0, 1]. For the re-
mainder of the total period, (1 − ν) T , resources are assumed
to be scarce (R(t ) = Rs). If no resources are available, then
there should be no growth, which is enforced by only allowing
nonnegative values of the excess resources (R(t ) − N (t )). The
resulting differential equation including the time-dependent
resource R(t ) reads

dni(t )

dt
= ni(t )

[
μi

max (R(t )−N (t ), 0)

max (R(t )−N (t ), 0) + Ki
− δi

]
, (2a)

R(t ) =
{

Ra for 0� t <νT,

Rs for νT � t < T,
R(t+T ) = R(t ). (2b)

This nonautonomous chemostat model will serve as an ex-
ample to illustrate the results throughout this paper. Within
each time period T , there are therefore two distinct phases:
While resources are abundant, the populations grow just as
in the autonomous chemostat model, Eq. (1). This growth is
impeded while resources are scarce, and in the special case
Rs = 0 that will be investigated first the population sizes decay
exponentially. Note that this is identical to a setup where
populations are diluted by a constant factor periodically, as
common in serial dilution experiments [66–71].

C. General model class

The chemostat model is a special case of a general class
of growth models referred to as competing species models
[72,73]. In this class of models, the net per capita growth rates
are general growth functions fi({n j (t )}, t ) for each species i.

The term “competing” implies that the growth rates decrease
for increasing population sizes, ∂n j fi({n j (t )}, t ) � 0.

When the population growth depends on a linear combi-
nation of the individual population sizes

∑
j q jn j , the growth

functions fi can be rewritten in terms of the total population
size N . This can be achieved by rescaling the population sizes
by their relative weighting factor qj as shown in Appendix A.
The resulting class of models defined by

d

dt
ni(t ) = ni(t ) · fi(N (t ), t ), (3a)

∂

∂n j
fi(N (t ), t ) � 0 (3b)

is a generalization of the nonautonomous chemostat model in
Eq. (2). Additional constraints to make the growth functions
fi realistic are stated in Appendix C. We will show that the
concepts that can lead to increased biodiversity in the resource
competition model can actually be applied to the entire class
of competing species models as specified in Eq. (3).

III. TWO-SPECIES COMPETITION

In this section we begin the analysis of the role of time-
dependent resources with a discussion of systems hosting two
competing species. For simplicity we assume that the decay
rates δi are identical for both species, which is a basic feature
of chemostat models where the decrease in each species’ pop-
ulation size is mainly due to washout from the chemostat [63].
We will shortly review the R* rule in a constant environment
before analyzing the time-dependent environment.

A. Competitive exclusion and the R* rule

In a system hosting two or more distinct species whose
population dynamics are described by Eq. (1), competition
for a single limiting resource will allow only one survivor,
namely the one with the smallest resource buffer K̄i. This
rule is known as the competitive exclusion principle [60,61].
It can be understood heuristically in the following way: For
two competing species, both populations can grow until the
total population size N approximately matches the carrying
capacity N̄i of one of the two species (purple or dark gray
flow line in Fig. 2 approaching the heteroclinic orbit). At
this point, the net growth for this species is zero, whereas
the other species (the one with the smaller resource buffer)
can still grow, thereby further increasing the total population
size. Since this reduces the amount of resources available
to the species with the larger resource buffer, its population
size will start to decrease, eventually leading to extinction
of the species with the larger resource buffer (flow along the
heteroclinic orbit toward the stable fixed point in Fig. 2).

In total, a system hosting two species therefore has three
fixed points: assuming K̄1 < K̄2, the stable fixed point is lo-
cated at (n1, n2) = (N̄1, 0), whereas the two unstable fixed
points are located at (0, N̄2) and (0,0). The stable and un-
stable fixed points are represented as filled and open circles
in Fig. 2, respectively. A fine-tuned case of coexistence is
possible when the two species have the same carrying capacity
N̄1 = N̄2, where all population sizes n2 = N̄1 − n1 are neutral
equilibrium solutions. If the system consists of more than two
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(a)

(b)

(c)

(d)

FIG. 3. Comparison of the population dynamics at a fixed pe-
riodicity T = 7 for four different fractions νT with resources
available: (a) ν = 1, (b) ν = 0.75, (c) ν ≈ 0.64, and (d) ν = 0.61
(remaining parameters in Table I). Gleaner (n1) population sizes are
shown in yellow (or light gray), the opportunist (n2) is shown in
blue (or gray). Points indicate the discrete-time (between-season)
population sizes ni,k . Dashed lines show the relative population size
n2/n1 (log scale, right axis). Shaded regions indicate time periods
when resources are scarce. In the time-independent case (a), the R*
rule takes its full effect, with the opportunist approaching its steady
state at Ra − K̄2 quickly, but being overtaken by the gleaner with the
smaller resource buffer K̄1 eventually. These dynamics are altered for
time-dependent environments: For increasingly long time episodes
without resources, the gleaner’s competitive advantage becomes less
effective (b), eventually leading to coexistence at a neutral equilib-
rium (c), or even to inverted dynamics compared to the conventional
R* rule (d). Whether the external temporal periodic pattern leads to
regular dynamics, inversion, or coexistence, depends on the duration
of the period with resources absent, which is parametrized by the
activity ratio ν.

species, then this recursive argument can be repeated to show
that the species with the lowest resource buffer will be the
only one to survive [62].

Generically, Tilman’s R* rule—equivalent to finding the
lowest equilibrium resource density R*i or the lowest resource
buffer K̄i—predicts which species will survive when the total
population size reaches the carrying capacity [9]. Throughout
our analysis, the population size of this surviving species
(termed gleaner, or K-strategist [74]) will be labeled by n1.
While the gleaner species will dominate in the long run for
high total population sizes, the other species (termed oppor-
tunist, or r-strategist, n2) may grow faster on short timescales
but will be suppressed by the gleaner in the long run, as shown
in Fig. 3(a). Such a scenario, known as gleaner-opportunist
tradeoff [62], has been observed, for example, in phyto-
plankton competition [11,19,75]. For the chemostat model,
Eq. (1), Tilman’s R* rule implies that the most successful
strategy for surviving in competition with other species is to

minimize one’s resource buffer K̄i, i.e., to optimize one’s re-
source utilization. Interestingly, this outcome solely depends
on the resource buffer, but not explicitly on the growth rates
of the populations [9,63].

B. Reversal of survival

In contrast to the time-independent case, the opportunist
can gain a significant advantage from the quick growth at
low total population sizes in an environment with periodi-
cally switching resources. This effect has been acknowledged
before in the context of r- and K-specialists [76] and will
be summarized briefly in the following: While resources are
available and before the opportunist’s population size can
reach its maximum, the fast growth of the opportunist ensures
that the relative population size n2(t )/n1(t ) increases to the
advantage of the opportunist (dashed lines in Fig. 3). During
the time period when resources are absent, both population
sizes decrease, but the relative population size remains the
same since we assumed equal decay rates δi here. Note that,
if this time period without resources is short enough, then
the total population size remains high and the gleaner is not
affected critically by the lack of resources, so that the op-
portunist loses to the gleaner in the long run [Fig. 3(b)]. In
contrast, for a sufficiently long time period without resources,
the populations are set back to very low population sizes
each period. Due to the fast growth of the opportunist at low
total population sizes, the opportunist can take over in the
long run, whereas the gleaner will go extinct, which is the
inverse result compared to the conventional R* rule [Fig. 3(d)]
[19]. At the transition from short to long time periods without
resources, the opportunist’s advantage at low population sizes
and the disadvantage at high population sizes level each other,
leading to coexistence between the gleaner and the oppor-
tunist [Fig. 3(c)]. This concept of alternating periods with and
without resources is intimately related to the “storage effect”
that gives rise to coexistence in Chesson’s coexistence theory
[42,77,78]. Finally, when the period without resources is too
long, all species may go extinct, thereby actually reducing
the biodiversity of the ecosystem compared to an environment
with constantly abundant resources.

C. Bifurcation diagram: Inversion and coexistence

Under what conditions will the opportunist species sur-
vive instead of the gleaner species? Heuristically, there are
three conditions on the time dependence of the resource abun-
dance that must be met for this reversal of survival to occur: (i)
The time window during which resources are available needs
to be short enough so that competitive exclusion does not take
effect. (ii) The time window during which resources are absent
needs to be long enough to ensure that the total population
size decays to a small value before the resources become
available again. (iii) The time window during which resources
are available needs to be long enough so that the populations
can recover from the time window where resources are absent,
as otherwise all populations would go extinct over the course
of multiple periods, known as a storage effect [77,78].

These requirements impose constraints on the activity ratio
ν that characterizes the external periodic structure.
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FIG. 4. Flow diagrams of the discretized population dynamics (n1,k, n2,k ) obtained from the map Eq. (4) for the chemostat model at different
values for ν as indicated in the graph; panel (c) shows the flow right at the upper activity ratio threshold νu ≈ 0.64. For ν = 1, the flow diagram
of the between-season population sizes [panel (a)] is identical to the continuous-time flow diagram shown in Fig. 2. Red (thick gray) dashed
arrows represent heteroclinic orbits between the fixed points. At the threshold value νu for the activity ratio, all states on this orbit are stable
(black line), corresponding to fine-tuned coexistence between the two species for a range of population size combinations (n1, n2), i.e., with
neutral equilibria. For parameters see Table I.

In the following, we provide quantitative reasoning for
these qualitative arguments. To this end, we approximate
the continuous dynamics with time-dependent resource abun-
dance by a discrete equivalent (a map) with time-independent
resource abundance. Based on this approximation, we gener-
alize the R* rule to time-dependent environments. From this,
we then derive the constraints on the activity ratio for reversal
of survival and use an invasibility criterion [79] to determine
constraints on the period duration, validating the arguments
above and allowing to estimate the bifurcation diagram for
the long-term population dynamics.

1. Approximation of the population dynamics

In the following, we study the population dynamics in
the competing species model class with externally imposed
time dependence, as specified in Eq. (3). Now, assume that
nonlinear contributions to the population size changes ∂t ni(t )
within a single period T can be neglected. This assumption
is reasonable if the population size remains approximately
constant over the course of a single period T , meaning that
ni(t ) ≈ ni(kT ) for t ∈ [k T, (k+1) T ]. In Appendix D, we
show that this is valid for short period durations T compared
to the timescales of growth, T � 1/ fi.

Using this approximation and writing ni,k := ni(kT ) and
Nk := N (kT ) to denote the population size after k periods
(between-season population size), one can approximate the
continuous (within-season) population dynamics in Eq. (3) by
a discrete map:

ni,k+1({n j,k}) = ni,k exp

[ ∫ T

0
dt fi(Nk, t )

]
= ni,k exp[T 〈 fi(Nk )〉]. (4)

Here, 〈 fi(Nk )〉 is the average growth rate over the course
of one period T at a given total population size Nk . We
provide a formal derivation of this map in Appendix D. This
approach has been used previously in Ref. [22] to derive
certain mathematical properties of a class of models including
Eq. (3), and it is similar to the averaging methods employed
in Refs. [21,36,80]. Note that this map is obtained assuming
T � 1/ fi and is merely a linear approximation of the actual

dynamics, and we will discuss the nonlinear effects arising in
the general case later on.

In the discrete map in Eq. (4), the externally imposed time
dependence [the resource abundance R(t ) in the chemostat
model] is integrated out. In other words, only the “time-
averaged” effect of the explicitly time-dependent parameters
is of relevance for this approximation. This greatly simplifies
the qualitative analysis of the asymptotic dynamics of the
population sizes at t → ∞: for the continuous system, the
population dynamics approach a limit cycle [Fig. 3(c)], but
an analytic expression for the population sizes at the limit
cycles can in general not be obtained due to the nonlinearity
of the population dynamics. In the discrete map, however, the
population dynamics approach a fixed point {n∗

j } which can be
calculated from Eq. (4). This allows us to analyze the system
quantitatively while preserving the qualitative features.

Figure 4 shows the time evolution in the form of a flow
diagram for the population sizes (n1,k, n2,k ) as obtained from
the discrete map Eq. (4). Note that these flow diagrams do
not show the population size variations over the course of a
single period, but rather the change of the population sizes
over subsequent periods {k, k+1, . . .} (between-season). De-
pending on the value of the activity ratio ν, qualitatively
different dynamics are observed: In the absence of periodic
changes of the environment (ν = 1), the gleaner species n1 is
the surviving species, as indicated by the stable fixed point
in the flow diagram (filled circle at (n1,k, n2,k ) = (N̄1, 0)).
This is the R* rule. For a periodically changing environment
with a sufficiently large activity ratio (ν > νu [Fig. 4(b)]), the
gleaner remains the surviving species. However, at a threshold
value of the activity ratio, ν = νu, the two nontrivial fixed
points are stable simultaneously, as well as all states (n1, n2)
along the heteroclinic orbit connecting these two fixed points.
This corresponds to coexistence between the two species,
where the final state of the system depends on the initial
conditions. Note that this situation is similar to the fine-tuned
coexistence of two species in a time-independent environ-
ment with N̄1 = N̄2 (neutral equilibria) but will expand into
a coexistence region of finite size at longer period durations
T (stable equilibria). For activity ratios below this threshold
(ν < νu [Fig. 4(d)]), the opportunist is the surviving species.
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&Surviving species:

(a) (b) (c)

FIG. 5. Qualitative competition dynamics. (a) Carrying capacities N̄i(ν ) as a function of the activity ratio ν (analogue to fixed points of
the growth functions n∗

i ) for two distinct species (gleaner shown in yellow or light gray, opportunist shown in blue or dark gray) that exhibit
inverted long-term dynamics for time-dependent resource abundance in the chemostat model. Solid lines correspond to zero resources in
times of scarcity (Rs = 0), dashed lines show the fixed points for small but nonzero resources in this time window (Rs > 0). Vertical dashed
lines indicate the calculated upper and lower boundaries νu and νl to the region of inverted long-term dynamics. Arrows indicate the flow
of the system toward the nullclines. Bars above indicate the surviving species over all values of the activity ratio ν for T → 0 using Rs = 0
and Rs > 0, respectively. Shaded/patterned regions indicate which species survives. In this and all other figures showing bifurcation plots,
uniformly shaded areas correspond to a single species surviving the competition, while striped areas correspond to coexistence between two
species [cf. legends below panel (a)]. White areas indicate regions where neither species survives. (b) Representative bifurcation diagram
for the chemostat model, which has no resources during episodes of scarcity (Rs = 0). For short period durations T , the calculated phase
boundaries νu and νl (dashed lines) agree well with the data (solid phase boundaries). Deviations at large T are due to nonlinearities in the
population dynamics. (c) Representative bifurcation diagram for the chemostat model, which has small but finite resources during episodes of
scarcity (Rs > 0). Again, the calculated phase boundaries (black dashed lines) match the data (solid phase boundaries) at short T . As predicted
by Eq. (E7), the conventional R* rule holds at large T for any value of the activity ratio ν. At intermediate T , a band of coexistence connects
the regions of regular and inverted long-term dynamics. For (b) and (c), the data was obtained as described in Appendix F and the phase
boundaries were interpolated.

Thus, upon changing the activity ratio ν, the system exhibits a
transition from a regime obeying the R* rule (gleaner sur-
vives, termed regular long-term dynamics in the following),
to a regime with inverted outcome compared to the R* rule
(opportunist survives, termed inverted long-term dynamics).
In the following, we will quantify this transition and the
threshold value ν for the activity ratio by generalizing the
R* rule to time-dependent environments. To facilitate the
comparison with the situation in a constant environment, the
terms “regular” and “inverted” long-term dynamics take the
dynamics in the time-independent environment as baseline
throughout this analysis. Finally, neither of the species can
survive for too small activity ratios ν (equivalent to negative
carrying capacities N̄i), which becomes obvious in the extreme
case ν = 0 where no resources are available at any time.

2. Analogy to the R* rule

Recall that in the autonomous system, the R* rule states
that the species with the smallest resource buffer or, equiva-
lently, the largest carrying capacity N̄i = R − K̄i will survive.
If only one species prevails (M = 1), then this carrying ca-
pacity is identical to the steady-state population size n∗

i .
However, Tilman’s R* rule holds only locally in time. In the
nonautonomous system, the resource buffer K̄i is not well-
defined due to the explicitly time-dependent growth rates
fi. However, it is possible to infer a proxy for the resource
buffer from the steady-state population size in a single-species

system: for the nonautonomous system, the analog to each
species’ steady-state population size is the population size at
the fixed point of the discrete map in Eq. (4),

ni,k+1({n∗
j }) = ni,k .

Note that when the between-season dynamics ni,k are at
a fixed point the within-season dynamics ni(t ) periodically
vary over time [Fig. 3(c)]. Following the line of arguments
above in reverse, the fixed point in a system where only one
species prevails (M = 1) corresponds to the largest sustain-
able population size, N̄i = n∗

i |M=1. Equivalently, this allows
us to deduce a proxy resource buffer Ra − n∗

i |M=1 for the
time-dependent system. Based on this direct relation between
the fixed point and the (proxy) resource buffer, we now gen-
eralize the R* rule to systems with externally imposed time
dependence (within in the range of validity of the discrete
map at T � 1/ fi): In a system hosting two or more distinct
species whose population dynamics are described by Eq. (3),
competition will allow only one survivor, namely the one
with the largest maximally sustainable total population size
N̄i ≡ n∗

i |M=1.
The fixed point values—and thus also the carrying ca-

pacities N̄i—depend on the details of the external time
dependence, which is effectively accounted for by the time-
averaged growth rates 〈 fi〉 in the discrete map. In particular,
they depend on the activity ratio, N̄i(ν), shown in Fig. 5(a)
for two distinct species obeying the chemostat model. In
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particular, the results from the autonomous system are re-
covered for ν = 1, where N̄i(1) = R − K̄i [Fig. 4(a)]. For the
nonautonomous system, the predicted survivor is indicated
by the bars above the plot frame in Fig. 5(a). So far, only
the case Rs = 0 (top row, solid lines) has been discussed; a
generalization to Rs > 0 will follow in Sec. III D.

3. Parameter regime for reversal of Tilman’s R* rule

Following the above generalization of the R* rule, the
transition from regular to inverted long-term dynamics in a
two-species system is found by determining the threshold
value νu for which both species have the same carrying ca-
pacity, N̄1(νu) = N̄2(νu). Graphically, νu can be determined
from the intersection of the functions N̄i(ν) [Fig. 5(a)]. Since
the carrying capacity is derived from the single-species fixed
points n∗

i |M=1, one can use the discrete map in Eq. (4) to derive
this threshold activity ratio. In particular, this requires find-
ing the parameter combination (N, ν) at which both species’
averaged growth rates are zero, i.e., solving the system of
equations

0 = 〈 f1(N̄ )|νu〉 = 1

T

∫ T

0
dt f1(N̄, t )|νu , (5a)

0 = 〈 f2(N̄ )|νu〉 (5b)

for N̄ and νu. For the chemostat model with zero re-
sources during the period of scarcity (Rs = 0), this system of
equations has only one physical solution, which we derive
explicitly in Appendix E. Hence, in this case there is only
one threshold activity ratio for which fine-tuned coexistence
is possible [Fig. 5(a)], separating the regions of regular and in-
verted long-term dynamics. The region of inverted long-term
dynamics is bound from below by another threshold activity
ratio νl , at which the overall resource abundance is too low
to sustain even the opportunist population and both species
go extinct. Thus, the externally imposed time dependence can
lead to three distinct characteristic outcomes in the chemostat
model with Rs = 0: regular long-term dynamics, inverse long-
term dynamics (enclosed by upper and lower boundaries νu

and νl ), and a system where neither species survives. In the
limit of short period times T and Rs = 0 in the chemostat
model the phase boundaries take the values

νl = δ2

μ2

K2 + Ra

Ra
, (6a)

νu = δ1δ2(K1 − K2)

μ2δ1K1 − μ1δ2K2
, (6b)

as derived in Appendix E.
In general, there can be multiple threshold activity ratios

[dashed lines in Fig. 5(a) for Rs > 0], which can give rise
to rich phase diagram structures. In any case, the region of
inverted long-term dynamics extends only over a fraction of
the entire parameter space, i.e., 0 < νu,l < 1 are strict bounds.
This is evident since the cases ν = 1 and ν = 0 formally
correspond to time-independent systems, for which Tilman’s
R* rule holds. Thus, if an upper boundary νu for the region of
inverted long-term dynamics exists, then there is also a lower
boundary νl ; however, the nature of this boundary can vary.
Either, both species go extinct for ν < νl (as in the case Rs = 0
in the chemostat model), or there is another region of regular
long-term dynamics (possible for Rs > 0).

The discrete map in Eq. (4) is based on the assumption
that the period duration is much smaller than the timescales
of growth, T � 1/ fi, and thus all ensuing predictions are
expected to hold only in this parameter regime in general. In
the chemostat model with Rs = 0, however, numeric solutions
of the system show that the predictions remain approximately
valid for all period durations. A sample phase diagram for the
two-species chemostat model is shown in Fig. 5(b). The verti-
cal dashed lines indicate the phase boundaries as predicted by
the discrete map, which agree well with the numerically deter-
mined phase boundaries for short period durations. However,
for large period durations, slight deviations from the predicted
phase boundaries emerge: the region of inverted long-term
dynamics (dark gray, labeled “n2”) broadens marginally. In
addition, the fine-tuned neutral-equilibrium coexistence at the
upper boundary νu turns into a narrow band of stable coexis-
tence (striped).

All significant deviations from the predicted phase bound-
aries happen within the parameter regime shown in Fig. 5(b).
In particular, the widths of the regions of inverted long-term
dynamics and coexistence do not change anymore for even
larger T . Note that the approximate validity of the predicted
phase boundaries for all T is a special feature of the chemostat
model. In essence, this is due to the fact that there is no
competition during the period of scarcity if Rs = 0 (without
resources, there is no resource competition) and that for a
significant portion of the period of abundance the population
sizes are small (nonlinearities are negligible). As a conse-
quence, the effects of the nonlinearities that were neglected
in the discrete map are mostly suppressed for all T [since
linearization along the lines of Eq. (4) is possible for small
population sizes], resulting in only minimal changes to the
phase diagram structure for large period durations. In the
following, we will turn toward a more general case and study
the case where the nonlinearities are not suppressed.

D. Generalization to nonzero resources

So far, we have limited the analysis to ecosystems where
no resources are available at all during the time window when
resources are scarce. Now, we relax this restriction and allow
a limited, but nonzero, amount of resources 0 < Rs < Ra. In
this case, a finite amount of resources is always available,
and therefore there is always resource competition between
the two species. Thus, in contrast to the case Rs = 0, the
nonlinearities are now no longer suppressed. More precisely,
nonlinear competition dominates the population dynamics
once the total population size drops below the resource
abundance, N (t ) < R(t ). Since the gleaner population is less
susceptible to resource scarcity and is less negatively af-
fected by the competition than the opportunist, this implies
that the gleaner gains an advantage during the period with
scarce resources. This effect counteracts the advantage that
the opportunist gains from a quickly varying environment.
Thus, inverted long-term dynamics as discussed above is not
necessarily established if the total population size drops below
the threshold value Rs.

Under what conditions does the total population size drop
below this threshold, N (t ) < Rs? This is the case only when
the absolute duration of the periods with scarce resources is
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long compared to the timescales of growth, 1/ fi: for short
period durations T � 1/ fi, the population sizes change only
marginally during one cycle of the external oscillation, so that
the total population size does not cross the threshold value
Rs. Consequently, the previously derived results (for Rs = 0)
and phase boundaries still apply in this more general case for
T � 1/ fi: for a range of activity ratios ν, there are inverted
long-term dynamics [dark gray region in Fig. 5(c)]. In con-
trast, the population sizes change significantly for long period
durations T � 1/ fi, so that the total population size can cross
the threshold Rs during the time window of scarce resources.
As discussed above, this means that the gleaner species
gains an advantage, so that regular long-term dynamics are
restored in this parameter range. At intermediate durations
T ∼ 1/ fi the short-term advantage for the opportunist (within
νl < ν < νu) and the long-term advantage for the gleaner level
each other. This gives rise to intricate nonlinear interactions
between the two species that can lead to coexistence over a
finite parameter region as discussed in Appendix E.

In short, this coexistence can be understood as a case of
mutual invasibility [81]. A species i can invade the other
species j = i if its average net growth over a single period
is positive,

〈 fi〉(ν, T )|N=n∗
j (t ) = 1

T

∫ T

0
dt fi(n

∗
j (t ), t ) > 0. (7)

Since the within-season dynamics of the resident species n∗
j (t )

also depend on T , the average net growth rates 〈 fi〉(T ) are
nonlinear functions of the period duration T and may both
be positive for a range of T , corresponding to coexistence
with a stable equilibrium solution. The three cases (T � 1/ fi,
T ∼ 1/ fi, and T � 1/ fi) coincide with those proposed by
Hutchinson when discussing the surprising biodiversity of
phytoplankton [19]. Such a dependence of the coexistence of
two species on the period duration was also recently quantified
experimentally [55,56].

Figure 5(c) shows a sample phase diagram for a two-
species chemostat model with Rs > 0. The predictions from
the discrete map in Eq. (5) (in particular, the carrying ca-
pacities N̄i) for this specific system are shown in Fig. 5(a)
as dashed lines. The phase diagram differs from the phase
diagram corresponding to Rs = 0 in three aspects. First, the
lower phase boundary νl is shifted as a result of the nonlinear
resource competition. Second, since the gleaner can now feed
on the small amount of resources during the period of scarcity,
it can survive for a range of activity ratios smaller than the
lower phase boundary νl , instead of going extinct (light gray
region). Third, the region of inverted long-term dynamics does
not extend to T → ∞, but is capped by a band of coexistence
instead (striped). From the invasibility criterion Eq. (7) one
may find period durations Ti(ν) such that 〈 fi〉|Ti = 0 which
correspond to the boundaries of the coexistence region. A
crude but intuitive estimate for these Ti are the timescales of
growth 1/ fi, which we discuss further in Appendix E.

Note that even though the periodic variation of the environ-
ment is responsible for the coexistence it might be misleading
to think of the two distinct states [R(t ) = Ra and R(t ) = Rs]
as dedicated “niches” for the gleaner and the opportunist,
respectively. In fact, the gleaner can have a competitive

advantage in both states, as becomes evident in the limit T �
1/ fi [Fig. 5(c)]. Instead, the temporal niche during which
the opportunist can thrive is determined by the environmental
variation in combination with the gleaner’s population dynam-
ics: any time period where the total population size is much
smaller than the opportunist’s carrying capacity, N (t ) � N̄2,
is a temporal niche for the opportunist. Similarly, any period
where the total population size is larger than the opportunist’s
carrying capacity, N (t ) > N̄2, is a temporal niche for the
gleaner. The niches are therefore self-shaped by the ecosys-
tem, and introducing additional species to the ecosystem can
create additional niches allowing for richer biodiversity and
coexistence between many species.

IV. MANY-SPECIES COMPETITION

Until now, we explained how coexistence and inverted
long-term dynamics can arise in a time-dependent envi-
ronment hosting two species. However, natural ecosystems
outside laboratory conditions typically consist of more than
two species. In a time-independent environment, the com-
petitive exclusion principle holds for an arbitrary number of
speciesas long as the resource consumption is not constrained
[40,60,61]. In contrast, it is known that competitive exclusion
can be overcome for resource competition in time-dependent
environments, e.g., by successive temporal niches [3,38], by
introducing biotic resources [9,31,82], or both [32,83]. How-
ever, it is not clear in general how multiple competing species
with complex interaction networks can coexist in a periodi-
cally varying environment. In the following, we demonstrate
how the qualitative dynamics of such complex networks can
be assessed by means of the theoretical framework that we
used to analyze the two-species competition in Sec. III.

To understand the population dynamics of M competing
species (M-species competition), we use that in compet-
ing species models the pairwise interactions between a set
of species provide qualitative information about the in-
teractions involving all community members (nonpairwise)
[69,84,85]. While it is known that many-species interactions
can enhance the stability of biodiverse ecosystems and cannot
be disregarded in general [86,87], the restriction to pairwise
interactions is sufficient for the models in Eq. (3), where only
the total population size is relevant for the competition; the va-
lidity of this statement is shown in Appendix G. Heuristically,
this follows from the fact that the relative impact of a species
on the competition decreases as its relative population size,
ni/N , decreases. Consequently, the species with the largest
population size has dominant impact on the competition.
Other species therefore mainly compete with this dominant
population, and competition between two comparably small
populations has only negligible impact on the overall dynam-
ics. Combining the insights from all pairwise interactions, this
allows us to characterize the phase diagram for many-species
competition. In the following we explicitly demonstrate this
for three-species competition.

A. Bifurcation diagram

Consider an ecosystem hosting three different species, each
obeying Eq. (2). The species are ranked from smallest to
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largest resource buffer in the following, so that K̄1 < K̄2 < K̄3

(full parameter set in Table I). With constant resource abun-
dance only the species with the lowest resource buffer can
survive as consequence of Tilman’s R* rule (n1 with the
specified ranking). The two other species will go extinct suc-
cessively: first, the species with the largest resource buffer
(n3), and afterwards the species with moderate resource buffer
(n2). In terms of pairwise interaction, the moderate species
n2 takes the role of the opportunist when competing with n1,
and it takes the role of the gleaner when competing with n3.
For all pairwise interactions, the species with highest (low-
est) resource buffer always takes the role of the opportunist
(gleaner).

When the resource abundance switches periodically, the
relative competitive advantages between pairs of species can
be altered, in accordance with the observations in Sec. III: For
each pair of species, there may exist a range of activity ratios
ν and period durations T for which Tilman’s R* rule fails,
and instead the pair shows inverted long-term dynamics or co-
existence (Fig. 5). In the three-species chemostat model with
equal washout rates δ, coexistence between all three species
due to the time-dependent environment can be achieved when
at least two out of the three pairs of species establish pairwise
coexistence.

The most suitable representation for M-species compe-
tition is a phase diagram, which can be inferred from the
set of all two-species phase diagrams. The two-species dia-
grams for the sample system specified in Table I are shown
in Figs. 6(a)–6(c), which were each obtained by eliminating
one of the three species from the system and then solving
the corresponding ODEs numerically. The characteristics of
these phase diagrams can be calculated analytically as shown
in Sec. III. Notably, each of the three subsystems shows re-
gions of inverted long-term dynamics and coexistence. The
phase diagram for three-species coexistence is shown in
Fig. 6(d) overlaid with the phase boundaries from all pairwise
competitions.

The phase boundaries from pairwise competition predom-
inantly match the three-species diagram, owed to the fact
that pairwise competition is sufficient to explain M-species
competition. For the specific system shown in Fig. 6, the
population n3 outcompetes the other two populations in-
dividually in the parameter range 0.8 � T � 1.0 and
0.25 � ν � 0.45 [dark gray regions in Fig. 6(c), which is also
enclosed by the dark gray region in Fig. 6(b)]. In this param-
eter range, the population n2 outcompetes n1 [medium gray
region in Fig. 6(a)]. Therefore, in three-species competition,
the population n1 is outcompeted jointly by n2 and n3, and
subsequently the latter outcompetes the former, so that only n3

survives in the specified parameter regime [dark gray region
in Fig. 6(d)]. Similarly, the overall gleaner n1 is defeated by n2

and n3 independently in pairwise competition across the entire
parameter range for which coexistence between n2 and n3 is
possible [striped region in Fig. 6(c)]. Thus, in three-species
competition, the overall gleaner n1 cannot survive in this
parameter region either. Consequently, the phase boundaries
from pairwise competition between n2 and n3 are valid for the
three-species competition in this parameter region, too [same
region in Fig. 6(d)]. These rules for inferring the surviving
species in M-species competition apply for the almost the

entire parameter space, with exceptions where regions of pair-
wise coexistence overlap (see below). To demonstrate this for
the specific example shown here, the phase boundaries from
pairwise competition [Figs. 6(a)–6(c)] are indicated as white
lines in Fig. 6(d).

B. Three-species coexistence

Deviations from the two-species phase boundaries occur
where nonlinearity dominates the population dynamics. In
particular, there is a small region of three-species coexistence
in the overlap region of pairwise coexistence between n1 and
n2, and n1 and n3, respectively [black region in Fig. 6(d)].
Despite being small, this coexistence region covers a finite
volume in high-dimensional parameter space. Qualitatively,
this small region can be understood from pairwise competi-
tion, too: at the onset of pairwise n1-n2-coexistence [diamond
symbol in Fig. 6(d)], close to the region of inverted long-
term dynamics, the dominant species is n2 [Fig. 6(g)]. In the
same parameter region the overall gleaner n3 goes extinct in
n2-n3-competition, meaning that also here n2 is the dominant
species. Thus, for three-species competition, there is n1-n2-
coexistence as long as n2 remains the dominant species in
pairwise interactions.

Upon increasing the period duration T , approaching the
triangle symbol in Fig. 6(d), n1 takes over as the dominant
species in pairwise coexistence with n2. n1 can coexist with
both n2 and n3 in this parameter region [Fig. 6(f)]. Thus, a
band of three-species coexistence emerges at this intermediate
T . Finally, upon further increasing the period duration T , n2

and successively n3 go extinct in pairwise competition with n1.
In three-species competition, this corresponds to a region of
n1-n3-coexistence, followed by regular long-term dynamics.

In the preceding discussions, we restricted the analysis
to populations with identical decay rates δ. This fixes a
global timescale for the population dynamics of all species.
However, these rates can be different when the decay is
not dominated by uniform washout from a chemostat. In
this case, the timescales of the growth dynamics can be
different for each species. This leads to a more complex de-
pendence of the pairwise coexistence regions on the period
duration T and can result in additional types of coexistence.
For example, Fig. 6(h) shows a system where the time-
dependent environment leads to pairwise coexistence between
the overall gleaner and the overall opportunist, but leaves
all other pairwise interactions untouched. In the correspond-
ing three-species ecosystem, the between-season population
sizes ni,k vary slowly over the course of multiple periods
(T ′ ≈ 120T ) in addition to the within-season oscillating dy-
namics ni(t ) with a periodicity T determined by the external
time dependence. This highlights the impact of the ecosystem
composition on the emerging temporal niches: in the spe-
cific example shown in Fig. 6(h) there is a niche for species
n1 (yellow) as long as species n2 (blue) is dominant, and
similar relations can be found for the other species. More
species can be introduced to the ecosystem as long as they
fit into this cycle of niches: a new species thriving only
when n2 is dominant but offering a niche to n1 (and none
of the other species) could coexist with all three species, and
similar heuristic arguments can be made to further increase

034404-9



TOM BURKART, JAN WILLEKE, AND ERWIN FREY PHYSICAL REVIEW E 108, 034404 (2023)

& && , &Surviving species:

(e) (f) (g) (h)

(a) (b) (c) (d)

FIG. 6. Three-species competition. For each bifurcation diagram, filled (open) circles indicate that the corresponding species takes part
(does not take part) in the competition. (a)–(c) Phase diagrams for pairwise competition with parameters as specified in Table I, with n1, n2

and n3 represented by light, medium, and dark gray shading, respectively. White lines indicate phase boundaries for reference in panel (d). For
the chosen parameter set, each pair of species exhibits a region of inverted long-term dynamics and coexistence. The (vertical) dashed black
lines indicate the calculated phase boundaries for the limit T → 0. (d) Phase diagram for the competition of all three species. The two-species
phase boundaries (white lines) are copied from the pairwise phase diagrams and show good agreement with the actual phase boundaries
for the three-species system. The phases for three-species competition can be predicted from combining the pairwise phase diagrams.
(e) Fixed points of the growth functions for the species shown in (a)–(d), exhibiting overlapping parameter ranges for the activity ratio ν

with inverted long-term dynamics. Bars above the fixed points indicate the surviving species as predicted by the linearized map for T → 0. (f),
(g) Sample trajectories for the between-season population sizes ni,k for three-species competition, with coexistence between all three species
(f) and pairwise n1-n2-coexistence (g), on a linear scale (top) and log scale (bottom) for better visibility. The corresponding values of ν and
T for these trajectories are marked in the three-species bifurcation diagram as triangle (f) and diamond (g). (h) Sample trajectory for the
between-season population sizes ni,k for three-species competition with δi = δ j , showing limit cycle dynamics with periodicity T ′ ≈ 120T
instead of approaching a fixed point. The corresponding parameters are specified in Table I.

the number of species. In Appendix F we demonstrate two
cases of four-species coexistence. However, as the number of
species increases and between-season changes in the popu-
lation sizes ni,k are induced, the minimal population size of
individual species can vary over multiple orders of magnitude
[e.g., n1 in Fig. 6(h)], and stochastic effects may become
relevant [88,89].

V. DISCUSSION AND CONCLUSION

In summary, we analyzed how coexistence between mul-
tiple species can be achieved in an explicitly time-dependent

variant of the chemostat model. We showed that the principle
of competitive exclusion, which holds for time-independent
models, does not necessarily apply anymore in the time-
dependent variant. Instead, the ecosystem can be deterred
from reaching a steady state at which competitive exclusion
applies, thus giving rise to interesting and rich population
dynamics. Our findings are consistent with previous research
on the impact of temporal fluctuations on coexistence, in
particular with resolutions of Hutchinson’s “paradox” of phy-
toplankton biodiversity [11,19,54,58,75].

Our analysis of the population dynamics in a two-
species chemostat system with periodically varying resource
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abundance shows that Tilman’s R* rule can be general-
ized to time-dependent systems by calculating a steady-state
population size from an approximate discretized map. Im-
portantly, we demonstrate that this map is sufficient to
understand the qualitative population dynamics in a general
time-dependent system. In particular, we inferred from this
analysis that there can be coexistence between two species
when there is a balance of the advantageous periods for ei-
ther species. This is possible when the timescale at which
the environment changes is comparable to the timescale at
which the populations grow and, most importantly, requires
a periodically varying environment.

Generalizing to multispecies systems, we demonstrated
how complex population profiles in three-species systems
can be deduced qualitatively from pairwise interactions. This
approach is consistent with recent experimental work on
in vitro ecosystems [69] and the Caenorhabditis elegans
intestinal microbiome [90], where the composition of the
full ecosystem can be inferred from the composition of a
set of subsystems. One of our key findings here was that
a time-dependent environment can allow three-species or
even four-species coexistence, even if—as a consequence of
competitive exclusion—only one species can survive in a
time-independent environment.

In this article, we limited our discussions to competing
species models, with examples focused on chemostat systems.
In these systems, the interactions between the species often
depend exclusively on the total population size. In realistic
ecosystems, however, populations can interact via many dif-
ferent mechanisms, such as sharing of multiple resources [38],
the production of a common good [91–94], or the production
of a toxin [95,96]. In addition, populations in realistic ecosys-
tem can be spatially structured, such that competition between
species happens only at the boundaries of single-species com-
munities [97,98]. In agreement with previous work our results
indicate that a time-dependent environment may be capable
of enhancing the biodiversity in these systems, similar to the
competing species model [10,75]. However, a comprehensive
analysis of the population dynamics in these systems in the
presence of a time-dependent environment is still lacking.
Further extensions of the model discussed here could include
the effect of demographic noise on the population dynamics,
which is likely to play a decisive role in the highly nonlinear
coexistence regime [45,46].

On a more general level, our results demonstrate the role
of a time-dependent environment on the composition of an
ecosystem. In particular, our findings show that biodiversity
in certain ecosystems can be enhanced by such a periodically
varying environment or, equivalently, that biodiversity can be
lost when removing an external fluctuation from the system.
This suggests that realistic ecosystems may depend crucially
on natural environmental cycles, such as the circadian sunlight
cycle or tidal ranges. To test this hypothesis, experimental
studies of ecosystems subject to temporal variations will be
needed.
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APPENDIX A: REPRESENTATIONS OF THE
CHEMOSTAT MODEL

In Eq. (1) we use a chemostat model with an abiotic
resource and assuming that all species consume the same
amount of resources per capita. Here we illustrate how
to arrive at the proposed chemostat model from a more
general version including a biotic resource Rd (t ) that is
driven externally toward a target resource concentration R(t ),
where the time dependence in R(t ) is externally imposed. For
brevity and without loss of generality we also omit the explicit
enforcing of nonnegative growth [max(Rd (t ) − N (t ), 0) →
Rd (t ) − N (t )] by assuming that Rd (t ) > N (t ) at all
times.

The population dynamics in a generic consumer-resource
model with a single resource Rd (t ) [99,100] read

d

dt
ni(t ) = ni(t )μi[Rd (t ) − mi], (A1)

where μi is the rate at which excess resources are consumed to
produce offsprings and mi represents the amount of resources
required to maintain a constant population size. One may split
mi into a term accounting for the total resources consumed by
the entire ecosystem at maintenance

∑
j q jn j (t ), where qi is

the resource quota representing the amount of resources con-
sumed per capita [62], and a term representing the loss from
death Li. The term Rd (t ) − ∑

j q jn j (t ) then corresponds to the
amount of excess resources available for reproduction, and the
loss can be interpreted as a death rate δi = μiLi. Reproduction
efficiency is linear in the resource excess at low resource
density, but other factors should limit the reproduction speed
at high resource density which is commonly accounted for
via Monod-like saturation with a half-saturation constant Ki,
resulting in the following set of equations for the population
and resource dynamics:

d

dt
ni(t ) = ni(t )

(
μi

Rd (t ) − ∑
j q jn j (t )

Rd (t ) − ∑
j q jn j (t ) + Ki

− δi

)
= ni(t )(μ̃i(Rd (t ), {n j (t )}) − δi ), (A2a)

d

dt
Rd (t ) = r [Rd (t )−R(t )]−

∑
i

ni(t )μ̃i(Rd (t ), {n j (t )}),

(A2b)

where μ̃i is a shorthand for the per capita growth rate, and r is
the resource regulation rate. Note that this per capita growth
rate is nonnegative and therefore bound by 0 � μ̃i < μi, and
that the maximum population size of each species is limited
by the total number of resources ni(t ) < Rd (t )/qi. Further
assuming without loss of generality that the maximum amount
of resources in the system should be finite, Rd (t ) < Rd,max

one can find an upper bound for the maximum resource
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consumption:∑
i

ni(t )μ̃i(Rd (t ), {n j (t )}) <
∑

i

Rd,max

qi
μi = const. (A3)

For resource regulation r/Rd,max much faster than this
resource consumption, the resource consumption can be ne-
glected in Eq. (A2), and the resource dynamics reduce to

d

dt
Rd (t ) ≈ r [Rd (t ) − R(t )]. (A4)

This equation corresponds to a biotic resource that decays
toward a target resource level R(t ) at a rate r. For sufficiently
large r, this decay happens on a much shorter timescale than
any change in the population sizes, and we can use a separa-
tion of timescales to arrive at an abiotic resource Rd (t ) ≈ R(t )
on the timescale of the population dynamics.

Next, one may map the population sizes ni to “resource-
consuming units” by rescaling the population sizes by the
resource quota [62], with ni → ni/qi, which together with
the timescale separation above yields the chemostat model
introduced in Eq. (1). This model can be further rewritten
by normalizing the population sizes in terms of the maximal
resource concentration ni → niRa, Ki → KiRa, such that the
abiotic resource is given by

R(t ) =
{

1 for 0� t <νT,

Rs/Ra for νT � t < T .
(A5)

Similarly, one may rescale time in terms of one of the growth
or death rates. This is particularly appealing in the case of
washout where all δi = δ are identical, so that after rescaling
t → t/δ, T → T/δ and μi → μi · δ the chemostat model is

dni(t )

dt
= ni(t )

[
μi

max (R(t )−N (t ), 0)

max (R(t )−N (t ), 0) + Ki
− 1

]
, (A6a)

R(t ) =
{

1 for 0� t < νT,

Rs/Ra for νT � t < T,
(A6b)

with N (t ) = ∑
i ni(t ). In our analysis we omit the last steps of

rescaling time and resource abundance since both Ra and δi to
highlight their role in the emergence of coexistence.

APPENDIX B: RESOURCE BUFFER K̄i

The population dynamics of competing species as de-
scribed in the main matter follows the chemostat model

d

dt
ni(t ) = ni(t )

(
μi

R − N (t )

R − N (t ) + Ki
− δi

)
. (B1)

Consider a system inhabited by a single species, so that
N (t ) = ni(t ). The differential equation (B1) has two fixed
points, ni(t ) = 0 and ni(t ) = R − K̄i =: N̄i, with K̄i given by

K̄i = δi

μi − δi
Ki. (B2)

This offset denotes the amount of resources that are left
unbound by the species i upon reaching its nonzero steady
state. This is a direct effect of the resource-limited Monod-like
growth. In a system hosting two species, the resources left
unbound by species i are available for species j. However,
species j can only feed on them if its own resource buffer K̄j

is not reached yet, i.e., if K̄j < K̄i. This is the R* rule.

If the time dependence does not affect the amount of
resources, but any of the other system parameters, then the
resource buffer may become time-dependent itself,

K̄i(t ) = K̄i(μi(t ), δi(t ), Ki(t )). (B3)

Similar to the case of time-dependent resources abundance,
this may lead to coexistence and inversion, but also allows for
temporal niches [3,32,38,83].

APPENDIX C: CONSTRAINTS ON THE GROWTH
FUNCTION fi

In the general growth model class of competing species
models, the population dynamics are governed by a growth
function fi(N (t ), t ) [73]:

dni(t )

dt
= ni(t ) fi(N (t ), t ). (C1)

Between two species, the growth functions fi can in general
differ at certain parameters (e.g., different growth rates μi), or
the fi may be completely different functions of the parameters.
For a growth function to be realistic and biologically meaning-
ful, it needs to meet several requirements: (i) The concept of
competing species is incorporated in this function by requiring
that—for any species—the growth should be slower if any
population size increases (while all others remain constant).
(ii) In an almost abandoned environment (N → 0), growth
should always be possible. (iii) There should be a single
threshold population size n∗

i at which the population cannot
grow anymore, and above which the growth is negative, as
the system can only sustain a limited number of individuals.
Mathematically, the conditions (i)–(iii) can be expressed as

(i) ∂
∂n j

fi(N (t ), t ) < 0, (C2a)

(ii) fi(N → 0, t ) > 0, (C2b)

(iii) fi(N > n∗
i , t ) < 0. (C2c)

In the chemostat model defined in Eq. (1), the threshold pop-
ulation size is identical to the carrying capacity, n∗

i = N̄i. In
addition, to ensure continuous dynamics, the growth functions
fi need be finite for all states that are accessible in reality, i.e.,
for all {n j>0}.

APPENDIX D: DERIVATION OF THE DISCRETE MAP

In competing species models, the population dynamics are
determined by the growth functions fi. The functional form of
the growth functions is determined by the system under inves-
tigation. The wide variety of ecosystems and models makes
it difficult to make general statements about the population
dynamics, or let alone solve the corresponding differential
equations analytically. In addition, a common feature of most
population dynamics models, and in particular of the com-
peting species models, is the nonlinearity of the differential
equations that represent the population dynamics, which fur-
ther complicates the analysis. However, the nonlinearity can
be neglected to lowest order when propagating the system
over short time intervals for any competing species model, as
we will show in the following.
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FIG. 7. Conceptual time evolution of the population size of a
single species over one period. For the entire period, the population
size remains within an interval bounded by n+ and n−. Note that in
the chemostat model as defined in Eq. (B1), the minimal population
size n− coincides with ni,k+1, which need not be the case in general.

Consider a system hosting one species only. To further
simplify the explanations, we begin by defining two new
quantities: over the course of one oscillation, the population
size will reach a local maximum n+ and a local minimum n−
(Fig. 7). We will demonstrate in the following that the error
introduced by the approximate map is to lowest order propor-
tional to T · fi within a single period. To see this, formally
solve the differential equation (3a) for a single species, i.e.,
for the case where N (t ) = ni(t ):

ni(t+T ) = ni(t ) exp

[∫ t+T

t
du fi(ni(u), u)

]
. (D1)

Making use of the competition condition in Eq. (3b), stating
that ∂ni fi � 0, it follows that the growth function in the in-
tegral is bounded from above and below by n+ and n−. In
addition, for any arbitrary external time dependence, there is
always one u+ (u−) that maximizes (minimizes) the growth
function at a constant population size, so that

fi(n+, u−) < fi(ni(u), u) < fi(n−, u+) ∀u ∈ [t, t+T ].
(D2)

This allows us to calculate upper and lower bounds to the
integral in Eq. (D1), and thus also for the population size after
one period:

n− e fi (n+, u− )T < ni(t + T ) < n+ e fi (n−, u+ )T . (D3)

Expanding the exponential to lowest order in T and us-
ing crude approximations for n− > ni(t ) exp[ fi(n+, u−)] and
n+ < ni(t ) exp[ fi(n−, u+)], this shows that the population
varies within a range proportional to T over a single period.
In addition, from the mean value theorem it follows that there
exists a constant n̄ with n−<n̄<n+ (Fig. 7) so that

ni(t+T ) = n̄ exp

[∫ t+T

t
du fi(n̄, u)

]
. (D4)

This n̄ differs from the population size at the beginning of the
period ni,k by n̄ = ni,k + �n. Notably, from the definition of n̄
it follows immediately that �n < n+ − n− ∼ O(T fi ). Thus,
expanding the growth function around n̄, we find

fi(ni,k, u) = fi(n̄, u) + ∂ni f (n̄i, u) �n + O(�n2). (D5)

Substituting this into Eq. (D4) and renaming ni(t + T ) to
ni,k+1 leads—to lowest order in T fi—to the discrete map from

Eq. (4):

ni,k+1 = ni,k exp

[∫ t+T

t
du fi(ni,k, u)

]
+ O(�n),

= ni,k exp

[∫ t+T

t
du fi(ni,k, u)

]
+ O(T fi ). (D6)

The same argument holds for a system hosting more than
one species. In this case, the upper and lower limits n±
as well as the constant n̄ are replaced by a set of corre-
sponding quantities. The decisive observation, namely that
�ni < ni,+ − ni,− ∼ O(T fi ), remains valid for any number
of species. Thus, the discrete map Eq. (4) approximates the
exact dynamics up to O(T fi ), making it reasonable for period
durations short compared to the timescales of growth.

APPENDIX E: DERIVATION OF PHASE BOUNDARIES

In a nonlinear competing species model hosting two
species, the time-dependent environment can lead to an in-
version of the long-term population dynamics compared to
a time-independent environment, and possibly coexistence.
Such inversion and coexistence can only be established for a
range of parameters. For two given species in an environment
that switches between to given distinct states, the parameters
that quantify the periodic structure are the duration of one
period T and the fraction of one period ν that is spent in one
of the two states. Note that for other time-dependent systems,
for example an environment that changes continuously, there
may be other parameters that quantify the temporal structure.
In the following, we will explain how the phase boundaries
to inverted long-term dynamics and to coexistence can be ob-
tained for a general system of two competing species. Along
the lines, we will discuss in detail how the phase boundaries
on ν and T are obtained for the chemostat model with varying
resources. Throughout this discussion, the species are labeled
such that n1 is the gleaner and n2 is the opportunist (K̄1 < K̄2).

1. Formal derivation

For the purpose of determining the biodiversity of an
ecosystem, we distinguish between four distinct states of
the system: (i) the gleaner survives, (ii) the opportunist
survives, (iii) both populations survive, or (iv) neither pop-
ulation survives. In a time-independent environment, the
asymptotic state of the system can be obtained by performing
a linear stability analysis on the fixed points n∗

i of the ODEs
modeling the population dynamics. However, this is not pos-
sible in a time-dependent environment, since the fluctuation
of model parameters prevents the system from reaching a
steady state. Thus, the asymptotic dynamics of such a system
are periodic trajectories, n∗

i (t ), rather than fixed points. In a
nonlinear system, these trajectories can in general only be
determined exactly by numerically solving the ODEs, which
yields little information about the conceptual dynamics. By
approximating the asymptotic trajectories, however, the phase
boundaries can be estimated.

In a two-species system, the two asymptotic trajectories
where only one of the two populations, ni, survives while
the other is extinct, respectively, are of particular relevance.
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(b)

&Surviving species:
(a)

(c)

(d)

FIG. 8. (a) Simulated net growth rates 〈 fi〉 for the gleaner (n1, yellow or light gray) and the opportunist (n2, blue or dark gray), along two
representative cutlines (dotted white) in the phase diagram of two-species competition. Bars next to the growth rate plots show the predicted
outcome of the competition, based on the net growth rates: each species can survive if the net growth rate is positive, 〈 fi〉 > 0. When both
net growth rates are positive simultaneously, coexistence at a stable equilibrium is predicted. Lines in the phase diagram show the estimated
threshold period durations T̃1(ν ) (yellow, dashed) and T̃2(ν ) (blue, dash-dotted), providing results accurate within an order of magnitude.
(b) Bifurcation diagram showing the transition from Rs = 0 [corresponding to panel (a) and Fig. 5(b)] to Rs > 0 [corresponding to Fig. 5(c)]
for ν = 0.55. The white area indicates parameter regions where both species are considered extinct as described in Appendix F. Dashed lines
are extrapolations of the boundaries for the coexistence region. (c) Relative population size differences (n1 − n2)/N at t = 100 T with T = 4.
The solid line indicates stable equilibria, while dotted lines indicate unstable equilibria. For comparison, the stable equilibria at T → 0 are
shown as light gray lines. Boxes: the regions of regular (light gray) and inverse (dark gray) long-term dynamics are separated by narrow regions
of coexistence. (d) Relative population size differences at t = 100 T with ν = 0.55. The coexistence region is bounded by two transcritical
bifurcations. In the coexistence region, the dominant species changes smoothly from n2 to n1 with increasing T .

Formally, the stability of these asymptotic trajectories with
respect to invasion by the other species n j can be assessed
from the average net growth rate

〈 f j〉(t ) = 1

T

∫ t+T

t
du f j ({n∗

i (u)}, u), (E1)

where n∗
i (u) ≈ N (t ) is the asymptotic trajectory of the prevail-

ing species and n j (u) ≈ 0 is negligibly small. By comparing
this to Eq. (D1), it is obvious that n j,k+1 = n j,k exp[T ·
〈 f j (kT )〉]. Thus, if the average net growth rate is positive (neg-
ative), then the invading population grows (goes extinct) and
the asymptotic trajectory of the prevailing species is unstable
(stable). Hence, phase boundaries are located at parameter
combinations where any average net growth rate changes sign.

2. Phase boundary on inversion

To derive the phase boundaries to the region of inverted
long-term dynamics, consider a system with a short period
duration T compared to the timescales off growth, 1/ fi. As
discussed in Appendix D, one may accurately approximate the
exact population dynamics in the limit T � 1/ fi by a discrete
map

ni,k+1 = ni,k exp

[∫ T

0
dt fi(Nk, t )

]
. (E2)

In particular, this map can be used to test whether one pop-
ulation can invade the other population. Inverted long-term
dynamics means that the opportunist species n2 can invade
a residing gleaner population n1. In the following, we denote
the steady-state population size of the gleaner as n∗

1, such that
n1,k = n∗

1 for all k at the steady state. By definition, this steady
state corresponds to the carrying capacity N̄1. The opportunist
can invade the gleaner population if the average net growth
within one period is positive,

〈 f2〉(ν)|N=n∗
1

:= 1

T

∫ T

0
dt f2(n∗

1, t ) > 0. (E3)

Otherwise, the opportunist population will go extinct. By
definition, this net growth is negative for time-independent
environments, ν = 0 and ν = 1, and varies continuously when
changing the activity ratio ν. Thus, if the net growth is positive
for any value of ν, this implies that there are two threshold
values for the activity ratio, νu and νl , at which 〈 f2〉(νu,l ) = 0.
These threshold values mark the phase boundaries of the re-
gion of inverted long-term dynamics at short period durations
[Fig. 8(a)].

Notably, the gleaner steady-state population size depends
on the activity ratio, too, n∗

1(ν), and hence also N̄1(ν). In
particular, the gleaner species may not be able to survive
even without competition for some activity ratios, such that
n∗

1 = 0. This is the case, for example, in the chemostat model
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[Eq. (2a)] for the lower boundary on the inversion region. For
arbitrary ν, the discrete map can be used to formally obtain the
gleaner steady-state population size at Rs = 0 for T � 1/ fi:

0 =
∫ t+T

t
du f1(n∗

1(ν), u),

→ n∗
1(ν) ≡ N̄1(ν) = Ra − K1

δ1

μ1ν − δ1
. (E4)

However, as only nonnegative steady-state population sizes
are meaningful, this steady-state population size will be zero
when

ν <
δ1

μ1

K1 + Ra

Ra
=: ν1.

A similar equation can be derived for the steady-state pop-
ulation size of the opportunist. Thus, the opportunist can
survive in an environment in which the gleaner goes extinct
for ν1 > ν > ν2. In particular, the smallest activity ratio for
which the average net growth for the opportunist is positive is
ν2, so that the lower bound to the region of inverted long-term
dynamics is νl = ν2 [Fig. 5(a)].

The upper bound to the phase of inverted long-term dynam-
ics in the chemostat model can be calculated straightforwardly
by solving 〈 f2〉(νu) = 0 using the expression for n∗

1(ν) derived
in Eq. (E4) in place of the total population size. Hence, the
phase boundaries of inverted long-term dynamics for short
period durations T are given by

νl = δ2

μ2

K2 + Ra

Ra
, (E5a)

νu = δ1δ2(K1 − K2)

μ2δ1K1 − μ1δ2K2
. (E5b)

The example above corresponds to the special case of zero
resources during the period with resources absent in the
chemostat model, Rs = 0. The same arguments hold true
for any other competing species model, in particular for the
chemostat model with Rs > 0. This method was used to calcu-
late the phase boundaries at short period durations T in Figs. 5
and 6(a)–6(c).

3. Phase boundary on coexistence

The results above were derived for the case where the
period duration T is short compared to the timescales of
growth, 1/ fi. This allowed to circumvent the nonlinearity of
the dynamics by using a discrete map to analyze the charac-
teristic population dynamics. However, it is precisely these
nonlinear dynamics that lead to competitive exclusion in a
time-independent system. Similarly, as the period duration
T in a system with externally imposed time dependence be-
comes long enough such that a steady state is reached before
the environment switches, the opportunist’s short-term advan-
tage vanishes and the conventional R* rule can come into
effect.

At what period duration T will this transition from inverted
to regular long-term dynamics occur? Inverted long-term dy-
namics occur as long as the gleaner cannot invade a prevailing
opportunist population, i.e., as long as the average net growth

FIG. 9. Simulated trajectories of two-species competition at dif-
ferent period durations T showing the transition from regular (T =
20) to inverted (T = 1) dynamics, with a band of coexistence
(T = 5) in between. Parameters are specified in Table I.

rate

〈 f1〉(ν)|N=n∗
2 (t ) = 1

T

∫ T

0
dt f1(n∗

2(t ), t ) < 0, (E6)

where n∗
2(t ) is the asymptotic trajectory of the opportunist.

Thus, a change in the qualitative dynamics occurs at a period
duration T1 at which 〈 f1〉|T1 = 0. Similarly, a threshold value
T2 can be obtained above which the opportunist cannot invade
a gleaner population. For intermediate period durations T1 <

T < T2, either species can invade the other, so that coexistence
between these species is possible (Figs. 8 and 9).

However, since the asymptotic trajectories are in general
not known, these phase boundaries cannot be calculated ex-
actly. Instead, they can be estimated by approximating the
asymptotic trajectories, or from the qualitative dynamics of
the system. For the chemostat model as defined in Eq. (2),
for example, the nonlinearities leading to coexistence between
two species become relevant when the total population size
approaches the steady-state population size R(t ) − K̄i of the
dominant species. Thus, for any period duration T at which
the total population size gets close to R(t ) − K̄i before the
environment changes, we expect the nonlinear interactions to
be sufficiently relevant to favor the gleaner population.

To estimate the corresponding period duration T for each
species independently, assume that the population size at the
beginning of each period t = k · T is n∗

i |Rs>0, as obtained
from Eq. (E4) for Rs > 0. We furthermore assume the growth
dynamics to be exponential, thereby ignoring the nonlinear-
ities for this estimate. The period duration T̃ at which the
population reaches the steady-state population size Ra − K̄i is
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TABLE I. Parameters used for numerically solving the ODEs and
generating the plots.

Figs. 2–5, 8 μ1 2.0 δ1 1.0 K1 0.2
μ2 6.0 δ2 1.0 K2 2.0

Ra 1.0 Rs 0.1

Figs. 6(a)–6(g) μ1 1.8 δ1 1.0 K1 0.003
μ2 2.7 δ2 1.0 K2 0.018
μ3 4.5 δ3 1.0 K3 0.090

Ra 1.0 Rs 0.6

Figs. 6(h), 10 μ1 0.9 δ1 0.5 K1 0.003
μ2 1.1 δ2 0.4 K2 0.012
μ3 0.7 δ3 0.1 K3 0.130
μ4 1.4 δ4 0.2 K4 0.130
μ4′ 1.6 δ4′ 0.3 K4′ 0.066
Ra 1.0 Rs 0.4

T 10 ν 0.7

Fig. 9 μ1 2.0 δ1 1.0 K1 0.003
μ2 6.0 δ2 1.0 K2 0.033

Ra 1.0 Rs 0.4 ν 0.5

used as an estimate for the threshold period duration:

Ra − K̄i = n∗
i |Rs

exp

[∫ νT̃i

0
dt fi( n∗

i |Rs
, t )

]
,

→ T̃i(ν) = 1

ν
log

(
Ra − K̄i

n∗
i

∣∣
Rs

)
1

fi(n∗
i |Rs , t )

. (E7)

Importantly, this estimate confirms that the inverted long-term
dynamics can be expected only for T � 1/ fi at nonzero
Rs. Note that this threshold period duration depends on the
scarcity resource level Rs indirectly through n∗

i |Rs . As Rs → 0,
this population size at the beginning of each period tends
to zero, and T̃i diverges, implying that the band of coexis-
tence moves toward higher values of the period duration T
[Fig. 8(b)].

APPENDIX F: NUMERICAL SOLUTION OF THE ODE

To study the population dynamics in a specific system
and to generate the figures, the differential equations in
Eq. (2a) were solved numerically. Unless specified otherwise,
the parameters stated in Table I were used throughout all
numerical solutions. These parameters were chosen such that
they fulfill the requirements for inverted long-term dynam-
ics (two-species competition) and three-species coexistence
(three-species competition) for a wide range of parameters
ν and T , and with easily discernible visual features. For
four-species competition, the parameter set from three-species
competition was extended by another species with K4 = K3

and twice as fast growth and decay (μ3 = 2 μ4 and δ3 = 2 δ4),
where we observe that limit cycle of the population dynamics
depends on the initial conditions [Figs. 10(a) and 10(b)]. For
a fourth species that is unrelated to all others (μ4′ , δ4′ , K4′ ) the
limit cycle is independent of the initial conditions [Fig. 10(c)].

All phase diagrams were obtained by solving the differ-
ential equations numerically for each parameter combination
(ν, T ) separately. The numerical solver was terminated when

(a)

(b)

(c)

FIG. 10. Sample trajectories of four-species competition with
parameters μ4 = 1.4, δ4 = 0.2, and K4 = 0.13, for two different ini-
tial conditions, (a) showing limit cycle dynamics and (b) approaching
a fixed point of the between-season dynamics. (c) For a different
parameter set (μ4′ = 1.4, δ4′ = 0.2, K4′ = 0.13) the limit cycle is
independent of the initial conditions. All parameters are specified in
Table I.

one of the following criteria was met: (i) The population size
of either species dropped below a threshold of Ra · 10−30 at
the end of one period, i.e., at t = kT . (ii) A hard time limit of
t = 103T was exceeded.

To classify the results, the population sizes at the final time
step (ni,kmax ) as well as the corresponding logarithmic popula-
tion size change (log(ni,kmax − ni,kmax−1)/T ) were used to bin
a parameter combination as “regular long-term dynamics,”
“inverted long-term dynamics,” or “coexistence.” A species
was considered extinct if the population size was below the
threshold of ni,kmax < Ra10−30. If both populations remained
above this threshold until the solver stopped, then the log-
arithmic population size change was used as a secondary
criterion: A species was considered as extinct if log(ni,kmax −
ni,kmax−1)/T < −10−4. This threshold was chosen since it well
predicted the outcome observed for larger T . Parameter com-
bination was tagged as “regular long-term dynamics” if only
the gleaner survived and “inverted long-term dynamics” if
only the opportunist survived. If both populations survived,
then the parameter combination was tagged as “coexistence.”

For the invasion plots in Fig. 8, the system was sim-
ulated for one period with initial conditions ni(0) = 10−5,
n j (0) = n∗

j (0) − ni(0). Here, ni is the invading population and
n j is the residing population, with its fixed trajectory n∗

j (t ).
The net population change of the invading species after one
period was used to determine the net growth rate, 〈 fi〉 =
log(ni(T )/ni(0))/T .
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APPENDIX G: PAIRWISE COMPETITION

In many-species ecosystems, an analytical study of the
population dynamics is often difficult owed to the high-
dimensionality and nonlinearity of the system. For competing
species models where the interactions depend only on the
total population size, however, it is sufficient to study pairwise
interactions between species to understand the qualitative time
evolution of the entire ecosystem. In the following, we justify
this hypothesis.

Consider a general competing species model as defined in
Eq. (3),

d

dt
ni(t ) = ni(t ) fi(N (t ), (G1a)

∂

∂n j
fi(N ) � 0, (G1b)

in a system hosting M distinct species. For simplicity, we
assume a time-independent environment in the following, so
that there is no explicit time dependence in the growth func-
tions. Assume furthermore that this system is predominantly
inhabited by one species, n1, with all other species contribut-
ing only marginally to the total population size, n1 � ni with
i ∈ {2, . . . , M}. Now, consider the general case where the total
population size is far from the dominant species’ steady-state
population size n∗

1. Then, since ∂t ni(t ) ∼ ni(t ), the nonlin-
ear growth ensures that the population size of n1 can vary
much more quickly than all other population sizes, ∂t n1(t ) �
∂t ni(t ). Thus, the dominant species will quickly approach its
steady-state population size. Since this species contributes
primarily to the total population size, the total population size
will vary from this steady-state population size only by a small
amount, N (t ) = n∗

1 + �N (t ). This allows us to estimate the

population dynamics for all species to lowest order:
d

dt
n1(t ) = n1(t ) f1[n∗

1 + �N (t )]

= n1(t )∂n f1(N ) |n∗
1
�N (t ) + O(�N2), (G2a)

d

dt
ni(t ) = ni(t ) fi[n

∗
1 + �N (t )]

= ni(t ) fi(n
∗
1 ) + O(ni�N ). (G2b)

Notably, since ∂N fi � 0 in the competing species model, the
dominant population size changes such that the deviation �N
from the steady-state population size is minimized. This en-
sures that the total population size remains close to N (t ) ≈ n∗

1
irrespective of the population changes of all other species,
as long as n1 is the dominant species. This shows that the
growth rates of all subdominant populations is to lowest
order determined by the steady-state population size of the
dominant species, n∗

1. Thus, in a many-species system, the
population dynamics of all subdominant species are equiva-
lent to a two-species system where the dominant species is the
only competitor. In other words, the pairwise competition with
the dominant species is sufficient to characterize the dynamics
of all subdominant populations.

This reasoning can be extended to systems with an external
time dependence. In these systems, a single population does
not approach a fixed point, but rather an asymptotic trajec-
tory n∗

i (t ). Following the same line of arguments, the total
population size in such systems predominantly inhabited by
one species n1(t ) � ni(t ) is approximated by the asymptotic
trajectory of this dominant species, N (t ) ≈ n∗

1(t ). This means
that also in a time-dependent environment it is sufficient to
consider pairwise competition to characterize the entire sys-
tem’s population dynamics.
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