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In the past decade, great strides have been made to quantify the dynamics of single-cell growth and division in
microbes. In order to make sense of the evolutionary history of these organisms, we must understand how features
of single-cell growth and division influence evolutionary dynamics. This requires us to connect processes on the
single-cell scale to population dynamics. Here, we consider a model of microbial growth in finite populations
which explicitly incorporates the single-cell dynamics. We study the behavior of a mutant population in such a
model and ask: can the evolutionary dynamics be coarse-grained so that the forces of natural selection and genetic
drift can be expressed in terms of the long-term fitness? We show that it is in fact not possible, as there is no way
to define a single fitness parameter (or reproductive rate) that defines the fate of an organism even in a constant
environment. This is due to fluctuations in the population averaged division rate. As a result, various details
of the single-cell dynamics affect the fate of a new mutant independently from how they affect the long-term
growth rate of the mutant population. In particular, we show that in the case of neutral mutations, variability in
generation times increases the rate of genetic drift, and in the case of beneficial mutations, variability decreases
its fixation probability. Furthermore, we explain the source of the persistent division rate fluctuations and provide
analytic solutions for the fixation probability as a multispecies generalization of the Euler-Lotka equation.
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I. INTRODUCTION

In recent decades, advances in single-cell technology and
single-molecule biophysics have shed new light on the molec-
ular mechanisms and dynamics underlying single-cell growth
and division [1–3]. In some instances, aspects of cell growth
are preserved across all domains of life, such as the adder
mechanisms for cell-size regulation, which appears in bacte-
ria, archaea, and eukaryotes [4]. In other cases, even closely
related organisms have found distinct ways to achieve the
same objective, such as the regulation of mating type genes in
yeast [5]. These observations have led to questions about how
evolution has shaped single-cell physiology and vice versa.
While phylogenetic methods can, to some extent, help us
understand the evolutionary history of physiological mecha-
nisms, their applications are limited to cases where we have
access to a clear mapping between the physiological mecha-
nisms of interest and their associated genotypes. In order to
understand cellular physiology from an evolution perspective,
we must therefore develop a mechanistic understanding of
how evolution acts on properties of single cells.

A standard model used in theoretical population genetics
is the continuous-time Moran process. In this model, cells of
genotype i divide at a constant rate ρi (the fitness). In order to
keep the population size fixed, every time a cell divides, a cell
is randomly selected from the entire population (including the
two newborn cells) to be expelled [see Fig. 1(a)]. The Moran
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process can be thought of as a mathematical idealization of
a turbidostat culture; in such cultures the rate at which fresh
media is continuously pumped into a vial is modulated in
order to keep the optical density (and hence the number of
cells) fixed. Since real organisms do not divide at a constant
rate, ρ is typically thought of as a proxy for the viability
of a genotype, rather than the literal division rate of a cell.
Suppose that two genotypes are present in the population
with fitnesses ρr (the resident) and ρm (the mutant). It can be
shown that for sufficiently large populations, the fraction of
mutant cells, denoted φ, will obey the stochastic differential
equation (SDE)

dφ

dt
= (ρm − ρr )φ(1 − φ)

+
√

(ρm + ρr )φ(1 − φ)

N
ξ (t ), (1)

where the noise term should be interpreted in the Itô sense.
This is the stochastic version of a replicator equation [6]. We
will derive this equation in Sec. II. It is from this SDE that all
the fundamental results concerning the fate of rare mutations
in an evolving population can be derived.

In the neutral case (ρr = ρm = ρ), the frequencies have
mean 〈φ〉 = φ(0), while the variance in φ will evolve as

d

dt
var(φ) = 2ρ

N
[φ0(1 − φ0) − var(φ)]. (2)

Therefore, the 2ρ/N factor sets the timescale for the frequency
of neutral mutations to change by a significant amount. We
will derive Eq. (2) more generally in Appendix C 1. In the case
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FIG. 1. Panel (a) shows a schematic of the Moran process. After
each division, a cell is expelled from the population to keep the
total population size constant. Evolution proceeds by mutations that
eventually either fix or go extinct. Panels (b) and (c) show trajectories
of an initial mutant population which goes on to establish in the
culture within two different models. The null model (b) is Markovian
division where the probability of division for each cell is constant re-
gardless of its size or age, corresponding to exponentially distributed
generation times τ . In this model, the rate of divisions of cells in
the population quickly reaches a constant value. In a more realistic
model of growth and division, panel (c), cell divisions remain nearly
synchronized due to the narrow distribution of generation times τ .

of a beneficial mutation (ρm > ρr), when φ > 1/Ns [where
s = (ρm − ρr )/ρr is the selection coefficient], Eq. (1) is well
approximated by a logistic growth [7]. However, since the
mutant population initially consists of one cell, we are in-
terested in the chance that the new mutant will eventually
overtake the resident, or the fixation probability. A central
result in population genetics states that in a large population
the fixation probability is given by [8,9]

pfix ≈ 1 − e−2s

1 − e−2Ns
. (3)

When s and sN are both sufficiently small, we obtain the
simple relation pfix = s + O(1/N + s2). Importantly, both the
rate of genetic drift and the probability for a mutant to fix
depend only on the long-term growth rates of the resident
and mutant populations, and therefore, one might conclude
that the single-cell dynamics are relevant only insofar as they
affect the long-term growth rate.

In order to develop a predictive theory of microbial evo-
lution, we need to link the relevant parameters ρr and ρm to
properties of single cells. The problem of understanding how
single-cell dynamics map to population fitness dates back to
the work of Euler and Lotka [10]. By extending the work of
these authors, recent studies have developed an understand-

ing of how variation in traits such as cell size, cell growth
rates, and generation times combine to shape the long-term
growth of a population [11–21]. These studies have shown
that under conditions of constant exponential growth, the dis-
tribution of ages in a population converges to a steady state
that determines the growth rate of a population. Moreover, the
long-term fitness in the context of the Moran process (defined
as the division rate, ρ) can be inferred from the distribution of
generation times ψ (τ ) measured among newborn cells using
the Euler-Lotka equation:

1

2
=

∫ ∞

0
ψ (τ )e−ρτ dτ = ψ̃ (ρ), (4)

where ψ̃ is the Laplace transform of ψ . This relation has
proven in both experimental and theoretical studies to be a
powerful tool for probing the effects of single-cell dynamics
on growth. For example, it has been used to elucidate the
effects of cell-size regulation in bacteria on population growth
[13].

Equation (4), when combined with Eq. (1), appears to
provide a link between the single-cell dynamics and the evo-
lutionary dynamics; specifically, Eq. (4) can be used to obtain
the long-term growth rates of each species, which can then be
used to find the rate of genetic drift and the fixation probability
via Eq. (1). However, this reasoning ignores a crucial subtlety
of this problem: Eq. (1) is derived under the assumption that
there exists a constant division rate, ρ, which characterizes
the fitness of a genotype in a finite culture. This assumption is
valid in situations where φ � 1/(Ns), so that demographic
fluctuations can be neglected. For rare mutants with small
selection coefficients, or for neutral mutants, the division rate
will fluctuate as a result of fluctuations in the distribution of
cell ages. In this paper, we seek to understand the extent to
which these fluctuations influence population genetics.

Our focus on the division rate fluctuations is in contrast
to previous efforts to understand evolutionary dynamics in
the presence of age-structure and nongenetic variability (see
[22,23]), which consider models with discrete age classes and
assume the age distribution to be in steady state in order to
obtain an effective SDE. We demonstrate that such approx-
imations are not valid for physiologically realistic models
of microbial growth. Therefore, it cannot be assumed that
dynamics can be characterized by the constant growth rate
terms obtained from the steady-state phenotype distribution
and constant division rate [see Figs. 1(b) and 1(c)].

The remainder of this paper is structured as follows. In
Sec. II, we start with a generalization of the Moran process
derived from physiological models of growth, division, and
cell-size control, and derive a Fokker-Plank equation for the
genotype frequencies. Section III discusses neutral dynamics
in the Moran process. We will show that the rate of neutral
genetic drift depends not only on the long-term fitness of a
genotype, but also the variability in generation times, with
larger variability leading to larger genetic drift. In Sec. IV,
we derive the fixation probabilities of a mutant arising in a
large population, showing that the selection coefficient ap-
pearing in Eq. (3) is insufficient to predict the fate of a mutant.
In particular, we will find that the fixation probability can
decrease with the variability in generation times in the mu-
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tant population when long-term fitness is kept constant but is
unaffected by that of the resident cells. In contrast, it is well
known that variation in generation times tends to be beneficial
from the perspective of long-term fitness (assuming constant
mean generation time). Thus, there are situations where de-
creasing the selection coefficient can actually increase the
fixation probability and vice versa. As we will show, this
can influence qualitative features of long-term evolutionary
dynamics, leading to nonlinear fitness trajectories in situations
where classical theory predicts linear increase in fitness with
time.

II. CONTINUOUS AGE-STRUCTURED MORAN PROCESS

Consider a population consisting of n cells of genotype m
(the mutants) and N − n cells of genotype r (the residents)
growing according to the Moran process model, with the ex-
ception that instead of cells dividing at a constant probability
per unit time, their division times are determined by a physi-
ological model. To be precise, we assume that after living for
a (possibly random) time τ , called the generation time, a cell
divides to produce two new offspring that themselves go on
to produce offspring in the same manner. All the information
about the underlying cellular physiology is encoded in how we
select the generation time. For any microbe where the sizes of
cells are controlled, the time at which a cell divides must be
coupled to the cell’s volume; otherwise, small variations in
doubling times result in unbounded fluctuations in size [3].
As a result, the model of generation time must account for
cell sizes and growth rates, so the probability for a cell to
divide in a given time interval after having survived to an
age a depends on its size at birth sb, its growth rate λ, and
its age a. We denote this probability by γ (a, λ, sb) dt . Let-
ting f (τ, λ, sb) be the joint distribution of generation times,
growth rates, and initial cell sizes, we have γ (a, λ, sb) =
f (a, λ, sb)/

∫ ∞
a f (a′, λ, sb)da′. In Appendix A, we discuss a

common framework for modeling cell-size regulation.
For each genotype i, we can define the per capita popula-

tion division rate ρi(t ) at time t as the population average of
single-cell division rates γi:

ρi(t ) = 1

Ni

Ni∑
j=1

γi(a j, λ j, sb, j ), (5)

where the subscript j represents an individual cell in the
population, and Ni is given by n for the mutant cells and N − n
for the resident cells. Notice that only in the special case of
exponentially distributed generation times [i.e., f (τ, λ, sb) =
γ e−τγ ] do we obtain a time-independent per capita division
rate ρi = γi. However, it has previously been shown that in
a deterministic treatment of the population dynamics that as-
sumes selection is dominant over genetic drift [φ � 1/(Ns)]
there is a well-defined phenotype distribution, p∞

i (a, λ, sb).
As was shown in Ref. [18], this steady-state distribution is
the same as the steady-state distribution of single-cell vari-
ables in an exponentially growing population. This suggests it
might be reasonable to neglect fluctuations in ρi(t ) and replace
Eq. (5) with the average over the steady-state distribution:

ρi =
∫∫∫

da dλ dsb p∞
i (a, λ, sb)γi(a, λ, sb), (6)

where now, ρi is a time-independent property of genotype
i. In this paper, we use the explicit time-dependent notation
ρi(t ) to refer to the population division rate from Eq. (5), and
whenever the time-independent notation ρi is used, it refers to
the long-term fitness in Eq. (6).

We consider the dynamics of the fraction of mutant cells,
φ(t ) ≡ n/N , under the assumption that ρi are good approxi-
mations for the population division rates ρi(t ). The number
fraction φ increases when the division of a mutant cell is
followed by a resident cell getting discarded and decreases
when the division of a resident cell is followed by a mutant
cell getting discarded. Therefore, the probability P(φ, t ) of
observing φ(t ) = φ at time t satisfies the master equation

dP(φ, t )

dt
=

∑
φ′

[T (φ′ → φ)P(φ, t ) − T (φ → φ′)P(φ, t )],

(7)

where the transition rate T (φ → φ′) from φ to φ′ can be
written in terms of ρi’s as

T (φ → φ′) =
⎧⎨
⎩

Nφρm(1 − φ) φ′ = φ + 1/N
N (1 − φ)ρr φ φ′ = φ − 1/N
0 otherwise.

(8)

For large N , the Kramers-Moyal expansion of Eq. (7) leads to
a Fokker-Plank equation whose corresponding stochastic dif-
ferential equation is the continuous Moran process described
in Eq. (1) (see Appendix B for derivation).

The continuous Moran process described in Eq. (1) is
known to hold for a Markovian model of cell division where
cells divide with equal probability at any time independent
of their age or size, but now, it is derived for an arbitrary
model of growth, division, and cell-size regulation, assuming
fluctuations in the division rates can be neglected.

In the next section we analyze the special case of neutral
genetic drift, where ρr = ρm, and show that simulation results
disagree with the prediction from constant division rate as-
sumption. As we will show, the rate of neutral genetic drift,
as observed in simulations, is slower than what is predicted
by the standard theory, even in the limit N → ∞. We will
understand this in terms of coalescent theory as discussed in
the next section.

III. NEUTRAL EVOLUTION

We start by analyzing the model introduced in the pre-
vious section for the case of neutral mutations. Consider a
population of N total cells of two genotypes of resident and
mutant cells, r and m, both dividing with the same division
rate ρ. From Eq. (1), the dynamics of the number fraction of
the mutant species m in the classical Moran (i.e., assuming
generation times are exponentially distributed), is

dφM

dt
=

√
2ρ

N
φM(1 − φM) ξ (t ), (9)

where the subscript M is used to distinguish these dynamics
from the age-structured case. The dynamics of variance of φ in
this case is given by Eq. (2) (see Appendix C 1 for derivation);
thus, the variance increases at a rate 2ρ/N (see Fig. 2). In
the previous section, we showed that Eq. (1) [and therefore
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FIG. 2. Left: Stochastic trajectories of number fraction φ of a
mutant starting from an initial number fraction φ0. In neutral genetic
drift, the expected value of φ remains constant, but the variance
increases over time. Right: The exponential rate R with which the
variance of φ increases over time is defined as the rate of neutral
genetic drift.

Eq. (9)] should hold for the age-structured case, if we ne-
glect the fluctuations in the division rate of the population.
To compare this to the age-structured setting, we simulate
a finite population of cells each growing exponentially in
size with their elongation rates independently and identically
distributed.

We start with a simple model of division, where all cells
are born with the same size sb and divide with a fixed size
sd = 2sb. Assuming cells grow exponentially, sd = sbeλτ and
hence τ = ln(2)/λ. Therefore, all the variation in the genera-
tion times comes from the growth rate λ, which we assumed
to be uncorrelated between cells. For mathematical simplicity,
we select an inverse-gamma distribution for λ, which results
in a gamma distribution for τ with probability density

f (τ ) = β−αe−τ/βτ α−1

�(α)
. (10)

The gamma distribution fits the empirical distribution of cell-
size doubling times at least as well as a Gaussian distribution
in various growth conditions, but also has many theoretical
advantages: A gamma distribution has positive support, the
Euler-Lotka equation [Eq. (4)] is analytically solvable for
gamma distribution, and the gamma distribution naturally in-
terpolates between exponential distribution (Markovian limit)
and δ distribution (deterministic limit).

Simulations of the neutral model were performed using
gamma distributed generation times for different coefficients
of variation (CV is defined as the ratio of standard deviation
to the mean). Figure 3 shows the ratio of the rate of neutral ge-
netic drift, measured from these simulations, to the predicted
value from Eq. (9). Here it can be seen that the variability
in generation time increases the rate of genetic drift indepen-
dently of how it affects the long-term fitness ρ, contradicting
Eq. (9).

At the Markovian limit CV = 1, where the generation time
distribution is exponential, the simulated result approaches the
prediction from Eq. (9) for large system sizes. For CV < 1,
the fact that the rate of genetic drift at large system sizes
approaches a different limit indicates that the division rate
cannot be replaced by its average ρ. Note that interesting
dynamics may emerge with CV > 1, such as nondiffusion
limiting processes, which have been explored in the context
of the Cannings model [7]. However, we will focus on the
cases CV � 1 in the present study.

FIG. 3. The ratio of the rate R of neutral genetic drift (as defined
in Fig. 2) from simulation to its predicted value 2ρ/N from the
constant division rate assumption, Eq. (9), showing significant devi-
ation from the predicted results. Different markers indicate different
system sizes showing that the deviation is clearly not a finite-size
effect. As the coefficient of variation of generation times approaches
1, the distribution of generation times approaches an exponential
(Markovian limit) recovering the predicted results at large system
sizes. For a smaller variability in generation times, fluctuations in the
division rates have a significant effect on the rate of neutral genetic
drift causing the deviation from the analytically predicted result.

A. Persistent division rate fluctuations emerge from coalescence

To understand why division rate fluctuations are impor-
tant, we consider a population consisting of only one species.
While the number of cells is kept constant, the division rate
and distribution of sizes and ages of the cells in the popula-
tion can vary over time. Figure 4 shows the division rate for
such a population, which appears to oscillate in populations
of various sizes even after 1000 generation times. To ensure
that these oscillations are not side effects of an oversimplified
model, we have performed these simulations using a realistic
model and parameter values for growth, division, and cell-size
control of Escherichia coli previously used in Refs. [12,13],
although the same oscillations can be observed in the model
with independent, gamma distributed generation times. They
are reminiscent of the oscillations in growth rates of exponen-
tially growing populations starting from a single cell [12,21]
that are due to cells in the population sharing a common an-
cestor and dividing more or less at the same time. In growing
populations, however, oscillations decay over time, because as
more generations pass since the cells share a common ances-
tor, the noise in the doubling time accumulates giving rise to
less synchronized populations. Why does that not happen in
populations with constant population size? The key to answer
this question lies in coalescent theory.

As shown in Fig. 5, starting from a population of cells
at time t = 0 the descendants of all cells except one will go
extinct after some time t1. At t1, the population will have
a most recent common ancestor at some time t1 − T1. Since
these cells share a common ancestor, their division times are
more or less synchronized. If we wait some additional time
until time t2, one might expect that the population would
be less synchronized because it has been more generations
since the cells shared a common ancestor, but that is not true.
As highlighted in the bottom panel of Fig. 5, the population
at time t2 has a more recent common ancestor at the time
t2 − T2. Crucially, the two coalescence times T1 and T2 are
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FIG. 4. Stochastic spontaneous oscillations of division rates in simulations of constant-size populations of cells with a realistic model of
growth, division, and cell-size regulation for E. coli from Ref. [12] for three different system sizes N ∈ {100, 200, 400}, after 1000 generations
from the start of the simulations. Simulation details: 10% division noise (size additive), 7% growth rate noise, adder model of cell-size
regulation. The division rates are estimated using Gaussian kernel estimation on the division events of single simulations.

statistically identical random variables (with expected values
on the order of N〈τ 〉, where 〈τ 〉 is the average generation
time). This means that over time, the population maintains the
same degree of synchrony, giving rise to oscillations in the
division rate shown in Fig. 4.

B. Neutral genetic drift at low division-time variability

In the context of genetic drift, memory in the division rate
prevents us from representing the effects of all single-cell
variables by a single fitness variable. In particular, the variabil-
ity in single-cell doubling times associated with a genotype

FIG. 5. Top panel shows a sketch of the lineage history of a
constant-size population. The population eventually reaches a state
where all cells share a common ancestor (at time t1 in this illustra-
tion). The cells at this time share a most recent common ancestor
from the time t1 − T1, and therefore have some level of synchrony in
their division times. One would expect that if we wait until some later
time t2, cells would be less synchronized, as it has been more gener-
ations since they shared a common ancestor. However, as shown in
the bottom panel, the cells at time t2 share a more recent common
ancestor at time t2 − T2. The two stochastic variables T1 and T2 are
coalescence times for the population at times t1 and t2 and have the
same expected values.

affects the fate of an organism independently from how it
affects the fitness variable ρ. In many bacteria such as E. coli
this variability is much smaller than its mean, with the CV
between 0.05 and 0.2 [24]. The rate of neutral genetic drift
at these CV values is approximately the same as the zero-
variability limit of Fig. 3. In this limit, the number fractions
still experience a stochastic drift that can be approximated by
(see Appendix C 2 for the derivation)

dφ

dt
=

√
3ρ

4N ln(2)
φ(1 − φ) ξ (t ), (11)

where ρ is the average division rate. The rate of neutral
genetic drift in this case is R = 3ρ/4N ln(2), which is a
factor 3/8 ln(2) ≈ 0.54 smaller than predicted by neglecting
division rate fluctuations. This discrepancy can be traced back
to the fact that cells more or less preserve the order of their
divisions at different generations when the variability in their
elongation rates is very small.

IV. ADAPTIVE EVOLUTION

In the previous section we found that the rate of genetic
drift is determined not only by the long-term growth rates of
species, but also by the details of the single-cell dynamics.
We now shift our focus to adaptive evolution, starting with
the question of how details of single-cell dynamics influence
fixation probabilities. Consider a new mutant arising in a resi-
dent population described by the Moran process and let ρr and
ρm be the long-term growth rates of the mutant and resident,
respectively. It will be assumed throughout that ρm > ρr . If
the mutant population survives to become sufficiently abun-
dant, then its frequency φ will eventually be described by the
deterministic logistic equation dφ/dt = (ρm − ρr )φ(1 − φ).
Genetic drift plays a negligible role in this phase of the dy-
namics, and fluctuations in the division rates can be ignored.
However, when the mutant clone size is smaller than 1/s, the
stochastic effects dominate and we need to consider how these
may be influenced by details of the single-cell dynamics.
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In order to obtain analytical results, we once again assume
that the mutant population is described by the independent
generation time model with a gamma distribution of divi-
sion times, and consider the limits CV = 1 and CV ≈ 0. In
the limit CV = 1, the mutant cells initially divide at a rate
ρm so there is no distinction between the initial and long-
term dynamics. In this case, the probability that the mutant
fixes is obtained from the classical result of Haldane and
Kimura given by Eq. (3). Now consider CV ≈ 0. The long-
term growth rate of the mutant population is ρm = ln(2)/〈τ 〉;
however, initially the mutant cells divide approximately syn-
chronously at a rate 1/〈τ 〉. Since the convergence to the
steady-state growth rate is extremely slow, we expect that
the quantity ρm/ ln(2) = 1/〈τ 〉 > ρm might replace ρ in the
formulas for the fixation probability, leading a higher chance
of fixation than the predictions from Kimura’s formula. This
is indeed the case, in fact, as we show in the next section the
fixation probability of the synchronously dividing mutant pop-
ulations is increased by a factor of 2 ln(2) compared to the
prediction of Kimura’s formula. We will then generalize this
to any value of CV and discuss the implications for long-term
evolutionary dynamics.

A. Derivation of fixation probabilities

We now derive a general formula for the fixation proba-
bility in terms of the generation time distribution. Assuming
cells have independent generation times and the population is
large enough that mutants are very unlikely to be expelled by
the division of the other mutants, the probability that both of
the cells offspring go extinct is simply p2

ext. Let q denote the
probability that the mutant is expelled before it divides:

q = P (τe < τ ), (12)

where τ is the doubling time of the mutant and τe the time until
the mutant is expelled. In terms of q, the extinction probability
can be written as

pext = q + (1 − q)p2
ext. (13)

The extinction probability pext is the smaller root of the
quadratic equation (approaching the fixed point from below)
given by

pext =
{ q

1−q , q < 1
2

1, q � 1
2 .

(14)

Since we are assuming the population is so large that
nearly all removal events result from cells getting replaced
by resident cells, the time τe until the mutant is expelled is
simply set by the division rate of resident cells, ρr . In contrast
to the mutant population, the division rate fluctuations of the
resident population can safely be neglected (in contrast to the
neutral case discussed above), since they make only a higher
order contribution to the expulsion of mutant cells. Hence τe is
exponentially distributed with 〈τe〉 = 1/ρr . The distribution of
τ is given by the generation time distribution, fm(τ ). It follows
that

q = ρr

∫ ∞

0

∫ τ

0
fm(τ )e−ρrτe dτedτ = 1 − f̃m(ρr ), (15)

FIG. 6. The relation between fixation probability and the Euler-
Lotka equation: The Euler-Lotka equation states that for both
mutant and resident species m and r, the Laplace transforms of
the generation-time density distributions f̃m(s) and f̃r (s) evaluated
at their steady-state reproductive rates ρm and ρr are equal to 1/2.
Equation (16) states that the Laplace transform of the generation-
time density distribution of the mutant cells f̃m(s) evaluated at the
reproductive rate of the resident cells ρr is given by 1/(2 − pfix).

where f̃m(ρr ) = ∫ ∞
0 fm(τ )e−ρrτ dτ is the Laplace transform of

fm evaluated at ρr . In order to make the connection to the
Euler-Lotka equation, it is convenient to write Eq. (14) in
terms of f̃m (see Fig. 6):

f̃m(ρr ) = 1

2 − pfix
. (16)

Since f̃m is equal to the right-hand side of the Euler-Lotka
equation [Eq. (4)] with ρ replaced by ρr , f̃m(ρm) = 1/2 and
f̃m(ρr ) > 1/2 if and only if ρr < ρm. Hence, as we would
expect, pfix > 0 (the mutant is beneficial) only when ρm >

ρr . The connection between this result and the derivation of
extinction probabilities by Bellman and Harris (see [25]) is
discussed in Appendix D.

From this expression we can make three key observations:
(1) As N → ∞ the fixation probabilities are coupled to the
resident population’s growth dynamics only through the pop-
ulation growth rate, ρr ; however, (2) the fixation probabilities
may depend in more complex ways on the mutant population’s
growth dynamics because of the appearance of fm(τ ). (3)
Whether a mutant is deleterious or beneficial is determined
by the long-term growth rates. That is, the fixation probability
is positive if and only if ρm > ρr .

This last statement can also be deduced from the following
intuitive argument: Suppose ρm > ρr . Let ρm(t ) be the tran-
sient population division rate. We know there is some nc such
that when the mutant population size n > nc, ρm(t ) > ρr and
at this point the population size n will increase approximately
deterministically. There is some finite probability that n will
exceed nc even in an infinitely large population (since nc

can be reached through a finite sequence of cell divisions),
thus there is a finite probability the mutants population will
fix. Now suppose ρm < ρr . In this case there is an nc such
that ρm(t ) < ρr , thus by a similar argument the mutant will
never fix. Since the mutant never fixes, it eventually goes
extinct with probability 1. Notice that we have not used the
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independence of generation times in this argument, thus this
result applies to more general models in which generation
times are correlated.

B. Markovian case

One case that has been well studied is when the distribution
of generation times is exponentially distributed:

fm(τ ) = ρme−ρmτ . (17)

In this case the per unit time, per capita division rate is com-
pletely independent of the distribution of ages. Using Eq. (16),
it is straightforward to derive the well-known result originally
obtained by Haldane: pfix ≈ s, where s is the selection coeffi-
cient defined in Eq. (3).

C. Deterministic case

We now consider the limiting case where the distribution
of generation times is nearly a delta function around τ . Thus,
all cells in the mutant population divide at almost exactly the
same age. In this case, Eq. (15) becomes

q ≈ 1 − e−ρrτ . (18)

Here, we are neglecting any contribution from the variation
around τ . Using that the long-term growth rate of the mutant
is ρm ≈ ln(2)/τ , we obtain

pfix ≈ 2 ln(2)s. (19)

In this instance there is an additional factor of 2 ln(2) com-
pared to the previous example. As we have suggested earlier,
this discrepancy results from the fact that in the present case,
the initial age distribution of the mutant population, and hence
the division rate, is distinct from that of the same genotype
under stable exponential growth. It is this transient division
rate that determines the ultimate fate of the mutant population.

D. General results for gamma distributed division times

The examples above can be seen as special cases of a
more general result obtained assuming a gamma distribution
of generation times. Then Eq. (15) becomes

q = 1 − (1 + βρr )−α. (20)

Using Eq. (4), we find that

ρm = 21/α − 1

β
, (21)

and q can be rewritten as

q = 1 −
(

1 + ρr

ρm
[21/α − 1]

)−α

(22)

= 1 − (1 + (1 − s)[21/α − 1])−α. (23)

Using that CV2 = 1/α, we can express pfix solely in terms of
the population growth rates and the coefficient of variation of
mutant generation times:

pfix = 2

CV2

(
1 − 2−CV2

)
s + O(s2). (24)

FIG. 7. Numerical simulations of the fixation probability. Popu-
lations starting with one cell were run for 108 runs and the fixation
probability was computed from the fraction of populations that
reaches a critical size where genetic drift ceased to dominate the
dynamics. Dashed lines show the theoretical prediction of Eq. (24).

For CV2 = 1 we obtain the Markovian case, pfix = s, while in
the limit CV2 → 0 we retrieve the deterministic case pfix =
2 ln(2)s. Agreement with numerical simulations is shown in
Fig. 7. For most bacterial cells, CV2 � 1, which makes the
fixation probability larger than the selection coefficient s. Fix-
ation probability would be less than s if CV2 > 1.

E. Implications for long-term evolution

In the previous section we considered the dynamics fol-
lowing the emergence of a single mutation. We now consider
evolutionary dynamics over long periods of time in which
multiple mutations accumulate. To this end, we introduce the
mutation probability μ, defined as the probability per cell
division for a mutation to occur. We assume, for simplicity,
that each mutation increases the growth rate by an amount δρ.
If a mutation does eventually fix, it will take a time τsw on the
order of 1/δρ ln Ns to sweep through the population [26]. We
assume τsw � 1/(μNρs), or μN ln Ns � 1 [27]. This regime
is often referred to as the strong selection–weak mutation
regime and it ensures mutations are unlikely to compete with
each other and can therefore be treated as independent events.

A basic question one can ask regarding the evolutionary
trajectories is: How will the growth rate increase over time in
such a population? Consider growth rate averaged over many
realizations of an evolving population, which we denote 〈ρ〉.
The per unit time increase in 〈ρ〉 is simply the rate at which
mutations emerge multiplied by the probability of fixation;
that is,

d

dt
〈ρ〉 = μNδρ〈ρ pfix〉. (25)

Using the classical formula pfix = s, we find d〈ρ〉/dt =
μN (δρ)2 and hence under these assumptions the long-term
growth of 〈ρ〉 is linear.
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FIG. 8. Numerical simulations of the long-term evolutionary dy-
namics using Kimura’s formula (blue line) and the corrected formula
that accounts for division rate fluctuations (orange). Each line is a
separate simulation. When accounting for the effects of fluctuations
on fixation probabilities, evolution slows down considerably. This
is because the coefficient of variation increases as the population
adapts, decreasing the chance for new mutants to fix. In our simu-
lations, the times between mutations are drawn from an exponential
distribution with rate parameters μNδρ2 pfix. Parameter values used
are s = 0.01, μ = 10−6, and N = 103, ensuring we are in the strong
selection–weak mutation regime.

We would now like to understand how, in principle, phe-
notypes (e.g., growth rate variation) can shape long-term
evolution without directly altering the selection coefficients.
As a contrived, but illustrative example, suppose each mu-
tation increases CV2 by a fixed increment δCV2 and the
generation time by an increment δτ , which is selected to
ensure δρ remains constant. As the population adapts, the CV
increases. This decreases the fixation probabilities and as a
result adaptation slows down. In Fig. 8 we show simulations
of this model that illustrate this point. In reality the growth
rates in an evolving population will not increase linearly for
many other reasons, such as epistasis. However, our results
suggest that the transient dynamics of mutant populations
are also a factor that influences the long-term evolutionary
dynamics. We leave it to future work to explore this effect
within the context of more realistic models.

V. DISCUSSION

In the past decade, the use of microfluidic devices has
allowed for detailed measurements of growth and division
statistics of bacteria at the single-cell level [24,28]. Phe-
nomenological models of bacterial growth, division, and cell-
size regulation proposed based on these single-cell statistics
[29] have sparked new interest in understanding how single-
cell statistics affect population dynamics [11–14,18,30–33].
At the core of most of these studies is the question of
how different sources of variability at single-cell level af-
fect population growth rate. Meanwhile, high-throughput
continuous-culture experiments allow for the precise measure-
ment of evolutionary dynamics over thousands of generations
[34–36]. By growing evolved strains in microfluidic devices,
it is in-principle possible to investigate the adaptation of
single-cell traits, such as the generation time distribution. It

is therefore natural to ask how different sources of variability
at the single-cell level affect population genetics.

Several population dynamics studies have shown that the
details of single-cell elongation dynamics (but not details of
the division process) affect the growth rate of populations
[12–14]. Recent work has drawn attention to the persistence of
out-of-steady-state dynamics of a population of cells starting
from a single cell [12,21,37,38]. These out-of-steady-state
dynamics manifest in forms of oscillations in the population
growth rate and traveling waves in distributions of sizes and
ages of the cells, and they exist because descendants of a cell
maintain a degree of synchrony in their growth and division.
Their persistence time in exponentially growing populations
also only depends on single-cell elongation dynamics and not
the details of cell-division and cell-size regulation [12]. Here,
we have shown that for finite populations, similar fluctuations
in the division rate persist infinitely long (also observed in
Ref. [39]), and they decrease the rate of genetic drift of neutral
mutants. We leave it to future work to develop an analytical
understanding of how the generation time distribution influ-
ences the rate of genetic drift in the Moran model.

In the context of beneficial mutants, we have shown that
variability in doubling time reduces the probability of fixa-
tion, but it is always larger than the classical results from the
Moran process. The analytic expression obtained for fixation
probability has an interesting relationship to the Euler-Lotka
equation as shown in Fig. 6. The Euler-Lotka equation states
that the Laplace transform of the doubling-time distribution
evaluated at the population growth rate ρm is 1/2, while in our
case, the Laplace transform of the doubling-time distribution
evaluated at the population growth rate of the resident cells
ρr is 1/(2 − pfix). Finally, we have shown that the small cor-
rection to the fixation probability due to out-of-steady-state
effects can have potentially large effects on the long-term
evolutionary trajectories. For example, if populations adapt by
increasing the variability in their generation times, the rate of
adaptation will decrease.

Section II highlights the role of fluctuations in population
division rate in population genetics. This is done in the context
of a very general model of growth, division, and cell-size
regulation. However, for simplicity, the rest of the paper is
organized around a simpler model in which the only source
of noise is the elongation rate of single cells. We leave it to
future work to investigate more detailed models of cell-size
regulation (such as the ones discussed in Appendix A) and
their effects on population genetics.
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APPENDIX A: CELL-SIZE CONTROL MODEL

We assume cells attempt to divide when they reach a target
division size g(sb), which in general is a function of their
initial size sb. The actual division size sd is the target division
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size plus a noise term, sd = g(sb) + ξ . We assume cells grow
exponentially with a possibly random elongation rate λ such
that the generation time τ satisfies sd = sbeλ τ .

Commonly considered candidates for the function g are
g(sb) = 2sb (the timer model), g(sb) = sb + 
 (the adder
model), and g(sb) = 2s̄b (the sizer model). The functional
form of g is only relevant when the variance of the division
noise ξ is nonzero; when this variance is zero, all three of
these models are equivalent. With the exception of the sim-
ulation shown in Fig. 4 (where the adder model of cell-size
regulation is used), we have neglected the division noise ξ ,
and considered the case where the only source of variability
in the generation time τ comes from the variability in λ.

We refer to Ref. [3] for an in-depth discussion of the cell-
size control model and its implications for population growth.

APPENDIX B: DERIVATION OF THE FOKKER-PLANCK
EQUATION FOR THE NUMBER FRACTION OF

MUTANT SPECIES

Here we derive a Fokker-Plank equation by Kramers-
Moyal expansion of Eq. (7) whose corresponding SDE is
given in Eq. (1). We start by plugging the transition rates from
Eq. (8) into the master equation, Eq. (7). Defining ε ≡ 1/N ,
we have

d

dt
P(φ, t ) = Nρm((φ − ε)(1 − φ + ε)P(φ − ε, t )

− φ(1 − φ)P(φ, t ))

+ Nρr ((φ + ε)(1 − φ − ε)P(φ + ε, t )

− φ(1 − φ)P(φ, t )). (B1)

We can recognize this master equation as a difference equa-
tion by defining f (φ, t ) ≡ φ(1 − φ)P(φ, t ):

d

dt
P(φ, t ) = ρm

f (φ − ε, t ) − f (φ, t )

ε

+ ρr
f (φ + ε, t ) − f (φ, t )

ε
. (B2)

In the continuum limit, we can expand f (φ ± ε, t ) up to
second order in ε to derive the Fokker-Planck equation for
the dynamics of the probability density P(φ, t ) of the number
fraction φ in time:

∂

∂t
P(φ, t ) ≈ (ρr − ρm)

∂

∂φ
[φ(1 − φ)P(φ, t )]

+ 1

2N
(ρr + ρm)

∂2

∂φ2
[φ(1 − φ)P(φ, t )]. (B3)

This equation describes the time evolution of the probability
density of φ obeying the SDE given in Eq. (1).

APPENDIX C: RATE OF NEUTRAL GENETIC DRIFT

We discussed in Sec. III that the simulation results deviate
from the steady-state approximation for the rate of neutral
genetic drift (which we derive below) except when the CV ap-
proaches one, which corresponds to exponentially distributed
doubling time or the Markovian limit. At the opposite limit,

CV → 0, cells are expected to perfectly synchronize. Below,
we derive the rate of neutral genetic drift at these two limits.

1. Steady-state approximation

At the steady state, where the division rates ρr and ρm

are time independent, we can use the Fokker-Planck equa-
tion given in Eq. (B3) to derive a differential equation for the
rate of change of the variance of φ starting from some initial
value 0 < φ0 < 1. In the neutral case ρr = ρm = ρ, we have

d

dt
var(φ) = d

dt

∫ 1

0
(φ − φ0)2P(φ, t ) dφ

=
∫ 1

0
(φ − φ0)2 ∂

∂t
P(φ, t ) dφ

= ρ

N

∫ 1

0
(φ − φ0)2 ∂2

∂φ2
[φ(1 − φ)P(φ, t )]dφ.

(C1)

After integrating by parts twice, we have

d

dt
var(φ) = 2ρ

N

∫ 1

0
φ(1 − φ)P(φ, t )dφ

= 2ρ

N
(〈φ〉(t ) − 〈φ2〉(t ))

= 2ρ

N
[φ0(1 − φ0) − var(φ)], (C2)

where we have used 〈φ〉(t ) = φ0. Solving for var(φ), we have

var(φ) = φ0(1 − φ0)(1 − e−2ρt/N ), (C3)

with the rate of neutral genetic drift given by R = 2ρ/N .

2. Deterministic limit

At the limit where the CV of the cell-size doubling time
goes to zero, we expect all the division events of each gener-
ation to happen at the same time. One might think that in this
limit, the age-structured Moron process would approach the
Wright-Fisher model where in discrete time intervals, all cells
divide and half of the population is discarded. That is not the
case here. In the age-structured Moran process, cells divide
one at a time and after each division, one cell is removed,
and as a result, not all cells get to divide. This distinction
survives even at CV → 0 limit where all the division events
have to take place at the same time. To predict the rate of
neutral genetic drift in this limit, we imagine the population of
n mutant cells and N − n resident cells at generation g (note
that in this limit, division times are discrete, and we can use
generation numbers instead of time). In the next generation,
we randomly choose previous generation cells to divide and
discard cells to keep the population constant. We continue
until no cells of generation g are present. Our goal is to find the
expected value and the variance of number n′ of mutant cells
in the next generation g + 1. This is a purely combinatorics
problem. Below, we will show that the expected value of n′
given n is given by 〈n′|n〉 = n using a symmetry argument.
Also, for large N , we will show that the variance of n′
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given n is

var(n′|n) = 3

4N
n(N − n). (C4)

Given the conditional mean and variance of n′, at the contin-
uum limit, we can approximate this process as the following
stochastic differential equation:

dφ

dt
=

√
3

4Nτ
φ(1 − φ) ξ (t )

=
√

3ρ

4N ln(2)
φ(1 − φ) ξ (t ). (C5)

The rate of neutral genetic drift for this case is given by

R = 3ρ

4N ln(2)
, (C6)

which is a factor 3/8 ln(2) ≈ 0.54 smaller than the rate of
neutral genetic drift in the Markovian case R = 2ρ/N .

Note that the continuous-time approximation made here
does not become exact at the large N limit, given that the
divisions clearly happen in discrete-time intervals. Neverthe-
less, the estimated ratio of the rate of genetic drift matches the
simulation fairly well as seen in the CV → 0 limit of Fig. 3.

Derivations of the mean and the variance of n′ given n

We use the symmetry that in the neutral case, all the
cells are identical, and therefore, the numbers Xi ∈ {0, 1, 2}
of their surviving progeny at each generation are identically
distributed (albeit dependent) random variables. Since the to-
tal population is constant, we have

∑N
i=1 Xi = N . Therefore,∑N

i=1〈Xi〉 = N〈Xi〉 = N or 〈Xi〉 = 1 for each cell i. The num-
ber n′ of the mutant cells in the new generation is given by the
sum of the numbers of progenies of the previous generation
mutant cells, n′ = ∑n

i=1 Xi, and therefore we have 〈n′〉 = n,
showing that the expected value of the number of mutant cells
stays constant throughout the neutral dynamics.

Finding the variance of n′ is a bit more tricky. We first
show that the variance of the number of progenies of each
cell Var(Xi ) is 3/4. But since Xi’s are dependent, we also
need to find the Cov(Xi, Xj ) (for i �= j) to find the variance of
n′ = ∑n

i=1 Xi. We will show that it is given by Cov(Xi, Xj ) =
−Var(Xi )/(N − 1). Finally, we will express the variance of n′
in terms of the variance and covariance of the variables Xi as

Var
(
n′) = Var

(
n∑

i=1

Xi

)

= n Var(Xi ) + n(n − 1)Cov
(
Xi, Xj

)
= 3

4

n(N − n)

N − 1
, (C7)

recovering Eq. (C4) in the large N limit.
The variance of Xi is given by

Var(Xi ) =
2∑

Xi=0

(Xi − 〈Xi〉)2 = p0 + p2, (C8)

where p0 = P (Xi = 0) and p2 = P (Xi = 2). Since
∑N

i=1 Xi =
N , p0 = p2; that is, for every cell with zero progeny, there is
exactly one cell with two progenies. So let us find p2.

At each step of the process, a cell divides and another
is discarded. We enumerate these steps with a discrete-time
variable t . We define the variable f to be the expected value
of the fraction of generation g cells at time t . At each step, f
decreases by 1/N due to division. Additionally, f decreases
by 1/N if the discarded cell is from the previous generation
(with the probability f ). This gives the dynamics of f as

df

dt
= − 1

N
− 1

N
f = −1 + f

N
, (C9)

with solution f = 2e−t/N − 1. This fraction goes to zero after
t = N ln(2) steps. For a cell that divides when the fraction
of the previous generation cells is f , the probability that it
ends up with both of its progenies in the next generation is
given by product of the probabilities 1 − 2/N of them not
getting discarded in each step of division after f . The number
of steps after fraction f is given by N ln(2) − N ln[2/( f +
1)] = N ln(1 + f ). This gives the conditional probability of
a cell ending with two surviving daughter cells given that it
divided at f as(

1 − 2

N

)N ln(1+ f )

≈ e−2 ln(1+ f ) = (1 + f )−2. (C10)

Since each cell of generation g eventually either divides or
gets replaced as f decreases from 1 to 0, for each cell, f
at which it divides or gets replaced is uniformly distributed.
Conditioned on the value of f , the probability of division is
(1/ f N )/(1/ f N + 1/N ) = 1/(1 + f ) (at f , the probability of
division of each one of the remaining f N cells is 1/ f N and the
probability of them being discarded is approximately 1/N).
Putting it all together, the probability p2 that a given cell ends
up with two progenies is the integral over f of the probability
that it divides at f multiplied by the conditional probability
that neither of the daughter cells gets discarded given that it
divided at f :

p2 =
∫ 1

0

df

(1 + f )3
= 3

8
. (C11)

This gives Var(Xi ) = p0 + p2 = 2p2 = 3/4.
Next, we find the Cov(Xi, Xj ) for i �= j. Let us define δXi =

Xi − 〈Xi〉. The covariance can be written as

Cov(Xi, Xj ) = 〈δXiδXj〉 = 〈〈δXj |δXi〉δXi〉, (C12)

where 〈δXj |δXi〉 is the conditional expected value of δXj

given δXi. Since
∑N

i=1 δXi = 0, by symmetry, 〈δXj |δXi〉 =
−1/(N − 1)δXi. This gives

Cov(Xi, Xj ) = − 1

N − 1

〈
δX 2

i

〉 = − 1

N − 1
Var(δXi ), (C13)

which is the last ingredient needed in Eq. (C7).

APPENDIX D: RELATIONSHIP TO EXTINCTION IN
BELLMAN-HARRIS PROCESS

Here, we discuss the relationship between our formula for
the fixation probability, Eq. (14), in the age-structured Moran,
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and the extinction probability in the Bellman-Harris process
that was derived in [25]. In the Bellman-Harris process with
binary fission and cell death, cells have a generation time
drawn from a distribution f (τ ). At age τ , they divide in two
with probability 1 − μ, or are killed with probability μ. Since
we study fixation probabilities in the large population size
limit where cell dilutions can be treated as independent events,
many of our formulas are related to those derived [25]. How-
ever, there are two key conceptual differences between the
Moran model and the Bellman-Harris model that prevent us
from obtaining the key results Eqs. (16) and (24) directly from
[25]: First, the role of the resident species generation time
distribution is lost in the Bellman-Harris process because only
a single genotype is present. Second, in the Bellman-Harris
process the chance that a cell dies (i.e., is expelled from the
culture) is independent of its generation time, while in the
Moran model a cell with a longer lifetime is more likely to
be expelled.

To make these differences explicit, we provide a brief
summary of the derivation in [25]. Let N (t ) be the number
of cells at time t in the Bellman-Harris branching process. Set
w = limt→∞ N (t )/N (0)e�̃t where �̃ is the long-term growth

rate of the process, accounting for cell deaths. Note that �̃

differs from � in our notation, which is the long-term growth
rate if cells are never expelled from the culture. Bellman and
Harris consider the generating function

φ(s) = 〈esw〉, (D1)

which is shown to satisfy

φ(s) = μ + (1 − μ)
∫ ∞

0
φ(se−�̃τ )2 f (τ )dτ. (D2)

Since lims→−∞ φ(s) is the probability for w = 0, and hence
the probability for the population to eventually go extinct, we
immediately obtain an equation for the extinction probability:

pext = μ + (1 − μ)p2
ext. (D3)

This is identical to our Eq. (13), with q replaced with μ. How-
ever, since the chance for cells to be expelled is independent of
their generation time, the generation-time distribution of the
mutant species plays no role in this equation and the extinction
probability is determined solely by the independent parameter
μ. In contrast, in our derivations it is the generation-time dis-
tributions of both the mutant and the resident that determine q.
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