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Inference of time-ordered multibody interactions
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1University of Deusto, 48007 Bilbao, Spain
2University of Zurich, CH-8006 Zürich, Switzerland

3Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany

(Received 11 July 2023; accepted 4 August 2023; published 27 September 2023)

We introduce time-ordered multibody interactions to describe complex systems manifesting temporal as well
as multibody dependencies. First, we show how the dynamics of multivariate Markov chains can be decomposed
in ensembles of time-ordered multibody interactions. Then, we present an algorithm to extract those interactions
from data capturing the system-level dynamics of node states and a measure to characterize the complexity
of interaction ensembles. Finally, we experimentally validate the robustness of our algorithm against statistical
errors and its efficiency at inferring parsimonious interaction ensembles.
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I. INTRODUCTION

Earth’s climate, traffic in large cities, or a baroque musical
composition are all examples of complex systems. They are
composed of multiple elements with different types of interac-
tions and elusive dynamical laws [1–3]. Efforts to understand
those laws have prompted considerable advances in network
science during the last few decades. The journey started with
models for complex networks with a single type of dyadic
links [4–6], continued with multilayer and multiplex networks
[7,8], and has most recently brought us different approaches
to model higher-order interactions in complex systems [9–17].
Over time, we have learned to impose weaker assump-
tions upon our models and thus to describe more complex
interactions.

Lately, the community has focused on the study of two
types of interactions: multibody interactions and time-ordered
interactions. The former are modeled with hypergraphs and
the latter are modeled with higher-order Markov chains. Each
of them violates a different assumption of standard net-
work models: multibody interactions violate the assumption
that system dynamics can be explained solely with dyadic
interactions; time-ordered interactions violate the Markov as-
sumption [18,19]. However, real systems may violate both
assumptions, invalidating either modeling approach. This sit-
uation leads to multiple open questions. How can we analyze
systems that exhibit interactions that are both time ordered
and multibody? More specifically, how can we formalize such
interactions and infer them from data? How can we use time-
ordered multibody interactions to explain system dynamics?

The multibody facet of the problem has already been
solved with the inference of multibody interactions from dy-
namical equations [20] and with information theory tools
[21–23]. There are also preliminary efforts to unify the mod-
eling of time-ordered and multibody interactions, e.g., in the
study of synchronization [24], contagion [25], and consensus
dynamics [26]. However, as discussed in [17], a general for-
malism is yet to be found.

In this manuscript, we propose a unified methodology
for scenarios in which multibody and time-ordered depen-
dencies coexist. First, we introduce parsimonious models of
time-ordered multibody interactions. Then, we present an al-
gorithm to decompose the system dynamics into an ensemble
of interactions. Last, we introduce a measure to characterize
the complexity of such ensembles of interactions. We show
how the integration of time-ordered and multibody interac-
tions enables a better description of real world systems than
current modeling paradigms.

II. TIME-ORDERED MULTIBODY INTERACTIONS

A. Notation

Let S be a closed system of N nodes n ∈ N , N = {n}N−1
0 .

Each node n is constrained to a finite set of states, called
alphabet Xn with cardinality |Xn|. We denote the state of each
node n at a given time t with sn(t ), and the state of the
whole system with s(t ) = (sn(t ))n∈N . Thus, the alphabet of
the whole system is X = ×n∈N Xn, where × denotes Cartesian
product. We observe the system in an interval (t0, tend) and
collect sequences of system states D = (s(τ ))tend

τ=t0 and element
states Dn = (sn(τ ))tend

τ=t0 .
We can model the dynamics of S as a higher-order

Markov chain with memory m: the transition probability
to a state x ∈ X depends on the previous m states x̄ ∈
|X |m. The transition probabilities π (x|x̄) are encoded in ma-
trix elements Txx̄ of transition matrices T with dimensions
|X | × |X |m. One can infer the transition matrix T for dif-
ferent Markov orders m using the temporal data D, and
select the Markov order that provides the best predictability-
parsimony balance [27–29]. See Fig. 1 for an example of our
notation.

Higher-order Markov chains model the dynamics of S as
a function of all nodes at all times and thus one cannot
analyze node interdependencies in isolation. Therefore, we
deviate from this modeling approach, and define time-ordered
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FIG. 1. We are presented the task to explain the dynamics of a
system of N = 3 nodes from their temporal data D. We first com-
pute a higher-order Markov chain of memory m = 3 and collect
the transition probabilities in a matrix T, which predicts the joint
node state s(t ) as a function of the previous three states Gm(t − 1).
We then decompose T as a convex sum of time-ordered multibody
interactions Ai. An interaction of type q models the dynamics as
a function of the group of system variables Gq(t ), which con-
tains qn variables of each node n. Gq(t ) is divided in Gv(t ) and
Gh(t − 1) that account, respectively, for row and column variables
of interaction transition matrices Āi. The interaction A1 is separated
into two dynamically independent subsystem interactions: A1

{0,1}
and A1

{2}.

multibody interactions that depend on the last qn states of
every node n. We denote a group of qn successive temporal
states of node n with tuples Gqn

n (t ) := (sn(τ ))t
τ=t−qn+1. If qn is

zero, Gqn
n (t ) denotes an empty tuple. We then construct a vec-

tor q = (qn)n∈N and denote groups of variables for the whole
system Gq(t ) := (Gqn

n (t ))n∈N . States of Gq(t ) take values
in alphabet X q := ×n∈N X qn

n . Before defining time-ordered
multibody interactions, we emphasize that in our notation
Markov chains with memory m model s(t ) = G1(t ) given the
history Gm(t − 1), where 1 and m are vectors with all compo-
nents 1 and m, respectively. The transition probabilities then
depend on o := m + 1 system states, amounting to a total oN
time variables Go(t ), where o is a vector with all components
o. See Fig. 1.

B. Interactions

The core of our formalism are time-ordered multibody
interactions, which depend only on a subset of the Go(t )
variables of higher-order Markov chains. A time-ordered
multibody interaction A of type q, 0 � qn � o, models the
probability of s(t ) given history Gm(t − 1) as a function
of variables Gq(t ) and independent of other variables. We
separate the variables Gq(t ) in two groups: variables Gv(t )
describing nodes at time t and variables Gh(t − 1) describing
their history. Here, the components of v are vn = 0 when
qn = 0, and vn = 1 when qn > 0; the vector h contains history
lengths h = q − v. See Fig. 1 for an example of an interaction
ensemble with two interactions in a system of three nodes,
and corresponding Gv(t ) and Gh(t − 1). The variables Gv(t )
are modeled with a multinomial distribution that depends on
the history Gh(t − 1). The state of Gv(t ) takes values y ∈ X v,
and the state of Gh(t − 1) takes values ȳ ∈ X h. The transi-
tion probabilities from ȳ to y are encoded in the transition
matrix Ayȳ of interaction A. For nodes where qn = 0, the
probabilities of sn(t ) do not depend on any variable, and thus
they are uniform. In summary, an interaction A models the

FIG. 2. Hasse diagram of time-ordered multibody interactions
for a system of three nodes and memory equal to one. Interaction
types are depicted as vertices q, and arranged according to their
interaction order ω. If there is a path from q to q′, then every
interaction of type q can be expressed as an interaction of type q′.

dynamics as

π (s(t )|Gm(t − 1),A) = Ayȳ∏
n∈N |qn=0 |Xn| . (1)

While the transition matrix T has |X | · |X |m = ∏
n |Xn|o el-

ements, the interaction A of type q has only |X v| · |X h| =∏
n∈N |Xn|qn parameters. Therefore, interactions produce a

parsimonious model of the system dynamics. With this, we
have formally introduced time-ordered multibody interac-
tions, and we now discuss how we can use them to decompose
the dynamics of S.

C. Interaction hierarchy

The aim of our decomposition is to explain the dynamics
in terms of the simplest possible interactions. Therefore, we
organize time-ordered multibody interactions in a hierarchy
by their complexity. We define the interaction order ω of
interaction type q as ω = ∑

n∈N qn, that counts the number
of variables on which the interaction depends. Moreover, in-
teractions are nested models: an interaction A of type q can
be nested in (or represented with) an interaction A′ of type
q′ if ∀n : qn � q′

n. Intuitively, if variables of A are a subset
of variables of A′, A can be nested in A′. The relation of
nestedness over the set of interaction types naturally defines
a partial order, which is commonly depicted with a Hasse
diagram. In the Hasse diagram on Fig 2, two interaction types
are connected as long as they are nested and separated by
one interaction order ω. For example, an interaction of type
q = (2, 1, 0) (leftmost type in fourth row of Fig. 2) models the
dynamics of S as a function of s0(t ), s0(t − 1), and s1(t ). Thus,
it can be nested in any interaction type that includes these
variables. The interaction type q = o, which corresponds to
a Markov chain on S, is particularly important for the decom-
position because any other type of interaction can be nested
in it. When we nest an interaction A in type o, we denote the
resulting interaction with Ā and its transition matrix with Ā.

D. Decomposition algorithm

The decomposition algorithm has two steps: in a first step
we decompose the transition matrix T into an ensemble of
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time-ordered interactions; in a second step, we decompose
the time-ordered interactions into subsystem interactions [30].
Formally, in the first part we find the interaction coefficients
ai and matrices Ai (here, i is an upper index) such that the
matrix T can be expanded as a convex sum: T = ∑

i aiĀi. The
algorithm repeatedly extracts interactions from T. Starting at
ω = 0, it explores all interactions at ω before proceeding with
ω + 1 and extracts the one with a highest coefficient. Let us
assume we have already extracted i interactions from T and
that T̃ is the remainder: T̃ = T − ∑i−1

j=0 a jĀ j . For the next in-
teraction Ai, the algorithm finds the transition matrix Ai such
that the corresponding coefficient ai is maximal and T̃ − aiĀi

does not have negative elements. The first part finishes when
either T̃ is a matrix of zeros, or, equivalently, when the sum of
the interaction coefficients is one. See Appendix A 5 for the
details.

The second step of the algorithm identifies statistically
independent subsystems and decomposes the interactions into
subsystem interactions. Formally, subsystem interactions are
interactions defined on a subset of nodes. Let P(N ) be a
partition of N , and B ∈ P(N ) be a subset of nodes B ⊂ N .
If x is a state of nodes N and x̄ is the history of the state,
we denote the corresponding state of the nodes B with zB and
their corresponding history z̄B. We say that interaction A has
a subsystem interaction partition P(N ) if

π (x|x̄,A) =
∏

B∈P(N )

π (zB|z̄B,AB ). (2)

For instance, nodes with qn = 0 are obvious examples of
independent subsystem interactions.

We identify subsystem interactions from an interaction A
by iteratively factorizing its transition matrix as a tensor prod-
uct. First, we factor out each node n that is modeled with a
uniform distribution qn = 0. We thus obtain the partition with
one-element subsets for nodes n with qn = 0, and a single
subset containing the remaining nodes. Then, we iteratively
search for two-group partitions of the subsets with more than
one element. We stop when we cannot find a valid partition of
any subset. See Appendix A 5 for the details on the subsystem
interaction factorization, and see the SM [31] for a selection of
practical examples of the full protocol including the Glauber
dynamics [32].

E. Complexity

Having discussed the formalism of time-ordered multibody
interactions, and the algorithm to extract them from data
capturing the system-level dynamics of node states, we now
focus on the complexity of interaction ensembles. We note
that the expansion of the transition matrix T is not unique, as it
can be reconstructed with different ensembles of interactions
and interaction coefficients. Considering Occam’s razor, here
we are interested in an ensemble with the lowest possible
complexity. We thus need a principled way of measuring
the complexity for different combinations of interactions and
subsystem interactions.

To quantify the complexity of an ensemble of interactions,
we introduce the measure of reducibility. Let us denote the
number of degrees of freedom of an interaction A with λ(A).
When interactions have no subsystem interactions, λ(A) is

FIG. 3. Complexity measures k(l ), kc(l ), and r for (a) high re-
ducibility and (b) low reducibility systems. Here λ(A) is the number
of free parameters of an interaction, k(l ) weights how likely is to
have an interaction with l parameters in an interaction ensemble, and
kc(l ) is the cumulative of k(l ). The reducibility r is the share of area
under kc(l ), and encodes the relative reduction in the average number
of parameters per interaction of an ensemble. The ensemble in (a) has
the same predictive power as T even if its matrices contain 94% fewer
parameters on average.

simply (|X v| − 1)|X h| due to the normalization of stochastic
matrices. If A has subsystem interactions, λ(A) is given by
the sum of their parameters λ(A) = ∑

B λ(AB ). We call the
ensemble reducible if simple interactions have a high contri-
bution in the interaction ensemble. We call it irreducible if
complex interactions have a high contribution in the interac-
tion ensemble. Formally, reducibility r is defined as

r = λMC − ∑
i aiλ(Ai)

λMC
, (3)

where λMC = (|X | − 1)|X |m is the number of degrees of free-
dom of the Markov chain. Therefore, r accounts for the
reduction in the average degrees of freedom when our interac-
tion ensembles are used instead of Markov chains.

We showcase the power of this measure in the context of
lossy compression. Let us denote with k(l ) the probability
mass function of all interactions with l degrees of freedom:
k(l ) = ∑

λ(Ai )=l ai, and its cumulative distribution with with
kc(l ). The value of kc(l ) describes how well the interactions
with less than l degrees of freedom represent the system
dynamics. In Fig. 3 and Table I, we depict k(l ) and kc(l ) of
reducible and irreducible interaction ensembles. When the en-
semble is reducible [panel (a) and Table I], it is dominated by
the simple interactions, thus k(l ) peaks for small values of l ,
and kc(l ) is high throughout the interval. When the ensemble
is irreducible [panel (b)], k(l ) has peaks for large values of l ,

TABLE I. Interaction type q, subsystem interaction partition B,
interaction order ω, matrix rows |X v|; and columns |X h|, number of
parameters λ(A), and coefficient a for the interaction ensemble of
Fig. 3(a).

label q B ω |X v| |X h| λ(A) a

A0 210 {0, 1, 2} 3 4 2 6 0.3
A1 132 {0, 1} 4 4 4 12

0.25{2} 2 2 2 2
A2 033 {0, 1, 2} 6 4 16 48 0.45
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FIG. 4. We produce synthetic sequences and compute the
statistical distance between the original transition matrices T, (a) in-
teractions a and (b) reducibilities r, and the ones inferred from the
data T̂, â, r̂ for a fixed alphabet |Xn| = 2 and order o = 2. Results
reported here correspond to averages over 100 realizations.

and kc(l ) is low throughout the interval. Therefore, when an
ensemble is reducible, we can choose a small l where kc(l )
is high. Thus, by only using the interactions with less than l
degrees of freedom, we can compress a reducible ensemble
with an approximate loss of 1 − kc(l ), as this accounts for the
interactions that are above λ = l . Lastly, it is worth noting that
the reducibility is the share of the area under kc(l ).

III. VALIDATION

Finally, we present a series of experiments to validate
different aspects of our contributions. In a first experiment,
we establish a relation between the accuracy of our algorithm
and the available amount of data. Our goal here is to under-
stand how an error in T propagates to errors in a and r. We
randomly generate T by drawing its elements from a uniform
distribution and obtain the ground truth values of interaction
coefficients a and reducibility r. Then, we construct random
sequences out of T, analyze them with our algorithm, and
obtain estimators T̂, â, r̂. We evaluate the accuracy of all three
estimators in terms of the total variation distance σ between
the ground truth and the estimated values.

The results are reported in Fig. 4, where we explore how
the errors depend on the system size N for a system with all
equal alphabets |Xn| = 2 and order o = 2 (see the SM [31] for
a more general selection of parameters).

As noted above, given a dataset, there is not a unique
interaction ensemble. This explains why in Fig. 4(a), in-
ferred interactions deviate from the ground truth. However,
and despite errors in inferring interactions, Fig. 4(b) reveals
the capacity of the algorithm to explain the dynamics with
an ensemble whose reducibility is close to the ground truth
value. Therefore, the protocol is valid for obtaining simple and
accurate interaction ensembles.

We perform a second experiment to evaluate the capacity
of our algorithm to find high-reducibility decompositions. For
this, we compare our protocol with an alternative decom-
position algorithm that we call random algorithm (RA). In
RA interactions are randomly selected from the interaction
diagram. The experiment, Table II, shows that our algo-
rithm consistently outperforms the random algorithm RA, and
therefore validates our algorithm for inferring time-ordered
multibody interactions for the first time.

TABLE II. Average values of reducibilities rRA computed with
a random algorithm and r computed with our method, over 1000
realizations. We decomposed the transition matrices of systems with
parameters o, N, and |Xn| = 2.

(o, N ) (2,2) (2,3) (2,4) (2,5) (3,2) (3,3) (3,4)

rRA 0.35 0.38 0.42 0.46 0.30 0.33 0.38
r 0.55 0.56 0.58 0.62 0.44 0.46 0.51

IV. CONCLUSION

In summary, we developed a framework for studying com-
plex systems whose dynamics is ruled by time-ordered and
multibody dependencies. The framework is based on inter-
actions, which emerge from the expansion of time-evolution
operators for multivariate higher-order Markov chains. We
proposed a measure for the complexity of interaction ensem-
bles and an algorithm to extract them from time series data.
We believe these contributions to be a relevant asset for the
field of complex systems as they address a currently latent
problem by reconciling a data-oriented perspective with an
analytical description of node interdependencies.
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APPENDIX

1. Higher-order Markov chains

Higher-order Markov chains will be able to describe the
dynamics of S as long as the following assumptions hold: (1)
The same statistical behavior is expected at all points in time
(causal stationarity). (2) No external variables can influence
the dynamics of S (causal sufficiency) [3].

2. Nested interactions

An interaction A of type q is nested in an interaction A′
of type q′ by fixing the transition probabilities of A′ to those
of A:

π (Gv′
(t )|Gh′

(t − 1)) = π (Gv(t )|Gh(t − 1))∏
q′

n �=0
qn=0

|Xn| . (A1)

3. Algorithm

We now explain the procedure to extract an interaction
at interaction order ω. This procedure has been designed
for nodes with all equal alphabets Xn = Xn′ ∀ n, n′ ∈ N .
If nodes were different our algorithm would also yield a
valid decomposition, but it should be modified for improved
results.

At each round of the algorithm we extract the interaction A
with the highest coefficient a for a given interaction order ω.
Therefore, we first explore all interactions A of interaction or-
der ω to obtain their interaction matrix A. This matrix models
transitions from histories ȳ ∈ X h to states y ∈ X v.
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Let us explain how to obtain an interaction matrix A from
T̃: For every y ∈ X v and ȳ ∈ X h, we create a set E with matrix
elements of T̃xx̄. In order to decide which elements of T̃xx̄ are
in E we define two functions Fy(x) and Fȳ(x̄):

Fy(x) : X → {True,False}, Fȳ(x̄) : X m → {True,False},
(A2)

which characterize, respectively, the rows x and columns x̄ of
T̃ that should be included in E .

Fy(x)The function is computed as follows:
1: function Fyx
2: for n ∈ N do
3: if yn �= ∅ ∧ yn �= xn then
4: return False
5: end if
6: end for
7: return True
8: end Function

If the component of node n of x and y coincide for all nodes
in N , with the exception of nodes not in y, the row has to be
included in E . If for any node the components of x and y are
different, the function will output “False” before finishing the
loop.

Fȳ(x̄)The function is computed as follows:
1: function Fȳx̄
2: for n ∈ N do
3: for k ∈ {0, ..., m − 1} do
4: if ȳnk �= ∅ ∧ ȳnk �= x̄nk then
5: return False
6: end if
7: end for
8: end for
9: return True
10: end Function

In this case, ȳ and x̄ are bidimensional tuples. A first di-
mension accounts for the node n, and the second dimension
accounts for the memory. The idea is the same, we check
coincidence for all nodes and for all memories between x̄ and
ȳ, with the exception of nodes that are not in ȳ, or nodes whose
memory is shorter than m − 1.

E contains those elements T̃xx̄ that fulfill Fy(x) and Fȳ(x̄).
The minimum of such a set is the element Ryȳ of the auxiliary
matrix R:

Ryȳ = min E . (A3)

This process is repeated for all y and ȳ to complete R. We then
obtain A by normalizing R columnwise, i.e.,

Aȳ = Rȳ

||Ry||1 , (A4)

where Aȳ are the columns of A, and Rȳ are the columns of R.
Once we have obtained all possible interactions at order ω,

we represent them as interactions of type o, and the transition
matrices Ā have the same dimensions as T̃. For each interac-
tion we find the maximal value of a such that all elements of
T̃ − aĀ are nonnegative: we compute minimal column sum of
R, and include the uniform distribution for the states of nodes

n for which qn = 0. The coefficients read

ai =
⎛
⎝min

ȳ

∑
y

Ryȳ

⎞
⎠ ∏

qn=0

|Xn|. (A5)

When all interactions at interaction order ω yield a = 0 we
explore the next interaction order ω + 1.

In the third step we select the interaction with the highest
interaction coefficient a, and we extract it from T̃: the new
value, T̃′, is given by T̃′ = T̃ − aĀ. This sequence of steps
is repeated until T̃′ is a matrix of zeros, or equivalently until∑

i ai = 1. See the next subsection for an example.

4. Decomposition example

Consider the following example of T̃ in a system with
N = 2, o = 2, and |Xn| = 2. We here show an iteration of
the decomposition algorithm step by step. The interaction
to be extracted will be interaction A with type q = (0, 2).
Therefore we have Go(t ) = G(2,2)(t ) and Gq(t ) = G(0,2)(t ) to
characterize the complete system variables and the interaction
variables, respectively. The auxiliary matrix R is obtained
from T̃ as

T̃ = 1

100

⎛
⎜⎜⎝

33 22 13 64
3 34 4 14
47 2 23 17
17 42 60 5

⎞
⎟⎟⎠ −→ R = 1

100

(
13 2
3 5

)
.

(A6)
Let us visualize how R00 has been computed. R00 accounts
for π (G(0,1)(t ) = 0|G(0,1)(t − 1) = 0), and is thus associated
with the elements of T̃ that encode the same transition proba-
bility complemented with all the possible values for G(1,0)(t )
and G(1,0)(t − 1):

π (G(1,1)(t ) = (0, 0)|G(1,1)(t − 1) = (0, 0)) = 33/100,

π (G(1,1)(t ) = (0, 0)|G(1,1)(t − 1) = (1, 0)) = 13/100,

π (G(1,1)(t ) = (1, 0)|G(1,1)(t − 1) = (0, 0)) = 47/100,

π (G(1,1)(t ) = (1, 0)|G(1,1)(t − 1) = (1, 0)) = 23/100.

The auxiliary matrix is constructed with the minimum of those
elements such that when A is removed from T̃, no negative
elements are created in the next iteration.

The second step yields a = (2/100 + 5/100) 2, where the
first part comes from R01 + R11, and the second part comes
from the dimensions of |X0| = 2,

R = 1

100

(
13 2

3 5

)
−→ A =

(
13
16

2
7

3
16

5
7

)
. (A7)

In the third step we move from a q = (0, 2) representation
of A to a q = (2, 2) representation:

(
13
16

2
7

3
16

5
7

)
−→

⎛
⎜⎜⎜⎜⎝

13
2·16

2
2·7

13
2·16

2
2·7

3
2·16

5
2·7

3
2·16

5
2·7

13
2·16

2
2·7

13
2·16

2
2·7

3
2·16

5
2·7

3
2·16

5
2·7

⎞
⎟⎟⎟⎟⎠. (A8)

At this point it becomes clear that the correction in the dimen-
sion at Eq. (A5) is necessary to normalize the qn = o form of
A to model nodes with qn = 0.
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5. Subsystem Interactions

We organize the transition probabilities of the model in
a transition matrix W ordered according to B. The output
matrices U and V, with dimensions ur × uc and vr × vc read

Ui j =
vc−1∑
k=0

Wivr+k, jvc , Vi j =
uc−1∑
k=0

Wkvr+i, j . (A9)

If W = U ⊗ V holds, U and V are valid subsystem interaction
matrices. In that case, the procedure should be applied again
on U and V until no more subsystems can be isolated. For
an interaction A of type q subsystem, interactions at nodes B
have

∏
n∈B |Xn|qn parameters, and the decomposed interaction

has only
∑

B
∏

n∈B |Xn|qn degrees of freedom.
Let A be the transition matrix of an interaction with N =

2, |X0| = 3, and |X1| = 2. Our goal here is to decompose A
as A = U ⊗ V with U ∈ R3×3 and V ∈ R2×2. If we assumed
U ⊗ V, the following would hold:⎛
⎜⎝

u00 u01 u02

u10 u11 u12

u20 u21 u22

⎞
⎟⎠ ⊗

(
v00 v01

v10 v11

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u00v00 u00v01 u01v00 u01v01 u02v00 u02v01

u00v10 u00v11 u01v10 u01v11 u02v10 u02v11

u10v00 u10v01 u11v00 u11v01 u12v00 u12v01

u10v10 u10v11 u11v10 u11v11 u12v10 u12v11

u20v00 u20v01 u21v00 u21v01 u22v00 u22v01

u20v10 u20v11 u21v10 u21v11 u22v10 u22v11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A10)

It is possible to invert the tensor operation by using the prop-
erty that both U and V are stochastic, and therefore sums
over columns of V or U contained in A are canceled out and
can be used to isolate the remaining variable. As an example
one may obtain U00 = A00 + A10 and also as U00 = A10 + A11.
The same is true for V as V00 = A00 + A20 + A40, V00 = A02 +
A22 + A42, and V00 = A04 + A24 + A44. Since these equa-
tions are redundant, one may pick one at random and discard
the rest. The expression at Eq. (A9) always the first one. This

technique will always output a U, V pair even if the tensor
factorization does not exist. Therefore one should always
check whether A = U ⊗ V holds. For the purpose of finding
subsystem interactions, we recursively apply this procedure
on different combinations of interaction partitions until no
more subsystem interactions can be found.

6. Complexity

In this section we prove that r is the fraction of the area be-
hind kc(l ). From the definition of k(l ) = ∑

λ(Ai )=l ai we could
obtain the cumulative as kc(l ) = ∑

λ(Ai )�l ai. Instead, we are
going to express the k as a function of a continuous variable
φ ∈ [0, λMC] as k = ∑

aiδ(φ − λ(Ai)). Then the cumulative
kc(φ) is

kc(φ) =
∫ φ

0
k(φ′)dφ′

=
∫ φ

0

∑
aiδ(φ′ − λ(Ai))dφ′

=
∑

ai

∫ φ

0
δ(φ′ − λ(Ai))dφ′

=
∑

aiθ (φ − λ(Ai )).

Now the area behind kc(φ) is∫ λMC

0
kc(φ)dφ =

∫ λMC

0

∑
aiθ (φ − λ(Ai ))dφ

=
∑

ai

∫ λMC

0
θ (φ − λ(Ai))dφ

=
∑

ai

∫ λMC−λ(Ai )

−λ(Ai )
θ (φ′)dφ′

=
∑

ai(λMC − λ(Ai))

= λMC −
∑

aiλ(Ai).

The total area is simply λMC, therefore the share is obtained
by dividing the expression above with λMC, which yields
exactly r.
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