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Effect of hidden geometry and higher-order interactions on the synchronization and hysteresis
behavior of phase oscillators on 5-clique simplicial assemblies
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The hidden geometry of simplicial complexes can influence the collective dynamics of nodes in differ-
ent ways depending on the simplex-based interactions of various orders and competition between local and
global structural features. We study a system of phase oscillators attached to nodes of four-dimensional
simplicial complexes and interacting via positive/negative edges-based pairwise K1 and triangle-based triple
K2 � 0 couplings. Three prototypal simplicial complexes are grown by aggregation of 5-cliques, controlled
by the chemical affinity parameter ν, resulting in sparse, mixed, and compact architecture, all of which have
1-hyperbolic graphs but different spectral dimensions. By changing the interaction strength K1 ∈ [−4, 2] along
the forward and backward sweeps, we numerically determine individual phases of each oscillator and a global
order parameter to measure the level of synchronization. Our results reveal how different architectures of simpli-
cial complexes, in conjunction with the interactions and internal-frequency distributions, impact the shape of the
hysteresis loop and lead to patterns of locally synchronized groups that hinder global network synchronization.
Remarkably, these groups are differently affected by the size of the shared faces between neighboring 5-cliques
and the presence of higher-order interactions. At K1 < 0, partial synchronization is much higher in the compact
community than in the assemblies of cliques sharing single nodes, at least occasionally. These structures also
partially desynchronize at a lower triangle-based coupling K2 than the compact assembly. Broadening of the
internal frequency distribution gradually reduces the synchronization level in the mixed and sparse communities,
even at positive pairwise couplings. The order-parameter fluctuations in these partially synchronized states are
quasicyclical with higher harmonics, described by multifractal analysis and broad singularity spectra.
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I. INTRODUCTION

Mapping complex systems onto networks that embody
functional connections among the systems’ constitutive ele-
ments often involves higher-order couplings, which induces
more complex geometries. Identifying these hidden geome-
try features of various orders and assessing their impact on
system dynamics is currently a focus of network theory [1–3]
and its applications, from the brain [4–9], to large-scale so-
cial systems and emergent networks [10–13], to materials
design [14–16]. These complex topologies can be described
by algebraic topology [17,18] with identifying full graphs
(cliques) of all sizes that are present as well as the faces that
they share with other cliques to make the actual simplicial
complex. In this context, the underlying network (1-skeleton
of the simplicial complex) is made of the edges connecting
two nodes, which may appear as faces of the order 1 of larger
simplexes (triangles, tetrahedrons, etc.).

In the theory of complexity, the emergence of new features
at a larger scale, as a key property of a complex system, can
be associated with the collective dynamic fluctuations. Such
dynamic phenomena, through interactions among dynamical
units, appear with long-range spatiotemporal correlations that

are characteristics of critical states, either with a dynam-
ical phase transition or as self-organized critical attractors
in driven nonlinear dynamics; see a brief survey in [19]
and references therein. The underlying simplicial structure
can provide multiple interactions among dynamical units
associated with the network nodes. In particular, pairwise
interactions occur along the network’s edges; meanwhile,
higher interactions can be geometrically embedded into the
triangles, tetrahedrons, and higher faces up to the largest
simplex found in the structure. The two leading (i.e., pair-
wise and triangle-based) interactions are expected to impact
the collective dynamics critically, given the renormalization-
group theory [20,21]; however, this question remains open
in finite systems and complex geometries. The actual im-
pact of these interactions also depends on the type of the
dynamics of interacting units. For example, the higher-order
interactions, e.g., within large cliques, may enable the fast
spreading of diseases [22] and enhance traveling waves in net-
works of neurons but without pathological full synchronized
states [23,24]. On the other hand, the triangle-based couplings
induce geometric frustration with long-range effects in spin
kinetics [25–27].
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Phase synchronization among many interacting units is
a prototypal nonlinear dynamics model to study the co-
operative phenomena in many complex systems, including
applications in neuroscience, engineering, etc. [28–30]. Cur-
rent research on the influence of higher-order coupling on
synchronization processes is focused on the following: (i)
searching for conditions of perfect synchronization among
oscillators on nodes of general networks in the presence
of a p-point interactions [31]; (ii) searching for conditions
for full synchronization between topological signals associ-
ated with simplexes of different order (see the recent work
in Ref. [32] and references there); and (iii) understanding
the nature of synchronization-desynchronization processes of
the oscillators at nodes of simplicial complexes with geo-
metric interactions embedded into simplex faces of different
order [33–37]. Our work belongs in the third category. In
this context, key questions concern the emergence and dis-
appearance of collective dynamic behavior, measured by the
order parameter on the hysteresis loop, when the strengths
of the various interactions embedded in the geometry vary.
For example, the presence of triangle-based interactions is
understood to disrupt the order promoted by increasing the
strength of pairwise couplings, and it can cause sudden
desynchronization [33,36,38]. Furthermore, the occurrence
of partially synchronized phases with negative pair inter-
actions is another striking feature of geometric interactions
on simplicial complexes; see, for example, Ref. [36] and
references therein. As a special case, the frustrated syn-
chronization [39] is often attributed to complex structures,
e.g., in brain networks, where higher geometries are ex-
pected to play an important role [23,24,37]. Theoretically,
the influence of topology on diffusive processes can be cap-
tured to a good extent by spectral analysis of the network
[38,40–43]. A suitable measure is the spectral dimension ds

derived from the eigenvalue spectrum of the Laplace operator
associated with the network adjacency matrix; higher-order
combinatorial Laplacians [44] are adequate for the diffusion
of topological signals on simplicial complexes; see [32]. In the
context of phase synchronization, it has been understood [38]
that networks with ds � 4 enable the thermodynamically sta-
ble global synchronization; meanwhile, for ds ∈ (2, 4] an
entrained synchronization phase can be observed, and the
correlations among the nearest phases become unstable when
ds � 2 in the limit N → ∞. Considering the systems with
complex geometry, the following issues need to be better un-
derstood: (a) Unlike global synchronization, where conditions
can be formulated analytically, as mentioned above [31,32],
the origin of partial synchronization on simplicial complexes
and the nature of the underlying dynamical states is more
elusive. (b) In addition to the topological dimension of a
simplicial complex, the role of its architecture in synchroniza-
tion processes remains to be clarified, especially concerning
higher-order interactions and the internal inhomogeneity of
the nodes’ dynamics.

In this work, we tackle these questions by studying the
synchronization and desynchronization processes on several
four-dimensional simplicial complexes of a controlled ar-
chitecture, all assembled by 5-cliques as building blocks.
Building on our previous work [36], we consider the
phase synchronization of Kuramoto oscillators on the nodes

interacting via simplex-embedded interactions; we expand the
study in several directions. More precisely, our aims are (i) to
investigate the role of the architecture of simplicial complexes
while keeping their topological dimension and size fixed, and
(ii) to reveal the conditions for partial synchronization in
different architectures and examine the nature of fluctuations
that sustain these partially ordered states. For this purpose, we
grow three assemblies of 5-cliques by changing a controlled
parameter in the model previously introduced in [15]; as ex-
plained in detail in the following section, these assemblies
differ considerably in their architecture of simplexes and also
have different spectral dimensions [42]. To investigate the
network’s ability to synchronize, i.e., by increasing the lead-
ing pairwise couplings and sustaining the reached state when
the coupling strength is reduced, we track the hysteresis loop
branches by varying the strength of the pairwise interaction
in a large region from negative to positive values and back;
meanwhile, we keep the three-phase couplings embedded into
triangles of the actual complex and the distribution of internal
frequencies fixed. Our analysis revealed how the network’s
ability to reach complete synchrony at the positive pairwise
couplings and partial synchrony and incomplete desynchro-
nization by negative interactions depends on the simplicial
architecture corroborated with the distribution of internal fre-
quencies. Remarkably, the level of partial synchronization at
large negative pairwise couplings can be associated with the
minimal size of the faces shared among neighboring 5-cliques,
and it is virtually independent of the presence of higher-order
interactions and the actual frequency distribution. The multi-
fractal fluctuations of the order parameter are associated with
these partially synchronized states emerging through roughly
synchronized small clusters.

In Sec. II, we present three considered simplicial com-
plexes and their structural features relevant to this work.
Section III A introduces the dynamical model with the leading
pairwise and triangle-based interactions on these complexes;
then in Secs. III B, III C, and III D, we give the results regard-
ing the hysteresis properties and individual phase evolution
patterns. In Sec. IV, we present the multifractal analysis of
the order-parameter fluctuations in two representative points
of the hysteresis loop. Section V is devoted to a summary and
a discussion of the results.

II. STRUCTURE OF THE 5-CLIQUE AGGREGATES
WITH DIFFERENT SPECTRAL DIMENSION

To grow the four-dimensional simplicial complexes for our
study, we use the generative model introduced in [15,45] for
a cooperative self-assembly [14,46] of preformatted groups
of nanoparticles. As explained in the Introduction, we fix the
size of the building blocks as 5-cliques; starting from a single
5-clique, at each growth step a new clique is attached to the
growing structure such that it shares one of its geometrical
faces with a clique that is already present in the structure.
In the present case, the possible faces are subcliques of the
size s = 1, 2, 3, and 4, respectively, a single node, a link with
two adjacent nodes, a triangle with three connected nodes, or
a tetrahedron consisting of four nodes. What face would be
shared is determined by the geometric compatibility factor
and the chemical affinity parameter ν; see Ref. [15] for a
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FIG. 1. Networks of 5-cliques grown by the self-assembly rules described in [15] observing the geometric compatibility for different
chemical potential, left to right: ν = 5 (compact), ν = 0 (mixed), and ν = −5 (sparse structure). Adding 5-cliques is stopped when the number
of nodes reaches N � 1000.

detailed description, and Ref. [16] for an extended model with
defect cliques. Specifically, the probability of sharing a face of
the size s is given by

P(smax, s; t ) = cs(t )e−ν(smax−s)∑smax−1
s=1 cs(t )e−ν(smax−s)

, (1)

where cs(t ) stands for the number of geometrically compat-
ible locations on the entire structure at the moment t where
docking a simplex of the size s can be done. Note that, in the
present case, we have smax = 5 fixed. The geometric factor is
weighted by the chemical affinity ν [15] towards new smax − s
nodes that must be added to the structure after the face with
s nodes is shared with a previous clique. Hence, for a large
ν > 0, sharing a maximal subclique (a tetrahedron) is favored,
the emergent structure is compact, whereas when ν < 0, the
probability of adding more nodes is increasing. Thus, for a
large negative ν, the cliques preferably share a single node
(minimal face), resulting in a sparse structure. Without a
chemical affinity factor, ν = 0, sharing of faces of any size
s = 1, . . . , 4 can occur, subject to the geometric compatibility
factors alone. The resulting structures that we use here are for
ν = −5, 0, and +5, shown in Fig. 1.

The structure of these simplicial complexes is character-
ized by several quantities, cf. Fig. 2, which are relevant to
the present study. In particular, we determine the generalized-
degree distributions P(kμ), where kμ (for μ = 2, 3, 4, 5)
indicates the number of edges, triangles, tetrahedra, and 5-
cliques attached to a node, shown in Figs. 2(a)–2(d). In each
panel, three lines/symbols stand for three architectures of
Fig. 1. The three structures differ significantly in all of these
distributions. In particular, the nodes in the compact simplicial
complex (at ν = +5) share a large number of simplexes of
all orders, which leads to a distorted power-law distribution
at high kμ; meanwhile, the distributions of the structure at
ν = 0 with the same number of nodes are nearly power-law
with a (finite-size) cutoff. On the other hand, the sparse sys-
tem, grown with ν = −5, exhibits a fast decaying exponential
distribution for all simplex sizes.

The other measures are compatible with these features,
shown in Figs. 2(e)–2(h). Specifically, the number of sim-
plexes and faces of different sizes that are present in each
simplicial structure, fs, shown in Fig. 2(g), indicates that the
compact simplicial complex at ν = +5 possesses the largest

number of triangles, and gradually the number of cliques
of other sizes, compared to the structure for ν = 0 and −5.
The underlying network (1-skeleton of these simplicial com-
plexes) exhibits some other properties that strongly vary with
ν. In particular, these are the distributions of the shortest-path
distances on the underlying graph, shown in Fig. 2(e), and the
spectral dimension, which is determined for these graphs in
Ref. [42], shown in Fig. 2(h). The spectral dimension for these
three representative structures varies, in particular, ds = 1.57,
2.11, and 4.01 for ν = −5, 0, and 5, respectively; they are
indicated by different symbols on the line ds(ν), which is de-
termined from the Laplacian eigenvalues distribution in [42]
for a range of such structures. Similarly, the distributions on
these networks, cf. Fig. 2(e), show that small distances pre-
vail in the compact structure for ν = 5, peaking at dmax = 3,
whereas the peak moves towards larger distances, i.e., dmax =
5 and 10 for ν = 0 and −5, respectively. On the other hand,
these graphs are 1-hyperbolic by construction; see the discus-
sion in the original work [15]. Specifically, because the cliques
(which are δ0 = 0-hyperbolic objects) always share their faces
in these structures, the hyperbolicity of the emergent complex
is given [47,48] by δ0 + 1. Figure 2(f) demonstrates this by
numerically computing the Gromov hyperbolicity parameter
δmax, which does not exceed 1 considering 109 different 4-
tuples on these networks.

III. PHASE SYNCHRONIZATION ON
FOUR-DIMENSIONAL SIMPLICIAL COMPLEXES

A. Dynamical model and simulations

We consider an ensemble of N coupled Kuramoto oscil-
lators [30] associated with the nodes of a given simplicial
complex. The equation governing the evolution of the phase
angle θi of the ith oscillator is given by [36]

θ̇i = ωi + K1

k(1)
i

N∑
j=1

Ai j sin (θ j − θi )

+ K2

2k(2)
i

N∑
j=1

N∑
l=1

Bi jl sin (θ j + θl − 2θi ), (2)

where ω’s are the intrinsic frequencies of the phase oscillators.
The second and third terms in Eq. (2) represent 1-simplex
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FIG. 2. Cumulative distributions of the generalized degree for the number of (a) links, (b) triangles, (c) tetrahedra, and (d) 5-cliques per
node in three networks for different ν, as indicated in the unique legend. (e) The distribution of the shortest-path distances between node pairs,
P(d ), vs the distance d; (f) the hyperbolicity parameter δmax vs the smallest distance dmin of the nodes 4-tuples on these three networks; (g) the
number of simplexes fs of different size s in them; and (h) the network’s spectral dimension ds for different ν. The same legend applies to all
panels. The data in panel (h) are from Ref. [42].

and 2-simplex interactions, respectively. Note that three-node
interactions of the ith oscillator are based on each 2-simplex
(triangle) incident on node i, thus introducing a natural gen-
eralization of the pairwise interaction term [35]. Here, Ai j is
an element of the 1-simplex adjacency matrix A, such that
Ai j = 1 if nodes i, j are connected by a link and 0 otherwise.
In the second term, Bi jl is an element of the 2-simplex ad-
jacency tensor B, such that Bi jl = 1 if nodes i, j, l belong
to a common 2-simplex (triangle) and 0 otherwise. Likewise,
the normalization factors k(1)

i and k(2)
i indicate the number of

links and triangles of the node i, respectively; cf. Fig. 2 for the
structure of the actual simplicial complexes. The well-known
Kuramoto order parameter can effectively quantify the degree
of synchronization of the network,

r =
〈∣∣∣∣∣ 1

N

N∑
j=1

eiθ j

∣∣∣∣∣
〉
, (3)

where the brackets 〈·〉 indicate the time average.
In the simulations, for each network node i = 1, 2, . . . , N ,

where we have N = 1000, 1002, and 1003 corresponding to
ν = 5, 0, and −5 networks, respectively, the initial conditions
for θi are chosen randomly in the range θi ∈ [0, 2π ]. The
numerical solution for the set of Eqs. (2) is performed using a
numerical integration algorithm ODEINT from Python SciPy
library [49]. For each set of parameter values, the system
is iterated for 50 000 steps, with the time step dt = 0.01
and always considering the previous state of each dynamical
variable; the procedure known as tracking the attractor [50] is
used in most hysteresis studies. The order parameter in Eq. (3)
is calculated in the asymptotic range considering the last
20 000 iterations. Further, to study the hysteresis properties,
we track the system’s trajectory as the coupling parameter
K1 is first adiabatically increased in steps dK1 = 0.1 in the
appropriate range from negative to positive values, typically
K1 ∈ [−2,+2], constituting the forward sweep, and then de-
creased along the backward branch. Meanwhile, the strength
of the higher-order interaction K2 is kept fixed, and the inter-

nal frequencies of the oscillators ωi are drawn from a given
distribution, as explained below.

B. Partial synchronization at K1 < 0: Hysteresis loop
for uniform internal frequencies

In this section, we study an hysteresis loop for the in-
teractions embedded in simplexes of different architectures
described in Sec. II, when the internal frequencies of all
oscillators are equal, i.e., ω � 1.0 drawn from a δ-function
distribution. In this way, we expect that the impact of the
structure and related interactions will be more pronounced.
As described above in Sec. III A, for a given value of K2 and
varying the pairwise coupling strength K1 ∈ [−5,+2] in small
steps, the order parameter is computed first along the forward
branch, and then back. The resulting hysteresis loops for the
three networks of Fig. 1, and fixing K2 to several represen-
tatives values between K2 = 0.0 and 1.0, are summarized in
Fig. 3.

As Fig. 3 shows, even though the internal frequencies of
the oscillators are equal at all nodes, the shape of the hys-
teresis loop is significantly dependent on on the structure of
the underlying simplicial complexes. On the forward sweep,
by keeping K2 = 0, we note the occurrence of partial syn-
chronization at negative K1 values, where the order parameter
reaches r ≈ 0.5, for the compact simplicial complex for ν = 5.
In the other two networks (ν = 0 and −5), a much smaller
but nonzero (within numerical error bars) value r ≈ 0.03 is
observed. Further increasing K1 > 0, a smooth transition to a
complete synchronization with r ≈ 1 occurs in all networks.

On the backward sweep, the synchronized state persists
until the negative pairwise or additional triangle interactions
become strong enough to break the local order and spread
throughout the system. The loop does not close even at very
large negative K1 unless the higher-order coupling of a given
strength K2 > 0 is applied; moreover, the needed higher-order
interaction correlates with the network’s compactness. Specif-
ically, in the compact network (ν = 5), cf. the bottom left
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FIG. 3. Hysteresis sweep of the order parameter r as a function
of 1-simplex coupling strength K1 at different 2-simplex coupling
strength K2; the three vertical columns (from left to right) cor-
respond to three simplicial complexes in Fig. 1 grown with the
chemical affinity ν = 5, 0, and −5, respectively. The solid triangles
(black) and solid circles (magenta) refer to forward and backward
sweeps, respectively. The intrinsic frequencies ωi � 1.0 at all nodes.
The phase evolution patterns analyzed in the following section,
Figs. 4(a1)–4(f1), correspond to the points marked on the hysteresis
loop.

panel, the loop closes for K2 = 1.0 via sudden desynchroniza-
tion, in agreement with previous studies [33–36]. However,
for ν = −5, an incomplete abrupt desynchronization occurs

even at K2 = 0.0. Still, the loop closes gradually, reaching the
forward branch for more negative K1 values, cf. the top right
panel and the panels below it. In the intermediate case, ν = 0,
a small K2 = 0.2 suffices to induce an incomplete desynchro-
nization, and the loop gradually closes at more negative K1

values. By increasing the triangle-based coupling K2, the ap-
parent broadening of the loop superimposes these features in
each particular network. It is also accompanied by the slower
loop reaching full synchrony even at high positive pairwise
couplings. In the following, we will focus on the evolution of
the phases of all oscillators at specific values (K1, K2) on the
hysteresis loop.

C. The dynamics of individual nodes and patterns
behind partial synchronization

The global order parameter r discussed above quantifies
the extent to which the oscillators are synchronized at a given
set of parameter values. To get a deeper insight into the
synchronization and desynchronization processes and their
dependence on network geometry and interactions, we study
the global phase angle θav(t ) = ∑

i θi(t )/N as a function of
time, the evolution of phase angles of each node, and the
distribution of phase angles at a particular time; cf. Fig. 4.

The phase trajectories of individual nodes are shown in the
top row of Figs. 4(a1)–4(f1); they are taken at corresponding
points marked by crosses on the hysteresis loops in Fig. 3.
In particular, these points correspond to the values of the two
interactions (K1, K2) f , b on the forward f or backward b hys-
teresis branch, which are (−1, 0) f , (−1, 0)b, and (0, 0.2) f
for the compact network ν = 5, patterns (a1), (b1), and (c1),

FIG. 4. Top row: Individual node’s dynamics θi(t ) vs time t in the indicated interval [final 1000 time steps, except for the pattern (b1),
which is shown for the initial 1000 time steps]. The parameters (K1, K2) f , b on the forward or backward branch are set as (−1, 0) f , (1, 0)b,
and (0, 0.2) f for the network ν = 5, corresponding to patterns (a1), (b1), and (c1), respectively; meanwhile, the patterns (d1), (e1), and (f1)
are for (−1, 0) f , (−1, 0)b, and (−1, 0.2)b for the sparse network with ν = −5. Middle row: the network averaged phase θav(t ) as a function
of time in the same time interval as the corresponding pattern above it. Bottom row: histogram of the node’s phases θi taken at the end of that
period corresponding to the panels in the same column above it.
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respectively. Similarly, the patterns on panels (d1), (e1), and
(f1) correspond to the case (−1, 0) f , (−1, 0)b, and (−1, 0.2)b
for the sparse network with ν = −5. The middle and bottom
row below each pattern shows the corresponding network’s
averaged phase θav(t ) in the same time interval, and the his-
togram of phases of individual nodes at the end of that time
interval.

For the compact structure (ν = 5), we have that the order
parameter r ≈ 0.5 at the point (−1, 0) f ; the corresponding
pattern of phases, shown in panel (a1) of Fig. 4, indicates
that groups of roughly synchronized nodes are formed and
evolve with the same speed. The respective average phase
fluctuates in an extended range around π , as shown in panel
(a2). In the distribution of the nodes’ phases, in (a3), broad
peaks indicate the formation of uneven groups of nodes with
close but not fully synchronized phases θi. The situation is
much different at (−1, 0)b in the backward branch, where the
system remains fully synchronized, corresponding to a single
sharp peak in (b3). The pattern of individual phases in (b1)
shows how such a synchronized state forms in time when
starting from a random initial state. Consequently, the average
phase in (b2) reaches the full range of values on the unit circle.
The panels (c1)–(c3) show how the order parameter appears at
the point (0, 0.2) f under the impact of weak triangle-based
coupling alone. The pattern in (c1) and the corresponding
average phase in (c2) show that the network’s compactness
promotes ordering by forming small groups, even though the
leading pairwise interaction is absent.

The phase evolution patterns are different in the sparse
network (ν = −5), as shown in the panels (d1)–(f1). At the
point (−1, 0) f , the order-parameter value r = 0.03 appears
through many small groups of (roughly) synchronized nodes,
shown in (d1), corresponding to an almost even distribution of
phases over the network nodes, cf. (d3), with tiny fluctuations
of the average phase about π , in (d2). At the point (−1, 0)b
on the backward branch, the order parameter is dropped from
r = 1 to a finite value, which is compatible with the pro-
nounced formation of groups visible in panel (e1) and in
the distribution; cf. (e3). The corresponding average phase
fluctuates in a larger interval, as shown in panel (e2). A similar
fluctuation range of the average phase is observed in panel
(f2), corresponding to the similar value of the order parameter
at the point (−1, 0.2)b; cf. Fig. 3. However, the presence of a
weak higher-order interaction, in this case, leads to a different
grouping of nodes, which is illustrated by the phase evolution
pattern in panel (f1) and the phase histogram in (f3).

D. Hysteresis properties in the transition from uniform
to distributed internal frequencies

To explore the impact of the distribution of internal oscilla-
tor frequencies, they are drawn from a normal distribution of
the width σ centered about ω = 1.0. By increasing the width
of the distribution σ , we show new features of the hysteresis
loop that appear, compared to the case of δ-distribution in
Fig. 3, and how these features depend on the network struc-
ture. The results for the intermediate width, σ = 0.01, and
a broad distribution σ = 0.1, are shown in Figs. 5 and 6,
respectively.

FIG. 5. Transition to synchronization and hysteresis in networks
with ν = 5, 0, −5 (left to right columns), where ω is drawn from a
Gaussian distribution width σ = 0.01 around ω = 1.0; K2 = 0 (top
row) and K2 = 0.2 (bottom row). The solid triangles (black) and solid
circles (magenta) represent the value of order parameter r in forward
and backward sweeps, respectively.

Both Figs. 5 and 6 show that, in the presence of distributed
internal frequencies, the partial synchronization at K1 < 0
persists in all networks with the respective value of the order
parameter unchanged compared to the case of δ-distribution;
cf. Fig. 3. Moreover, the hysteresis loop is virtually absent un-
less the higher-order coupling K2 is switched on. Remarkably
lower values of K2 are needed to induce desynchronization
via an abrupt drop of the order parameter, i.e., in the compact
network (ν = 5) compared with the case of homogeneous
internal frequencies. We also observe several new features
in the forward/backward sweeps. Particularly in the compact
network, a drop of the order parameter at K1 � 0 occurs
before it rises again to reach complete synchrony at K1 > 0;
see the left columns in Figs. 5 and 6. While such a drop is
absent in the case of δ-distribution, the area K1 � 0 where the
order parameter is decreasing from the level r = 0.5 to zero is
broadening upon increasing the frequency distribution width
σ . In the sparse and mixed networks, on the other hand, the
increasing spread of internal frequencies width σ makes the

FIG. 6. Same as Fig. 5 but with the ω drawn from a Gaussian
distribution with the width σ = 0.1. In the sparse network, we find
that r → 1 asymptotically at K1 � 10 (not shown). Note the absence
of hysteresis for these values of higher-order interactions K2.
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FIG. 7. In the network for ν = −5, the order-parameter time series (a) and the corresponding power spectrums (b) at two points
corresponding to the partial synchronization at K1 = −1 and 1 on the forward ( f ) and backward (b) loop in the absence of higher-order
coupling, K2 = 0. (c), (d) The fluctuation function Fq(n) vs the time interval n for the order parameter in the forward loops at K1 = −1 (blue)
and K1 = 1 (red). Each line corresponds to different values of the amplification parameter q ∈ [−3.5, 3.5] bottom-to-top; the scaling area is
indicated by the straight lines giving the generalized Hurst exponent Hq, which leads to the corresponding singularity spectra �(α) vs α given
in panel (e).

complete synchronization (in the considered network’s sizes
N = 1000 nodes) increasingly more difficult even at very
large K1 > 0. For example, when σ = 0.1, the much larger
pairwise coupling, K1 ≈ 10, is required for the order parame-
ter to asymptotically approach r � 1 (not shown). Recall that
we have ds � 2 in these two networks, which implies unstable
phase correlations with the increasing network size. Here, we
observe another instability for a fixed network size by chang-
ing the weak pairwise interaction strength. Instead of a steep
increase in synchrony for K1 � 0, we observe a robust in-
stability where the (time-averaged) order parameter achieves
different values when the interaction strength K1 is changed
by a small amount; this feature appears both at the forward as
well as the backward branch and is practically unaffected by
the weak higher-order interactions; see the middle and right
columns in Fig. 6. To a smaller extent, such instability is seen
in the sparse network already at a smaller distribution width,
σ = 0.01, where it causes a kind of hysteresis at the positive
K1 side, as shown in the top right panel of Fig. 5. We note that
this feature appears in the networks where the building cliques
share a single node, which is 100% in the case of the sparse
network, and also present in the mixed network, but entirely
absent in the compact network; cf. Fig. 1. Understanding the
mechanisms of how these instabilities appear is another chal-
lenging problem. In the next section, we analyze the nature of
the order-parameter fluctuations for the values of interactions
in the range where the instability occurs in the sparse network.

IV. MULTIFRACTAL FLUCTUATIONS OF THE ORDER
PARAMETER IN PARTIALLY SYNCHRONIZED STATES

In the partially synchronized states in all simplicial com-
plexes, the order parameter for K1 < 0 has finite but different
values; the time-averaged values are lower in the sparse
networks than the compact ones. Here, we study temporal
fluctuations of the order parameter for fixed pairwise inter-
action strength. Specifically, for the assembly at ν = −5 and
a broad Gaussian distribution of the internal frequencies, a
partial synchronization occurs at K1 < 0 but also for a broad
range of K1 > 0, where a different degree of partial synchro-

nization is observed, with r → 1 asymptotically at very high
K1; cf. Fig. 6. We consider two representative points, K1 = −1
and +1, in the absence of higher-order couplings. The respec-
tive time variations of the order parameter, shown in Fig. 7(a),
both for forward and backward branches of the hysteresis
loop, exhibit cyclical fluctuations around different average
values for K1 < 0 compared to K1 > 0. These fluctuations
lead to the exponent φ ∼ 2, compatible with the short-range
correlations, fitted for an extended portion of the power spec-
trum at large frequencies; cf. Fig. 7(b). In the following, we
show that these cycles are modulated, attaining higher har-
monics, which are captured by the multifractal analysis.

For the analysis of the order-parameter fluctuations r(t ),
we use detrended multifractal analysis of time series [51–53].
Hence, the profile Y (i) = ∑i

k=1[r(k) − 〈r〉] of the time series
is divided in Ns segments of the length n. Repeating the proce-
dure starting from the end of the time series t = Tmax, we get
in total 2Ns = 2 int(Tmax/n) segments. Then, at each segment
μ = 1, 2, . . . , Ns, the local trend yμ(i) is determined by a
polynomial (quadratic) fit, which allows computing the stan-
dard deviation around it as F 2(μ, n) = 1

n

∑n
i=1[Y [(μ − 1)n +

i] − yμ(i)]2, and similarly, F 2(μ, n) = 1
n

∑n
i=1{Y [N − (μ −

Ns)n + i] − yμ(i)}2 for μ = Ns + 1, . . . , 2Ns. The fluctuation
function Fq(n) for the segment length n is then determined as

Fq(n) =
⎛
⎝ 1

2Ns

2Ns∑
μ=1

[F 2(μ, n)]q/2

⎞
⎠

1/q

∼ nHq (4)

for different positive and negative values of the amplification
parameter q. The function is plotted against varied segment
length n ∈ [2, int(Tmax/4)]. Its power-law sections on the lines
for different q are fitted to find the generalized Hurst exponent
Hq, defined on the right-hand side of the expression (4).
Notably, the case q = 2 reduces to the standard deviation
function and corresponds to the well-known Hurst exponent.

The spectrum Hq is determined for a range of values of q
for which the fluctuation function exhibits scale invariance;
here, we use q ∈ [−3.5,+3.5]; see Fig. 7. Once the spec-
trum Hq is known, one can determine other multifractality
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measures, in particular τq = qHq − 1, where the exponent
τq is related to the standard (box probability) measure [52].
Then, using the Legendre transform �(α) = qα − τq, where
α = dτ/dq, the time series singularity spectrum can be deter-
mined. A nontrivial singularity indicates different power-law
singularities at different data points t of the time series, ac-
cording to |∇r(t, ε)|ε→0 ∼ εα(t ), with an exponent depending
on the data point t [51,52]. Thus, the value ψ (α) stands
for a fractal dimension of the time series points having the
same singularity exponent α. Note that for a monofractal,
Hq = H2 = const, causing the spectrum �(α) to reduce to a
single point α = H2, where H2 is the standard Hurst exponent.

In Figs. 7(c) and 7(d), we show the results for the fluctu-
ation function Fq(n) as a function of the time interval n for
the order-parameter curves in the forward branch at K1 = −1
(blue) and K1 = 1 (red lines). As these figures show, in both
cases the fluctuation function Fq(n) exhibits a scaling region
for a broad range of time intervals n. The fitted area of Fq(n)
for different q (indicated by thick dark lines) gives the cor-
responding Hq exponent defined in Eq. (4). In both cases, the
resulting broad spectra Hq are transformed onto the singularity
spectra �(α), which are given in the inset, Fig. 7(e). The
parabolic distribution for both spectra is asymmetrical, having
a broad range of values with a maximum close to α = 2 and
somewhat different curvature. Hence, the mechanisms behind
the occurrence of partial synchronization, as discussed above,
are compatible with the multifractal temporal fluctuations of
the order parameter with broad singularity spectra.

V. DISCUSSION AND CONCLUSIONS

We have investigated the interplay of structure, inter-
actions, and distribution of internal frequencies in phase
synchronization and desynchronization processes on four-
dimensional simplicial complexes with different architecture
composed of identical building blocks (5-cliques), and con-
taining N � 1000 nodes; cf. Fig. 1. Of the considered
structures, 5-cliques are assembled with rules of chemical
affinity and geometric compatibility [15]; when chemical
affinity allows the addition of the maximum number of nodes,
a minimal face (a node) is shared and a sparse structure
appears; oppositely, sharing the largest face (4-clique) leads
to a compact assembly. For vanishing chemical affinity, a
mixed structure emerges where 5-cliques can share any of
their faces by geometric compatibility. The underlying graphs
of these simplicial complexes are 1-hyperbolic and have dif-
ferent spectral dimensions [42], as shown in Fig. 2(h).

Our results suggest that these simplicial architectures
enable geometric frustration effects and diverse collective dy-
namical phenomena. The shape of the hysteresis loop in the
presence of higher-order interactions, as well as the collective
fluctuations and the influence of the internal frequency distri-
bution on the synchronization processes on these simplicial
complexes, can be related to the size of shared faces by neigh-
boring 5-cliques. This is explained more precisely as follows:

(i) Partial synchronization r < 1 occurs at negative pair-
wise coupling with a small nonzero value of the order
parameter r ∼ 0.03 found when the least shared face matches
one node (s = 1); however, r ∼ 0.5 when the least common
face contains s = 4 nodes. Within numerical accuracy, these

values of the global order parameter are insensitive to the
internal frequency distribution and strength of triangle-based
interactions.

(ii) Multiple interactions embedded in triangles change
the hysteresis loop and, at a strength that differs for each
simplicial complex, induce a sudden drop of the order pa-
rameter to the corresponding partial synchronization level on
the negative branch of the pairwise interaction. Moreover,
they prolong reaching the full synchronization with positive
pairwise interactions in all simplicial complexes. This effect
is particularly pronounced in the sparse architecture with
distributed internal frequencies, where the state with com-
plete synchronization (at this network size) is asymptotically
approached at very large coupling strengths. Moreover, a
characteristic instability of the order parameter occurs at in-
termediate pairwise couplings, which persists in the presence
of higher-order interactions. The fully synchronized state of
this structure reached at homogeneous frequencies in Fig. 3
breaks via incomplete abrupt desynchronization even without
higher-order coupling. It is tempting to believe that these
synchronization features can be attributed to weak phase cor-
relations in this network structure, which is characterized by a
small spectral dimension.

(iii) The evolution patterns of nodes, analyzed at selected
points on the hysteresis where partial synchronization oc-
curs, reveal coevolving groups with different phases, which
leads to quasioscillatory fluctuations of the order parameter.
Visually, the organization of clusters is sensitive to triangle-
embedded interactions. These order-parameter fluctuations
have multifractal features with broad singularity spectra as-
sociated with the simplicial structure and the interaction
strength.

These findings shed new light on the nature of phase
synchronization in high-dimensional simplicial complexes of
different architectures in the interplay with coupling strengths
and internal frequency distribution that can be relevant to
many complex systems. It should be noted that a specific
real system of a similar structure is represented by a fixed
network and a “coupling function” between dynamical units
across the link, captured by the parameter K1. It can vary with
time or some external parameters (similar to the temperature
in physical laboratory spin systems, where with the fixed inter-
action J , the relevant parameter K1 ≡ J/kBT is systematically
driven by temperature); the range of time variations of cou-
pling functions, e.g., in biological systems, can be determined
from additional data and their impact on the synchronization
transition determined; see, e.g., Ref. [54] for a study of neural
coupling functions. Alternatively, both the network and the
coupling function can be fixed, in which case the system’s
parameters correspond to a single point on the hysteresis
loop. Then the analysis of the temporal evolution of phases
of individual oscillators and groups of these oscillators and
the combined phase or the order-parameter fluctuations (as
presented in Figs. 4 and 7) describes that system’s behavior.

While the transition to synchronization induced by positive
pairwise interactions was much investigated [1], the nature
of partial order associated with negative interactions remains
to be better understood. In this regard, our simplicial com-
plexes built of identical blocks as four-dimensional cliques
present a potential for studying the complexity of synchro-
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nization/desynchronization processes in greater detail beyond
the measure of the spectral dimension. For example, studying
the eigenvector localization [40] can reveal what mesoscopic
structures are involved and the role of the nodes’ correla-
tions [36,37] in the collective dynamics. We note that these
networks have assortative correlations of nodes [36]; however,
there are no pronounced hubs in the sparse network; see Fig. 1.
Therefore, we expect to detect the appearance of concurrent
groups of nodes that cause the observed swings in the order
parameter in the sparse network at weak positive couplings.
Moreover, the influence of even/odd numbers of nodes in the
shared faces and the geometry-embedded fourth- and fifth-
order interactions remain open questions for future study. We
have investigated the leading pairwise and triangle-embedded
interactions that, theoretically, are responsible for the syn-
chronization transition; however, having a finite network and
hidden combinatorial geometry, we note that the increasing
structural complexity correlates with the growing number of
simplexes of all orders; cf. Fig. 2(g). Therefore, we expect

that a competition between the pairwise interactions with
simplex-embedded third-, fourth-, and fifth-order interactions
may differ significantly depending on the simplicial architec-
ture. These studies will be reported elsewhere. The results
presented here reveal the simplicial architecture and coupling
strengths behind dynamic states with partial synchronization,
which are often desirable in complex functional systems, e.g.,
the brain, and ways to construct simplicial complexes of the
same order that support full synchronization when needed.
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chical sequencing of online social graphs, Physica A 436, 582
(2015).
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