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Depolarization of opinions on social networks through random nudges
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Polarization of opinions has been empirically noted in many online social network platforms. Traditional
models of opinion dynamics, based on statistical physics principles, do not account for the emergence of
polarization and echo chambers in online network platforms. A recently introduced opinion dynamics model that
incorporates the homophily factor—the tendency of agents to connect with those holding similar opinions as their
own—captures polarization and echo chamber effects. In this work, we provide a nonintrusive framework for
mildly nudging agents in an online community to form random connections. This is shown to lead to significant
depolarization of opinions and decrease the echo chamber effects. Though a mild nudge effectively avoids
polarization, overdoing this leads to another undesirable effect, namely, radicalization. Further, we obtain the
optimal nudge probability to avoid the extremes of polarization and radicalization outcomes.

DOI: 10.1103/PhysRevE.108.034307

I. INTRODUCTION

The information revolution has lowered the entry barrier
for nearly everyone to participate and contribute to shaping
opinions and policies on various issues. This has been largely
aided by the easy availability of social media infrastructure
through mobile devices. Increasingly, the collective opinions
expressed through various social media platforms are thought
to be one barometer of the public mood on any contentious is-
sue of the day [1]. This provides an interesting testing ground
for the dynamics and statistical physics of interacting multia-
gent systems since the online nature of interactions provides
fine-grained data for quantitative analysis and comparison
with model results.

The study of opinion formation and its dynamics has
attracted researchers for decades. The analysis of opinion
dynamics from the statistical physics perspective can be traced
back to the work of DeGroot [2], which provides a framework
for reaching a consensus. Other discrete models, including
the voter [3,4] model, Sznajd model [5,6], and their variants
which have a strong basis in a framework of interacting spins,
suggest that large participatory interactions among agents
might also lead to the emergence of consensus. However,
empirical results have shown that the distribution of opinions
tends to show a bimodal distribution pattern corresponding
to polarization, especially on controversial issues of the day
[7–9]. Culture dissemination model [10], one of the first
higher-dimensional modeling approaches to opinion dynam-
ics, which also incorporates the human tendency to interact
with similar persons, shows that despite there being local
convergence, global polarization can be reached. Other dis-
crete models [11–14] explain the effects of consensus, attitude
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changes in groups, and the spreading of minority opinions.
In the presence of stubborn agents, these models can also
capture the effect of polarization [15–17]. Different variants of
the bounded confidence model [18,19] can also capture many
empirically found trends in the distribution of opinions. These
models can reproduce consensus, bimodal, or multi-modal
opinion distributions depending on the confidence interval.

Another empirical feature that could not be accounted for
by early models (at least by their original versions) was the
phenomenon of echo chambers [20]. This refers to a scenario
in which one agent’s opinion is similar to the agents in their
“social neighborhood,” and one tends to reinforce the other.
Lack of sufficient engagement with opposing opinions leads
to positive reinforcement of one’s own opinion within a close-
knit social network. Empirical evidence for this effect has
been reported from several social media platforms [21–24].
Few recent opinion dynamics models [25–28] have qualita-
tively captured the features of echo chambers, which have
been shown to arise from personalized interactions among
peers in an online setting, which might be accelerated through
the platform’s recommendation engine.

The model introduced by Baumann et al. accounted for
several observed features from empirical data along with echo
chambers in social media. The features that (a) most active
users tend to be strongly opinionated and (b) locally connected
agents have a convergence of opinions can be linked to the
mechanism of reinforcement of opinion among agents and the
tendency of agents to interact more with those with similar
opinions (homophily [29,30]). Even if the model starts from
an initial distribution of opinions without clear preferences,
highly homophilic interactions induce the formation of echo
chambers and polarized states.

Though having diverse opinions might be a desired out-
come, extreme polarization leads to network segregation [31],
which often bottlenecks the information flow in social net-
works. Also, echo chambers, often linked to polarization, are
known to be responsible for sustaining misinformation for
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a longer time on social networks [32,33]. These problems
call for intervention mechanisms, which should be safe and
noninvasive.

It might appear that in the case of controversial topics, the
interaction and the debate will always lead to polarized states
of opinion. But the underlying mechanism for polarization,
the reinforcement of opinions through interaction between
like-minded people, leaves us wondering if any intervention
will help to reconcile disparate opinions.

In this work, we show that if agents are nudged slightly,
then the cycle of reinforcement of opinions can be broken, and
depolarization can be achieved. In social networks, the nudges
are effected by exposing the agents to diverse opinions. We
also show that overdoing this leads to radicalization [34,35], a
state where all the agents have the same stance on an issue. We
formulate an optimization problem that avoids polarization
and radicalization and computes the right amount of nudge
probability required to achieve this optimal scenario.

In the next section, we discuss the basic model and moti-
vate the random nudges in the subsequent section. In Sec. IV,
we demonstrate our results and discuss their implications. We
formulate an optimization problem in Sec. V, which emerges
from a tradeoff between depolarization due to the proposed
random nudges and the tendency to move toward a radicalized
state. We conclude with a discussion of future directions.

II. BASIC MODEL AND METHODS

To analyze polarization and to introduce possible interven-
tion methods for reducing polarization, we adapt a recently
introduced model for opinion dynamics [25]. This model
qualitatively captures a few aspects of opinion dynamics when
agents’ opinions evolve due to interactions in social media
platforms. The model can reproduce the empirical features
such as polarization and echo chambers and the fact that more
active people on social media tend to have extreme opinions.

The model has N interacting agents, and it is assumed there
are only two possible sides to an issue. This is typical of
many, but not all, the issues—for example, to allow abortion
or not. Opinion on a given issue is denoted by xi, which can
take any real value in the range (−∞,∞). The sign of the xi

corresponds to the stance of the agent in the corresponding
issue, and |xi| denotes the conviction of the agent in their
respective stance. This implies that the larger the value of |xi|,
the more extreme the agent’s opinion is. The model used to
capture the evolution of opinion is activity driven [36–39],
i.e., at each time step, only active agents can influence other
agents. Based on empirical data [36,38], the distribution of
agent’s activity is chosen to be

F (a) = 1 − γ

1 − ε1−γ
a−γ , (1)

where a is the activity, ε is the minimum activity (chosen in
this work to be 10−2), and γ controls how steep the function
F (a). It is chosen to be γ = 2.1. Agents’ opinions evolve
based on their interactions with other agents, and this infor-
mation is encoded in the time-dependent adjacency matrix
Ai, j (t ). Further, opinion evolution also depends on the strength
of social interaction K > 0 and the controversialness of the
issue α > 0. The opinion dynamics is given by the following

N coupled differential equation [25]:

ẋi = −xi + K

⎛
⎝ N∑

j=1

Ai j (t ) tanh (αx j )

⎞
⎠. (2)

In this, Ai, j (t ) is the temporal adjacency matrix of interac-
tion at time t . If at time t agent j influences agent i, then
Ai, j (t ) = 1, and Ai, j (t ) = 0 otherwise. If agent i is active
at time t , they will interact with m other agents, weighted
by the probability Pi, j . Further, the probabilistic reciprocity
factor r ∈ [0, 1] determines the chance that an interaction is
mutually influential, i.e., Ai j (t ) = Aji(t ) = 1. The interaction
probability is defined to be a function of the magnitude be-
tween two agents’ opinions:

Pi j = |xi − x j |−β∑
k |xi − xk|−β

, (3)

where β is the homophily factor which quantifies the ten-
dency for agents with similar opinions to interact with each
other; β = 0 refers to the absence of interaction preference;
and β > 0 implies that the agents with similar opinions are
more likely to interact with one another. Evidently, Eq. (3)
is modeled as a power-law decay of connection probabilities
with only a small chance for agents with opposite opinions to
interact. Since most of the interactions tend to occur between
agents with similar opinions, this can lead to the formation of
echo chambers.

The interaction dynamics in the model is enforced by the
activity-driven temporal network that is fully encoded by the
parameters (ε, γ , m, β, r), together with the parameters that
characterize the issue, (K, α). Asymptotically, this model fea-
tures three distinct states in the distribution of opinions. If
the social interaction K is sufficiently small, then the opinion
of every agent decays to zero, and this state is known as
the neutral consensus state. However, if social interaction K
is large, but the homophily factor β is small, then, due to
statistical fluctuations, all the opinions either become positive
or negative. This state, where each agent has the same stance
(the sign of xi for all i is the same) with possibly different
convictions, is called radicalization. It is important to note
that radicalization is an absorbing state of this model. This is
because when all agents have opinions with the same sign, the
dynamics does not allow for a sign change of any agent’s opin-
ion. The most interesting case emerges when social interaction
K and homophily factor β are large enough. In this case, a
metastable polarized state emerges, which is characterized by
a bimodal opinion distribution.

III. RANDOM NUDGES AND POLARIZATION

Echo chambers are increasingly becoming more apparent
in online social media platforms. A generic tendency to inter-
act with people who hold similar opinions as ours can lead to
echo chambers, and this effect is, in turn, amplified by the
recommendation engines on social media platforms. These
algorithmically driven engines recommend similar connec-
tions or content in order to keep the users of those platforms
engaged.

These two features are modeled by the interaction prob-
ability, controlled by the homophily factor β. Large values
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FIG. 1. A schematic to illustrate three measures of polarization.
�̄ is the distance between mean positive and negative opinions. �peak

denotes the distance between two peaks in the opinion distribution,
and σ denotes the standard deviation of the opinion distribution.

of β represent how closed the echo chambers are. To dis-
rupt the formation of echo chambers, even while keeping
the platforms as engaging as possible and without violating
the users’ privacy, we adopt the following intervention in the
opinion dynamics model: With probability p < 1, the active
agents will interact uniformly with any other agents, and with
probability (1 − p), the active agents will interact with others
according to the homophily probability given in Eq. (3). We
call p the random nudge probability. As p does not depend
on the opinions of the agents, the intervention is noninvasive
(the recommendation engine need not interpret the opinion of
the agents). For small enough values of p, it is hoped that the
platform is still engaging while maintaining enough diversity
to ensure there is no echo chamber. With this intervention, we
propose a modified interaction probability as

P̃i j = p × 1

N − 1
+ (1 − p) × Pi j . (4)

This is used in the rest of the results shown in this paper.
Quantifying Polarization. Before we delve into the details

of the results, we discuss the three quantities employed to
measure the degree of polarization based on the opinion dis-
tribution P(x). They are defined as (a) Polarization measured
through �̄, defined as the distance between the average of pos-
itive opinions and the average of negative opinions. (b) When
opinion distribution exhibits a bimodal character, the distance
between the two peaks, denoted by �peak, can also be used
as a measure of polarization [41]. (c) A gross measure of po-
larization could also be the standard deviation σ of the entire
opinion distribution [27]. Figure 1 illustrates the schematics
of all three measures of polarization. It must be noted that
if polarization decreases due to the intervention proposed in
Eq. (4), ideally, all three quantifiers must decrease.

We also define fext as the fraction of agents with conviction
|x| > xth, where xth (chosen to be five) is a positive threshold.
This quantifies the prevalence of extreme opinions among the
agents, which at least should not increase when we nudge the
agents.

IV. RESULTS

With the intervention strategy introduced in Sec. III, we
find that with sufficiently small random nudge probability

p, significant depolarization can be obtained, which is evi-
dent as the opinion distributions approach toward a unimodal
distribution along with the decay of all three measures of
polarization. To see the effects of nudge, we perform nu-
merical simulations of the basic model in Eq. (2) using the
interaction probability given in Eq. (3) and the interven-
tion model in Eq. (4). The simulations are performed with
N = 5000 agents for 1000 time steps with dt = 0.01. At
initial time, xi is uniformly chosen from a small interval,
i.e., xi ∈ [−1, 1] for i = 1, 2, . . . , N . The model parame-
ters are chosen to be α = 3, β = 3, K = 3, m = 10, γ =
2.1, ε = 0.01, and r = 0.5 for all the simulations unless
mentioned otherwise. The parameters chosen for the simula-
tions lead to a polarized state in the original model without
intervention.

In Fig. 2, we show the contrast between the trajecto-
ries of individual opinions and the opinion distribution with
and without the application of a nudge. In the absence of
nudge (p = 0), the simulation results in Fig. 2(a) show fewer
trajectories with opinions xi ≈ 0. This leads to a bimodal
distribution of opinions characteristic of a polarized state. In
contrast, in Fig 2(b), a small nudge with a probability of p =
0.01 is applied, and we find significantly more trajectories
with moderate opinions. This, effectively, is seen to lead to
an absence of polarization, and is evident from the unimodal
opinion distribution. The magnifications of the region around
xi = 0 and its distribution (shown in Fig. 2) reveal a clear
distinction between these two scenarios.

To examine the effect of network nudge, we analyze the
underlying time-averaged structures of the temporal interac-
tions network. Without nudge, the interaction network has two
distinct clusters; most of the connections are among positive
opinionated agents or negative opinionated agents. There exist
very few connections between these two groups other than for
the agents with extreme opinions. This is expected since the
agents with extreme opinions are also those who tend to be
more active on social networks fora; hence, on average, they
form more connections. This enables them to be relatively
more connected to the agents with opposing opinions. These
results are visually depicted in Fig. 3 as two snapshots of
evolving network diagrams. If p = 0, no nudge is applied.
In this case, as Fig 3(b) shows, a polarized network, made
up of two distinct blue- and red-colored clusters, is formed.
Blue color corresponds to nodes with x > 0, and red color to
x < 0. The opinion distribution shown in Fig. 3(a) confirms
the existence of polarization.

However, when a nudge is applied, even for the case when
the nudge probability is as small as p = 0.01, we find the
network to be well mixed (large blue and red clusters have
disappeared) [Fig. 3(e)], and this leads to a significantly de-
polarized state indicated by the approximate unimodality of
the opinion distribution as shown in Fig. 3(d). The term echo
chamber describes a situation where the beliefs or opinions of
people are reinforced by interactions among a closed group
of people who hold similar opinions. In recent years, this has
been widely discussed in the context of online communities
[21–24]. However, some studies appear to suggest that the
effects of echo chambers are over estimated [42]. To infer
the presence of echo chamber-type effects, we calculate the
average opinion of the nearest neighbors (NN) of each agent
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FIG. 2. Emergent polarized (and depolarized) states in the presence (and absence) of the nudge factor. The simulations are performed
with 10 000 agents, and parameters are set to promote polarization. (a) The agents are not nudged. Hence the polarized state emerges.
A magnification of the region around x = 0 reveals the absence of trajectories there, and the corresponding distribution shows a bimodal
distribution with a near-zero density close to x ≈ 0. (b) Network nudge is introduced with probability p = 0.01, and we find a significant
depolarization. Opinion trajectories tend to crowd around x = 0, and the opinion distribution approaches an approximate unimodal and
almost-symmetric distribution about x = 0.

[24,25]. This is denoted by

〈xNN 〉 = k−1
i

∑
j

ai jx j, and ki =
∑

j

ai j, (5)

where ai j is the temporally aggregated (over the last 100
time steps) adjacency matrix. When a nudge is not applied
(p = 0), a colored heatmap of x and 〈xNN 〉 in Fig. 3(c) reveals
two disjoint hot spots corresponding to the two distinct echo
chambers. A strong bimodality is observed in the marginal
distributions. Now, when we apply a nudge with probability
p = 0.01, we can observe only one hot spot indicating the

existence of only one closed group [Fig. 3(f)]. All the agents
are inside this closed group, and the echo chamber effect
is largely diluted or nonexistent. We did not find perfect
unimodality in the marginal distribution of x, which can be
attributed to the fact that different realizations can lead to ei-
ther of these three distributions: (a) slight bimodal distribution
with significant reduction in all three polarization parameters,
(b) unimodal distribution with a slight skew toward positive
opinions, and (c) similar distribution with a skew toward
negative opinions. As the heat maps and the marginal distri-
butions are created from data averaged over 200 realizations,

FIG. 3. Effect of the nudge on the opinion distribution, the structure of social interactions networks, and the signature of echo chambers.
The networks are averaged over the last 100 time steps of simulation and are drawn using the draw function in networkx [40]. Nodes with
blue color correspond to agents with positive opinions, and red corresponds to agents with negative opinions. The saturation of the color is
mapped to the conviction of the agents; high saturation corresponds to a high level of conviction, and vice versa. The opinion of an agent x
and the mean opinion of its nearest neighbors 〈xNN 〉 is averaged over 200 realizations to generate the heatmap to indicate the presence of echo
chambers [see Eq. (5)]. The marginal distributions are shown in the corresponding axes. (a) For p = 0, i.e., without a nudge, the distribution
is polarized, and the network has two distinct clusters (b), one formed by the agents with positive opinions and the other by the agents with
negative opinions. (c) The presence of two distinct lobes in the heatmap indicates the echo chamber effect. (d) For p = 0.01, we observe an
opinion distribution with a single peak, and the social interactions network is now well mixed (e). A depolarization state is reached. (f) A single
lobe in the heatmap confirms the weakening of the echo chamber effect.
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FIG. 4. Three measures of polarization, (a) �̄, (b) �peak, (c) σ , and the fraction fext of agents with extreme opinions (d), as a function of
nudge strength p. All four parameters are averaged over the last 100 time steps. The simulations were repeated 200 times, and only nonradi-
calized realizations were considered for ensemble averaging. The average lifetime until the whole population moves toward radicalization as a
function of p is shown in panel (e). Panel (f) shows the fraction of simulations that lead to radicalization for different nudge strengths p.

all the above factors contribute to the slight bimodality in the
marginal distribution of x. Nevertheless, the marginal distri-
bution corresponds to a significant reduction in polarization
and echo chambers.

V. OPTIMIZING THE NUDGE: POLARIZATION
VERSUS RADICALIZATION

To obtain a global picture of how depolarization sets in
as a function of nudge probability p, we plot the three mea-
sures of polarization as a function of p. All three measures,
�̄,�peak, and σ , have been computed from the simulation
results. The results shown represent an average over the last
100 time steps of the simulations and averaged over 200
realizations. In Fig. 4, we observe that all three measures of
polarization decrease as the strength of the nudge p increases.
In particular, �̄ and σ are found to decrease as a stretched
exponential function exp(−pγ ), and the stretching factor γ

is determined through regression to be approximately 0.3. A
recent work studying the depolarization of echo chambers
[41] considered adding an effective noise term dependent on
a random sample of opinions to Eq. (2). While this approach
succeeds in making the opinion distribution unimodal, it in-
creases the width of the distribution significantly, which as
a consequence, corresponds to an increase in extreme opin-
ions. In contrast, the framework of nudging the mechanism of
forming social connections in online interactions works well
in decreasing width of the opinion distribution [Fig. 4(c)] as
well as extreme opinions [Fig 4(d)] and also suggests direct
algorithmic interventions for recommender systems.

In the original model, the authors found the polarized state
to be metastable and showed that with an increased value of β,
the lifetime of the state has a faster than exponential growth.
Our intervention adds more randomness to the system and in-
creases statistical fluctuations. Hence, for large p, we observe
a drastic decrease in the average lifetime of the polarized and
depolarized states. An approximate straight line in the log-log
plot indicates the lifetime of polarized or depolarized states
decreases as a power law as nudge strength p is increased
[see Fig. 4(e)]. Figure 4(f) also captures the same effect as

we see that radicalization is either nonexistent or a rarity for
p < 10−2, but it increases quickly and becomes the norm for
p > 10−2.

In many situations, radicalization is as much undesirable
as polarization. Hence, to solve the issue of radicalization
at a high value of nudge probability, rather than nudging all
the people in the population, at each time step of the simu-
lation, we randomly selected a fraction f of the population
and nudged them. We define a simple linear utility function
U (�̄, frad) = ˜̄� + frad, where ˜̄� is �̄, linearly scaled to be
between zero and one, and frad is the fraction of radicalized
simulations. The structure of the utility function is the same
for the other two measures of polarization. Figure 5 depicts
the heat map of the utility functions corresponding to the
three utility functions. The optimal population fraction and
nudge probability is numerically found to follow the curve
p · f A = B, where A and B are constants.

VI. ROBUSTNESS OF THE FRAMEWORK

To ensure the robustness of our intervention framework,
we applied network nudge to another recent model of opinion
dynamics, namely the social compass model [43,44], which,
together with homophily, exhibits the effect of echo chambers.
The original model describes the dynamics of opinions on two
interdependent topics in polar coordinates. We reinterpret the
polar angle in the original model as the opinion on a single
topic to adapt the model to our framework. The dynamics of
this modified model is governed by the following N coupled
differential equation:

ẋi(t ) = |xi| sin
(
x0

i − xi
) + K

⎛
⎝ N∑

j=1

Ai j (t ) sin (xi − x j )

⎞
⎠. (6)

In contrast to the original model [43], the variable xi is chosen
to be the opinions of the people on a single topic, and the
temporal adjacency matrix is formed according to homophily
probability 3. x0

i is the initial opinion of agent i, and all the
other variables and parameters have the same meaning as in
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FIG. 5. The heat map of the utility as a function of nudge strength and nudged population fraction. Panels (a), (b), and (c) correspond to the
corresponding utility of �̄, �peak, and σ , respectively. The red dashed curve, which is found to follow the curve p · f A = B, (A, B = constants),
denotes the optimal values of population fraction and nudge strength.

the previous model 2. In Fig. 6, we show that when the social
interaction and the homophily factor are high enough (K = 4,
β = 4), many echo chambers are formed, which is clear from
the trajectories of the opinion as well as from the multiple
communities seen in the aggregated network [Figs. 6(a) and
6(b)]. But when we introduce a slight nudge with p = 0.002,
the effect of echo chambers is reduced drastically. The opinion
trajectories seem to converge to a moderate value, and the
interaction network is well connected without any obvious
segregated communities Figs. 6(c) and 6(d).

VII. DISCUSSION

The widespread use of the internet, and consequently, so-
cial media platforms, have drastically altered the way humans
consume, interact with, and exchange information. Polariza-
tion and the formation of echo chambers have been shown to
negatively impact constructive discussions and debates—two
fundamental pillars of a healthy democracy. Building on the
recent advances in the modeling of opinion dynamics in social

FIG. 6. The effect of nudge in the opinion dynamics model, gov-
erned by Eq. (6). Panels (a) and (c) show the trajectories of opinions
in the absence and presence of network nudge, respectively. Panels
(b) and (d) show the corresponding interaction network structure.
Clearly, we see the presence of echo chambers in the absence of
a network nudge, and the effect decreases when a slight nudge is
applied.

networks, in this work, we study the possibility of depolariz-
ing a population using a stochastic nudge.

Our results suggest that a small number of randomized
interactions, which are otherwise dominated by homophily
driven mechanisms, can lead to a significant reduction in
polarization. This reduction was quantitatively captured by
three different measures of polarization. While we show that
minimal nudges can burst echo chambers and lead to socially
desirable distributions of opinions, increasing the strength of
this nudge can result in radicalization. Given this sensitivity
on the nudge strength, we show that a possible resolution is
obtained if, instead of nudging each agent, only a fraction f
of the agents are nudged. We highlight that this interplay of
the nudge strength p and the fraction f of nudged individuals
leads to an interesting optimization problem. This optimiza-
tion can help inform the fraction of individuals to be nudged
for a fixed nudge strength for optimal depolarization.

We believe that the strongest case for the application of
such randomized nudges can be made to recommendation
systems. While ubiquitous, recommender algorithms are op-
timized for increasing engagement [45], which we now know
can come at the cost of creating echo chambers [46], increase
in the representation of extreme ideologies [47], and even
the tampering of users’ preferences [48]. In such settings, the
randomized nudges can be potentially operationalized as the
poisoning of a viewer’s watch history with a limited amount
of random content, uncorrelated with the viewer’s preferences
[49]. While there are several ethical and legal considerations
that must be accounted for before implementing any such
interventions, it certainly opens up several interesting avenues
for future research to build on. Noninvasive interventions may
be important to reduce the detrimental effects of polarization.
However, an important first step is to build reliable tools to
quantify polarization from data [50], which in itself consti-
tutes an intriguing direction for future research.
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