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Digital memcomputing machines (DMMs) are a new class of computing machines that employ nonquantum
dynamical systems with memory to solve combinatorial optimization problems. Here, we show that the time to
solution (TTS) of DMMs follows an inverse Gaussian distribution, with the TTS self-averaging with increasing
problem size, irrespective of the problem they solve. We provide both an analytical understanding of this phe-
nomenon and numerical evidence by solving instances of the 3-SAT (satisfiability) problem. The self-averaging
property of DMMs with problem size implies that they are increasingly insensitive to the detailed features of the
instances they solve. This is in sharp contrast to traditional algorithms applied to the same problems, illustrating
another advantage of this physics-based approach to computation.
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I. INTRODUCTION

Combinatorial optimization problems emerge in a wide va-
riety of applications in both academia and industry [1]. They
require finding an assignment of variables—which typically
take the values of logical 1 or logical 0—that satisfies a set of
constraints. Given one of these problems, e.g., the satisfiabil-
ity (SAT) with exactly three variables per constraint (known as
3-SAT), one can use different algorithms to find the solution
of its instances. Since the various instances of a problem are
different, even at a fixed number of variables and constraints,
and one can choose different initial conditions for the algo-
rithm, one expects the time to solution (TTS)—namely, the
time it takes an algorithm to solve those instances—to vary
according to some distribution.

If the problem to solve is hard, such as the 3-SAT, both
the mean p and the standard deviation o of TTS are expected
to increase exponentially with increasing problem size N. We
then expect o2(N)/u?(N) ~ O(1) in the limit N — oo. We
would then say that in this case, the TTS is not self-averaging:
its relative variance does not go to zero in the thermodynamic
limit [2]. (We will provide an explicit example of this phe-
nomenon for traditional algorithms below.)

In recent years, a new computing paradigm, dubbed mem-
computing [3-5], has been suggested which employs time
nonlocality (memory) to tackle computational problems. In
particular, its digital version (digital memcomputing ma-
chines or DMMs) [6] has been designed to solve problems
in the combinatorial optimization class. Unlike traditional
algorithms, DMMSs map the original problem into nonlinear
(nonquantum) dynamical systems whose point attractors are
the solutions (if they exist) of such a problem. Since DMMs
do not support chaos [7] (as well as quasiperiodic orbits),
their ordinary differential equations (ODEs) can be efficiently
simulated and tested on our traditional computers, even
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before their hardware implementation. These simulations
have already shown substantial advantages over state-of-the-
art algorithms on a wide range of applications (see, e.g.,
[5] for a sample of problems already tackled with this
paradigm).

In this paper, we show that the physics of DMMs im-
plies that their TTS follows an inverse Gaussian distribution
[8], irrespective of the problem they solve. Most importantly,
the TTS self-averages with increasing problem size, namely,
o?(N)/u*(N) — 0as N~ for N — oo, with § = 1 (“strong
self-averaging”) for physical noise and 6 < 1 (“weak self-
averaging”) for numerical noise. Apart from an analytical
understanding of this phenomenon, we corroborate this pre-
diction by numerically solving satisfiable instances of the
3-SAT [9] in the presence of physical noise, and contrast
it to the TTS of several well-known traditional algorithms
[10-12]. The self-averaging property of DMMs with problem
size implies that they are increasingly insensitive to the de-
tailed features of the instances they solve. These results both
clarify the physics behind these machines and illustrate their
advantage in computing.

II. DMMs FOR 3-SAT

Without loss of generality, we will focus on the 3-SAT
(with instances taken from [9]), which is a collection of
clauses (OR gates) with exactly three Boolean variables, y;
(i =1,2,3), with the clauses related by logical conjunctions
(AND gates). A DMM (not necessarily unique) for such a
problem can be constructed as follows [13]. The variables
y; are first transformed into continuous ones, v; € [—1, 1]
(which could be voltages in an actual circuit realization of
DMMs [6]), where v; > 0 corresponds to y; = 1 and v; <
0 corresponds to y; = 0. The mth clause is represented by
Um,iV U, jV L k), where I, ; = §; or y;, depending on whether
or not y; is negated, and V is the symbol of the OR gate. Each
Boolean clause is then mapped into a continuous constraint
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function,

Cn(vi, vj, vp) = %min(l = Gm,iVis 1 — @ jVj, 1 — @ ivi),

(D

where g, ; = 1if [, = y; and g,,,; = —1if [,,, = ¥;. It is clear
that the mth clause evaluates to true if and only if C,, < 1/2.
Time nonlocality is introduced in the form of additional
“memory degrees of freedom,” which guarantee that the only
fixed points of the dynamics correspond to the solution of
the problem, and no other critical points, other than saddle
points, are present in the phase space [5]. Following [13], we
introduce two additional memory variables for each OR gate:
a “short-term” memory x; , and a “long-term” memory x; ;.
The dynamics of DMMs for a 3-SAT instance with N vari-
ables and M clauses arethen i =1,..., Nym=1,..., M)

0 =Y X wkomGmi+ (14 001 = X )R (2)

xs,m = ﬁ(xs,m + 6)(Cm - }/), Xem € [0, 1]9
X =a(Cp — 8), X1 € [1,10*°M], €)]

where the “gradientlike” term G, ;= %qm, ;min(1 —
qm,jVj, 1 — @mivr), while the “rigidity” term R,,; =
%(qm,,‘ —v) if G, = %(1 — qm.ivi), and R, ; = 0 otherwise.
As in [13], we have chosen the parameters o =35, 8 =
20,y =0.25,8 =0.05,¢ =107, ¢ =0.1.

We refer to [5,13] for a thorough discussion of how Egs. (2)
and (3) have been obtained. Here, we take them at face value
as representations of DMMs and point out that they can be
compactly written as x(¢) = F (x(t)), with x the collection of
continuous variables v; and memory variables x; ,,, X; ,,, and
F the flow vector field that can be read from the right-hand
side of Egs. (2) and (3).

To make direct contact with experiments, as done in [14],
we add Gaussian white noise /(¢) to the memory variables of
Egs. (3). I(¢) satisfies (I(t)) = 0 and ({(?)I(t")) =T8¢ —1t'),
where I" is the noise strength. Of course, the errors introduced
by the numerical integration of these ODEs also play the role
of “noise,” and we refer to the Supplemental Material (SM)
[15] for the results in the absence of additive noise.

III. THE DYNAMICS OF DMMs

It was shown both analytically (using supersymmetric
topological field theory) and numerically that DMMs, with or
without additive noise, find a solution to the problem instance
by following specific trajectories (“instantons”) in the phase
space [16,17]. In particular, DMMs “transition” from a critical
point [a saddle point for which F(x(¢)) = 0 in Egs. (2) and
(3)] with a certain number of unstable directions to a more sta-
ble critical point, until a solution is found. An example of such
dynamics for a 3-SAT instance with 3000 variables and 21 000
constraints is provided in Fig. 1, where the sudden jumps
of the continuous variables v; correspond to the instantons
connecting critical points. These results have been obtained by
integrating the DMMs’ Eqgs. (2) and (3) using a forward Euler
method [18] with fixed integration step (At = 0.2 in arbitrary
time units throughout the main text), and no additional noise.

Variables v;
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Time Steps

1280 1300

FIG. 1. Top panel: Schematic of the state dynamics of a DMM
which transitions from a critical point (e.g., X,—;) to a more stable
critical point (x,) in the phase space in such a way as to reduce the
number of unstable directions after each instantonic jump (I,,_;). Bot-
tom panel: Numerical example of the DMM represented by Eqgs. (2)
and (3) solving a 3-SAT instance with 3000 variables and 21 000
constraints. The instantonic jumps are the shaded regions where
negative (logical 0) variable values suddenly cross to positive (logical
1) ones, and vice versa. The area in between corresponds to a critical
point.

A. Distribution of TTS for DMMs

As anticipated, in the presence of noise (whether physical
and/or numerical), we expect the TTS to follow some dis-
tribution. In order to determine what type of distribution we
expect—irrespective of the problem to solve—we can draw on
a physical analogy from the dynamics of DMMs as depicted
in Fig. 1. The state vector x(¢) in phase space can be inter-
preted as “position of a particle” which is directed towards
the solution and subject to some noise. The particle then has a
“drift velocity,” § > 0, which is analogous to how strongly the
DMM is driven towards the solution of the problem instance.
In this physical system, the noise, modeled by a diffusion
constant v, is analogous to the noise a DMM experiences.

We can then ask how long it takes such a particle to reach
an arbitrary distance L (the solution of the problem) from its
starting point (the initial condition). We may call this the time
to barrier (TTB), which is the physical analog of the TTS
of DMMs. This TTB is well known in the literature and is
given by an inverse Gaussian probability density function of

the form [8]
L2 o Lo v
Pspv(t) = o S5/ @

where r > 0 corresponds to the time for the particle to reach
the distance L. We can rewrite Eq. (4) with just two in-
dependent parameters by making the substitution u = L/4,
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FIG. 2. Various fits (inverse Gaussian distributions) of the TTS
(in number of integration steps) of DMMs out of 1000 3-SAT in-
stances (taken from [9]) of varying number of variables, N, at a
fixed clause-to-variable ratio of 7. The noise strength is I' = 0.12
(in inverse time units). Inset: the histogram of TTS (in number of
integration steps) of the DMM with N = 6000 variables and 42 000
clauses. The fit is an inverse Gaussian distribution, given by Eq. (5),
with A = 3720 420 and © = 390 +£ 10.

A = L?/v. This gives the simplified equation

)\' 2

The mean of this distribution is x, while its variance is 62 =

w3 /A [8]. If the analogy we have just made holds, we should
find a similar distribution for the TTS of DMMs.

We verify this analytical prediction by numerically inte-
grating Egs. (2) and (3), using again a forward Euler method,
where we added Gaussian white noise to the memory vari-
ables in Eqgs. (3) with a strength I' = 0.12 (in inverse time
units) [19]. The TTS can be simply defined as the amount of
integration steps it took the DMM to find a solution. In the
inset of Fig. 2, we report the histogram of TTS for a DMM
solving 1000 3-SAT instances [9] with N = 6000 variables
and 42 000 clauses. The histogram is well fitted by the inverse
Gaussian distribution (5) with parameters A = 3720 &£ 420
and p = 390 £ 10 [20]. The main panel of Fig. 2 shows the
fits for different numbers of variables with constant clause-to-
variable ratio. It indicates a sharpening of the inverse Gaussian
distribution with increasing number of variables. (See the SM
[15] for more statistics using different integration methods and
for different clause-to-variable ratios.)

B. Self-averaging of TTS

To understand this better, we need to determine how this
distribution varies with problem size (the number of variables,
N, if we fix the clause-to-variable ratio). In particular, we want
to know how the ratio o2/u? varies with increasing N. To
do this, let us again use the physical analogy we have just
developed.

We can easily relate the distance L from the initial point of
the dynamics to the number of variables, N, by noting that
L would correspond to the average radius of an N sphere,
SN(L), in phase space. In the limit of large N, this is simply
L~ /N [21].

The diffusion constant v is related to the amount of noise
in the system. For physical noise (such as the additive one
we consider here), this is only determined by some external
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FIG. 3. Relative variance o>/u? as a function of number of vari-
ables, N, of the TTS distributions of the inset of Fig. 2. The relative
variance is well fitted by a power law o2/ u? ~ N~110£0.07 consistent
with self-averaging behavior.

parameter, such as the temperature [2]. In other words, for
physical noise, v is independent of N.

Finally, the dependence of the drift velocity § on N can
be obtained as follows. If we have N continuous variables v;,
the initial energy injected into the system is E = N x Ey,
where Ej is the energy associated with a single variable (and
at the initial time ¢ = 0, the variables are independent of each
other; they are coupled immediately by the memory variables
for ¢t > 0). Assuming the N variables have all unit mass (the
mass value is irrelevant as long as it is a constant), the N
dependence of the drift velocity is then § ~ /E = /N x E,.
This means that the variance o2(N) = (Lv)/8> ~ v/N.

By putting all this together, we conclude that the TTS
of DMMs subject to physical noise (strongly) self-averages:
o2(N)/u*>(N) = 0 as N, for N — oo. This is the same
result one would obtain for a self-averaging observable in
the central limit theorem [22]. It shows that DMMs become
increasingly insensitive to the microscopic details of the in-
stances they solve (how the different variables are distributed
in the various clauses). Note also that the result obtained by
this physical analogy is valid irrespective of the problem the
DMMs solve. It is only related to their general dynamical
behavior.

In Fig. 3, we show numerical results corroborating the pre-
vious analysis, where we solve Egs. (2) and (3) (the latter ones
with added noise of strength I" = 0.12) for various numbers
of variables, N, and at a fixed clause-to-variable ratio. The
relative variance is well fitted by the curve o>(N)/u?(N) ~
N~11020.07 "showing also that in this case, the numerical noise
does not much affect the stochastic dynamics.

If we had only numerical noise, or the latter strongly cou-
ples to the additive noise, the assumption that the diffusion
coefficient v is independent of N would no longer be valid
because of the accumulation of errors. In this case, we expect
V(N) to increase with N, with the form of this function depen-
dent on the numerical method that is employed. This is shown
in Figs. S7 and S8 of the SM [15], where we still find the TTS
to be self-averaging but weakly [02(N)/u>(N) ~ NO-39£0.02
for a forward Euler and N%?°*002 for Runge-Kutta fourth
order].
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FIG. 4. The distributions of TTS for the local search algorithm
WalkSAT plotted for N = 40, 50, 60 variables (over 200 instances)
at a fixed clause-to-variable ratio of 7. The TTS is well fitted by an
exponential probability distribution for all cases considered. Inset: an
example for N = 50 variables of the histogram of TTS used to obtain
the fits in the main panel.

C. Non-self-averaging of traditional algorithms

We finally conclude by showing that the self-averaging
property of the TTS of DMMs is not shared by traditional
algorithms applied to the same problems. We show this
explicitly in Fig. 4 for a widely used (and representative)
local search algorithm (WalkSAT) [10] applied to the same
instances used previously [9]. (In the SM [15], we show ad-
ditional numerical results using two different conflict-driven

clause learning algorithms, i.e., MiniSAT [11] and Kissat [12],
and we find, as expected, that they are also not self-averaging.)

This algorithm simply flips one or a few variables at each
iteration according to some prescribed rule. Unlike a DMM,
the probability distribution of the TTS of this local search
algorithm follows well an exponential fit of the type P (t) =
e ™. (See the SM [15] for the analytical justification of
why such a distribution has to be an exponential.) Here, A
is the inverse of the average (u = 1/A) and the variance of
this distribution is o> = 1/A%. We then see that the relative
variance is 02 /% = 1, irrespective of the size of the problem.
As anticipated, this traditional algorithm is not self-averaging.

IV. CONCLUSIONS

We have shown that the TTS of DMMs follows an inverse
Gaussian distribution with a relative variance that goes to zero
as the size of the problem increases. This is true both in the
presence of physical noise (showcasing strong self-averaging)
as well as numerical noise (weak self-averaging). This means
that DMMs are increasingly insensitive to the microscopic
details of the instances they solve with increasing problem
size. This property is not shared by traditional algorithms,
illustrating a substantial advantage of DMMs in the solution
of combinatorial optimization problems.
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