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Top-ranked cycle flux network analysis of molecular photocells
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We introduce a top-ranked cycle flux ranking scheme of network analysis to assess the performance of
molecular junction solar cells. By mapping the Lindblad master equation to the quantum-transition network, we
propose a microscopic Hamiltonian description underpinning the rate equations commonly used to characterize
molecular photocells. Our approach elucidates the paramount significance of edge flux and unveils two pertinent
electron transfer pathways that play equally important roles in robust photocurrent generation. Furthermore,
we demonstrate that nonradiative loss processes impede the maximum power efficiency of photocells, which
may otherwise be above the Curzon-Ahlborn limit. These findings shed light on the intricate functionalities that
govern molecular photovoltaics and offer a comprehensive approach to address them in a systematic way.
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I. INTRODUCTION

Molecular junctions consisting of a single donor and ac-
ceptor, placed between two external leads, are an active
field of research [1–4] that combines the fundamental as-
pects of quantum transport [5–7] and their possible practical
implementations [8–11]. One such application of molecular
junctions, among many others, is in photovoltaic (PV) cells,
where solar energy of incident photons is converted into elec-
tric power [12–14]. The interplay between the heat current
mediated by the temperature difference of the solar radia-
tion and the PV cell at ambient temperature, together with
the charge current arising due to the bias voltage across the
electrodes, drive the system towards strong nonequilibrium
steady states [15–18]. A great deal is therefore focused on
theoretical modeling to optimize the performance of PV cells
[19,20] and to explore the underlying transport mechanisms
that could facilitate the realization of sophisticated on-chip
complex quantum thermal devices [21–25].

Although the master equation in Lindblad form is a
conventional theoretical technique for the description of
nonequilibrium open quantum systems [26], particularly in
quantum optics [27] and quantum thermodynamics communi-
ties [28–36] where spins and atomic degrees are involved, its
extension towards molecular systems is relatively a novel area
of exploration [37–42]. As an alternative, in recent times, a
state-space representation in the framework of network theory
by Nitzan et al. [43–47] has become a popular method to study
the nonequilibrium charge transport behavior of molecular
photovoltaics [43–46] and thermoelectric devices [23,47,48].
In this context, the latest finding by Wang et al. [49], based
on the works of Zurek [50] and Cao [51], is worth men-
tioning. They have shown that the quantum Lindblad master
equation can be cast into a Pauli master equation without
loss of any generality. This facilitates the representation of
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dissipative quantum dynamics as a weighted network with
nodes and edges, where nodes (vertices) denote quantum
states and edges denote the nonequilibrium transition from
one quantum state to another with nonzero flux rates [52,53].
Thus, optimization of the performance of multicomponent
quantum thermal devices reduces to identifying the major
working cycles amongst various possible pathways as is the
case with photovoltaics with a multitude of electron trans-
fer channels. Although the concept of cycle flux was well
developed in algebraic graph theory [54–60] from the early
works of Hill [54], Kohler and Vollmerhaus [55], as well
as Schnakenberg [56], the recent developments by Wang
et al. have provided an efficient cycle flux ranking scheme
to fully comprehend the intricate functionality of complex
quantum systems, with particular emphasis on spin-Seebeck
effect within the linear response regime [49].

In this paper, we extend this idea to molecular systems
and establish the equivalence between the dynamical formu-
lation of the Lindblad master equation and the state-space
representation of molecular photocells pioneered by Nitzan
et al. [43–46]. We point out, however, the state-space method
is quite effective in computing the steady-state currents in
PV cells, it falls short to unravel the underlying working
mechanism of the photovoltaic devices. On the contrary, top-
ranked cycle flux analysis provides a natural and alternative
gateway to capture the underlying features, which is other-
wise challenging due to multiple electron transfer pathways
in molecular junctions. Thus, our present findings demon-
strate that the cycle flux ranking scheme could go beyond its
standard applications of near-equilibrium situations and could
serve as a potential candidate for decoding the fundamental
working principle of complex molecular systems even far
from equilibrium scenarios.

The work is organized as follows: In Sec. II, we intro-
duce the basic model of the PV cell and derive the open
quantum dynamics of Lindbladian form which is shown to
be equivalent to the Pauli master equations employed by the
Nitzan et al. [43] within a state-space formulation. Next, we
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FIG. 1. Schematic diagram of a molecular photovoltaic solar
cell. The system consists of the donor (D) and the acceptor (A)
molecules placed between two free-electron reservoirs. The left
reservoir (L) is exclusively coupled to the ground state of the donor
and the right reservoir (R) is coupled only to the excited state of the
acceptor. Photon-induced transition is indicated by a wiggly line and
phonon-induced processes are depicted by broken lines.

elaborate on the fundamental principles of the cycle flux rank-
ing scheme in the context of our present model in Sec. III, and
summarize important outcomes and findings of our analysis
in Sec. IV. Finally, we conclude in Sec. V.

II. MODEL AND DYNAMICS

The basic model of a PV cell is comprised of two “ef-
fective” sites, representing the donor (D) and acceptor (A)
molecules placed between two metallic leads (L and R), as
depicted in Fig. 1. We consider each site as a two-state
system with the ground (|ns1〉) and excited (|ns2〉) states, corre-
sponding to the highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) of two
molecules having energies εs1 and εs2 (s = D, A) respectively.
The general form of the electronic part of the Hamiltonian for
the donor-acceptor system reads as

Hel =
∑

s=D,A

∑
i=1,2

εsinsi +
∑

s=D,A

Usns1ns2. (1)

Here, UD (UA) stands for the positive Coulomb repulsion
energy if two electrons are present in the donor (acceptor)
sites and nsi = c†

sicsi, i = {1, 2}, represents the number op-
erator corresponding to the state |nsi〉, satisfying fermionic
anticommutation relation [61] {csi, c†

s′j} = δss′δij. The most
important energy scales of the problem are notably the en-
ergy gap between the donor levels (�E = εD2 − εD1) and the
donor-acceptor levels (�ε = εD2 − εA2), while the acceptor’s
ground state energy has no influence on the overall cell op-
eration as one expects [41,43]. This can be attributed to the
following two facts: (i) solar radiation triggers the radiative
transition of electrons from the donor ground to the excited
state; and (ii) electron transfer between the excited states of
the donor to the acceptor could in principle be governed by
the cell’s vibrational degrees of freedom, such as thermal
phonons modes. To make a further realistic assumption about
our model in view of the prior literature [41,43–45], we re-
strict the donor to be either in the ground or excited state

(i.e., nD1nD2 = 0), whereas the acceptor can be either in the
singly or doubly occupied state. As the ground state of the
acceptor is always occupied (i.e., nA1 = 1), it can be either in
state |nA1nA2〉 = |10〉 or in state |nA1nA2〉 = |11〉, while, the
donor state |nD1nD2〉 can exist in any one of the three possible
configurations {|00〉, |10〉, |01〉}. This allows us to directly
compare our results with the state-space model of Nitzan et al.
[43], characterized by a single Coulomb repulsion parameter
arising out of UA in Eq. (1).

The Hamiltonians of the free-electron reservoirs [35] to
which the donor and acceptor molecules are coupled are,
respectively, given by

HL =
∑

l

(εl − μL)d†
l dl , and HR =

∑
r

(εr − μR)d†
r dr,

(2)

where dl (dr) and d†
l (d†

r ) are the electron annihilation and
creation operators for left (L) and right (R) electrodes and
μα is the corresponding chemical potential of αth (α = L, R)
reservoirs. In other words, the bias voltage between two metal-
lic electrodes is given by U = (μL − μR)/|e|, where e is the
charge of the electron. Tunneling Hamiltonian between the
electrodes and the molecule is chosen to be of the form of
[16,35]

HI =
∑

l

h̄gl (d
†
l cD1 + c†

D1dl ) +
∑

r

h̄gr (d†
r cA2 + c†

A2dr ),

(3)

where gl (r) is the respective coupling strength. The first term
indicates that the left electrode swaps electrons solely with
the ground state of the donor which gets triggered by the
solar radiation to its excited state. The second term denotes
that the right electrode can only exchange electrons with the
excited state of the acceptor, as the ground state of the ac-
ceptor molecule is already occupied. Finally, electron transfer
processes within the system are governed by both photons
(Hpht) and phonon (Hphn) baths [41] with Hpht = ∑

k εka†
kak ,

and Hphn = ∑
q ε′

qb†
qbq, where a†

k (b†
q) and ak (bq) are bosonic

creation and annihilation operators for the kth (qth) bath mode
with energy εk (ε′

q), respectively. The interactions between
the photon and phonon baths with the molecule are taken as
[16,18,41]

Hpht
I =

∑
k

h̄gD
k (a†

kc†
D1cD2 + c†

D2cD1ak ) (4)

and

Hphn
I =

∑
q

h̄gD
q (b†

qc†
D1cD2 + c†

D2cD1bq)

+
∑

q

h̄gDA
q (b†

qc†
A2cD2 + c†

D2cA2bq), (5)

respectively, where gD
k and gD

q (gDA
q ) are the corresponding

coupling constants. From Eqs. (4) and (5), it is clear that
the transition between the ground to the excited state at the
donor site is governed by both photon (radiative process)
and phonon (nonradiative process) modes, while the electron
transfer between the donor and the acceptor is solely driven by
vibrational thermal phonon modes at the ambient temperature.

034305-2



TOP-RANKED CYCLE FLUX NETWORK ANALYSIS OF … PHYSICAL REVIEW E 108, 034305 (2023)

Consequently, the time evolution of the system dynamics in
the interaction picture under the Born-Markov approximation
is described by the quantum master equation [26,31,34,35]
(Appendix A)

dρ

dt
= LL[ρ] + LR[ρ] + LD

pht[ρ] + LD
phn[ρ] + LDA

phn[ρ], (6)

where ρ is the reduced density matrix of the system and Lν is
the Lindblad superoperator describing the effect of dissipation
induced by the νth thermal bath. Since the Hamiltonian in
Eq. (1) is diagonal in the number state basis for the donor
and acceptor molecules, the reduced density matrix ρ of the
above Lindblad master equation effectively decouples the di-
agonal and off-diagonal matrix elements in the eigenbasis of
Hel [35]. This, in turn, allows for a closed-form equation of
motion for the occupation probabilities or the population of
the ith site as Pi = 〈i|ρ|i〉, with respect to the various sys-
tem eigenstates {|i〉}. As we mentioned before, the acceptor
can only be in two states {|10〉, |11〉}, while the donor can
be any of the three possible configurations {|00〉, |10〉, |01〉},
so there are six possible eigenstates for the overall system.
We label them as follows: |0〉 = |0010〉, |1〉 = |1010〉, |2〉 =
|0110〉, |3〉 = |0011〉, |4〉 = |1011〉, and |5〉 = |0111〉. The
corresponding eigenenergies εj (j = 0, 1, 2, . . . , 5) for the
states are given by ε0 = εA1, ε1 = εD1 + εA1, ε2 = εD2 + εA1,
ε3 = εA1 + εA2 + UA, ε4 = εD1 + εA1 + εA2 + UA, and ε5 =
εD2 + εA1 + εA2 + UA, respectively. As a result, the time evo-
lution equations for the population are governed by the kinetic
equations (detailed derivation in Appendix A)

dP0
dt

= (k01P1 − k10P0) + (k03P3 − k30P0), (7)

dP1
dt

= (k10P0 − k01P1) + (k12P2 − k21P1)

+ (k14P4 − k41P1), (8)

dP2
dt

= (k21P1 − k12P2) + (k23P3 − k32P2)

+ (k25P5 − k52P2), (9)

dP3
dt

= (k30P0 − k03P3) + (k32P2 − k23P3)

+ (k34P4 − k43P3), (10)

dP4
dt

= (k41P1 − k14P4) + (k43P3 − k34P4)

+ (k45P5 − k54P4), (11)

dP5
dt

= (k52P2 − k25P5) + (k54P4 − k45P5). (12)

This is a “classical” looking Pauli master equation where the
transition rates involved are quantum mechanical in nature.
For instance, kji (kj←i) denotes the rate of transition from
quantum state |i〉 to |j〉 (i, j = 0, 1, 2, 3, 4, 5 but i �= j),
which are given by

k10 = k43 = γL f (εL), (13)

k01 = k34 = γL[1 − f (εL)], (14)

k30 = k41 = k52 = γR f (εR), (15)

k03 = k14 = k25 = γR[1 − f (εR)], (16)

k21 = k54 ≡ kr + knr

= γ D
phtn(εr ) + γ D

phnn(εnr ), (17)

k12 = k45 ≡ k̃r + k̃nr

= γ D
pht[n(εr ) + 1] + γ D

phn[n(εnr ) + 1], (18)

k23 = γ DA
phn n(εDA), (19)

k32 = γ DA
phn [n(εDA) + 1]. (20)

The transition rates consist of two terms: (a) the rate coef-
ficient γ depends on the coupling strength through the bath
spectral function that characterizes the inverse timescale as-
sociated with the corresponding processes; (b) the second
term contains the information about the statistical proper-
ties of the quantum bath (fermionic and bosonic) through
its temperature-dependent autocorrelation functions [61]. It
can be classified into two categories, namely, the absorption
and relaxation processes. For a fermionic bath, the absorp-
tion or excitation process is governed by f (εα ), while the
deexcitation process is controlled by 1 − f (εα ) factor [29,35].
The f (εα ) is the Fermi-Dirac distribution which is given by
f (εα ) = 1/(eεα + 1) ≡ f (εji, μα, Tα ), where α = L, R, εα =
(εji − μα )/kBTα , and Tα is the temperature of the αth reser-
voir. In the case of bosonic (photon and phonon) bath, the
same factors are given by n(εβ ) and 1 + n(εβ ) [29], with n(εβ )
as the Bose-Einstein distribution n(εβ ) = 1/(eεβ − 1), for
β = r, nr, DA, where εr = (εD2 − εD1)/kBTS, εnr = (εD2 −
εD1)/kBTph, εDA = (�ε − UA)/kBTph, and TS (Tph) stands for
the temperature of the photon (phonon) bath, respectively.

We emphasize that Eqs. (7)–(12), along with their rate
coefficients calculated from the above microscopic picture,
are analogous to the phenomenological rate equations con-
sidered by Nitzan et al. [43–45] in their study of molecular
photocells. In terms of the occupation probabilities of the in-
dividual states, empirical definitions for the electron currents
used by Nitzan et al. [43], within the state-space model, can
be summarized as

JR = [k30P0 − k03P3] + [k41P1 − k14P4]

+ [k52P2 − k25P5], (21)

JL = [k10P0 − k01P1] + [k43P3 − k34P4], (22)

JS = kr[P1 + P4] − k̃r[P2 + P5], (23)

Jnr = knr[P1 + P4] − k̃nr[P2 + P5], (24)

JDA = k23P3 − k32P2. (25)

Here JR and JL are the electron currents leaving and enter-
ing the molecular system to and from the electrodes, JS and
Jnr are, respectively, the radiative (photon-induced) and non-
radiative (phonon-induced losses) electron currents between
the ground and excited states of the donor, and JDA is the
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FIG. 2. The fundamental basic graph (G) as well as its undi-
rected subcycles encompasses all possible quantum transport chan-
nels (networks) of the photovoltaic solar cell under nonequilibrium
conditions.

average current due to transfer of electrons (phonon induced)
between donor and acceptor molecules. While the above rate
equations can be solved numerically to obtain the steady-state
flux current JL = −JR = −JDA = JS + Jnr = J , it does not
reveal much about the actual mechanisms of the transport
processes involved. In what follows, we take advantage of
the cycle flux analysis scheme of the algebraic graph theory
[54–60] to gain a deeper insight into the underlying transport
channels of the molecular solar cells and explore the effect
of nonradiative losses on the thermodynamic efficiency of the
photocell.

III. CYCLE FLUX ANALYSIS

From Eqs. (7)–(12), we may rewrite the time evolution
equation of the population distribution Pi over the quantum
mechanical system states in the following compact form:

dPi
dt

=
5∑

j=0

[kijPj − kjiPi], j �= i (26)

subject to the condition
∑5

i=0 Pi = 1. Thus, it completely
characterizes the overall system where kji (kij) depicts the
open quantum system under nonequilibrium conditions with
forward (backward) transition rates listed in Eqs. (13)–(20).
With the help of higher-order kinetic expansion, dissipative
dynamics in presence of quantum coherence can be even
mapped onto kinetic network [51]. Therefore, without loss
of any generality, and following Ref. [49], the above dissi-
pative quantum dynamics can be effectively represented by
a network or graph, where nodes or vertices are assigned
to each quantum state, and edges or lines relate the allowed
transitions between them. In the present case, the basic graph
(G) depicted in Fig. 2 provides a useful visualization of
the system, with each vertex denoting a quantum state and
its associated probability Pi , and each edge representing a
pair of transition probabilities kji and kij , one for each

possible direction. Since the existence of the forward tran-
sition rate kji > 0 implies the reverse transition kij > 0 in
all practical circumstances, we may assume without loss of
any generality that our basic graph G is connected in the
sense that for each pair of states or vertices (i, j), i �= j,
there exists at least one sequence of transitions or edges
that connects them in both directions. If G is not connected,
the physical system represented by G can be decom-
posed into noninteracting subsystems, which can be analyzed
independently [56].

Despite the fact that the underlying master equation (26) is
linear and the uniqueness of the steady-state solution is guar-
anteed by the properties of the master equation, finding out the
complete analytical solutions of the steady-state populations
is a nontrivial task even for the simplest physical conditions
[56]. However, the diagrammatic representation of the system
in terms of its basic graph offers a highly versatile and effec-
tive tool to tackle such complicated problems [49,62,63]. For
instance, the steady-state solution of Pi of our basic graph is
defined as [54–56]

P̄i = �i/�, (27)

where �i is the sum of the weight of the spanning trees
rooted on ith state and � is the sum of weights of spanning
trees rooted on every individual state, i.e., � = ∑5

i=0 �i .
The above method was first invented by Kirchhoff in 1847
[64] in the context of network theory and, later on, rigor-
ously formulated by King and Altmann [65] in the context
of biochemical reactions. As a result, it is commonly referred
to as Kirchhoff’s theorem in the theory of network analysis
[56,63–65]. Here by spanning tree we refer to a covering
subgraph of the basic graph that contains all the vertices with
the minimum number of edges which is always connected
but contains no circuits (cyclic sequence of edges or cycle
trajectories). From Fig. 2, it is easy to understand that a
basic graph generally contains a large number of undirected
subcycles, and each subcycle is a combination of a pair of
two one-directional circuits or cycle trajectories C+ (counter-
clockwise) and C− (clockwise). The net cycle flux is therefore
given by the difference between the two circuit fluxes such as
JC = J+

C − J−
C . The notion of the “circuit flux” was introduced

by Kohler and Vollmerhaus [55], and has since been widely
employed to characterize a large variety of biological systems
[62,63,65–69]. In essence, it captures the frequency of circuit
completion along a specific cycle trajectory (C+ or C−) and
can be used to quantify the edge flux Ji→j = ∑

C J+
C − J−

C ,
as the summation of the differences between the circuit fluxes
along all cycle trajectories that include the edge i → j. For
example, the net edge flux J2→3 in Fig. 2 can be obtained by
J2→3 = (J+

C1
+ J+

C3
+ J+

C4
) − (J−

C1
+ J−

C3
+ J−

C4
).

Finally, the flux associated with each one-directional
“circuit” is determined by [54–56]

J±
C = �±

C

�C

�
. (28)

Here, �±
C represents the weight factor which is defined by

the product of transition rates along the cycle trajectory C±,
whereas the sum of the weights of the spanning trees rooted on
cycle C is given by �C and � measures the total weight of the
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spanning trees rooted on each individual state. As an example,
Fig. 3 displays three such cycles of our basic graph G and the
corresponding spanning trees that are rooted on them, where
the cycle C+

1 possesses a weight factor �+
C1

= k03k32k21k10.
In reality, enumerating the vast number of spanning trees
that are rooted in each individual vertices requires an

inconceivable amount of work, particularly as the graph size
escalates. Fortunately, we can navigate this problem by lever-
aging the generalized matrix-tree theorem from the algebraic
graph [49,62]. Upon rewriting the master equation in the form
dP
dt = −MP, where P = {P0, P1, P2, P3, P4, P5} is a column
matrix and

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k10 + k30 −k01 0 −k03 0 0

−k10 k01 + k41 + k21 −k12 0 −k14 0

0 −k21 k12 + k32 + k52 −k23 0 −k25
−k30 0 −k32 k03 + k23 + k43 −k34 0

0 −k41 0 −k43 k34 + k14 + k54 −k45
0 0 −k52 0 −k54 k25 + k45

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)

is the Laplacian (transition) matrix of the weighted graph, the
matrix-tree theorem provides a powerful recipe for calculating
the number of directed spanning trees rooted on a particular
cycle. Specifically, the matrix-tree theorem asserts that an ef-
fective expression for �C can be evaluated as the determinant
of the principal minor of the Laplacian matrix M of the basic
graph, namely, det(M[C;C]). In other words, the determinant
of the reduced matrix M[C;C] obtained by removing the
rows and columns indexed by i ∈ C of the original matrix
M is equal to the sum of the weights of directed spanning
trees rooted on C, i.e., �C = det(M[C;C]). As an example,
for the cycle C1, the reduced Laplacian matrix M[C1;C1] or
M[0, 1, 2, 3; 0, 1, 2, 3] and its determinant are given by

M[C1;C1] =
[

k34 + k14 + k54 −k45
−k54 k25 + k45

]
, (30)

det(M[C1;C1]) = k25(k34 + k14 + k54) + k45(k34 + k14).

(31)

Likewise, in the case of �i , the determinant related to the
principal minor of the M matrix can be derived by excluding
the relevant row and column that correspond to state i. Conse-
quently, �i can be represented by the determinant of M[i; i]

FIG. 3. (a) First three top-ranked cycle trajectories of our basic
graph G shown in Fig. 2. (b) Spanning trees rooted on the top-ranked
cycles C1, C3, and C4.

and the steady-state population P̄i can be precisely written as
the ratio of the determinants [49,62]

P̄i = �i

�
≡ det(M[i; i])∑

i det(M[i; i])
, (32)

where we identify � as the sum of determinants of the
principal minors of M, i.e.,

∑
i M[i; i]. Similarly, the one-

directional circuit flux can directly be calculated as a product
of two factors [49,62]

J±
C = �±

C

det(M[C;C])∑
i det(M[i; i])

. (33)

The first coefficient captures the weight of the cy-
cle in the particular direction, for instance, C1(0 →
1 → 2 → 3 → 0) in Fig. 3(a) has a counterclockwise
weight factor �+

C1
= k03k32k21k10. The subsequent term

involves a ratio of two determinants: The numerator
det(M[C1{0, 1, 2, 3};C1{0, 1, 2, 3}]) tallies with the weighted
summation of all five spanning trees rooted on C1 [Fig. 3(b)],
while the denominator

∑5
i=0 det(M[i; i]) serves as a con-

stant of normalization factor via a common term, representing
the total weight of the spanning trees rooted on each indi-
vidual state. In summary, the graph-theoretic representation
of the cycle flux can be intuitively understood as the flow
of weighted edges on spanning trees directed towards a cy-
cle, which is intricately linked to the frequencies at which
the cycle trajectory occurs. As a result, the determinant
det(M[C1;C1]) exemplified above can be alternatively com-
puted by means of the determinant det(N[k;k]) of a “new
graph” N which is obtained by merging the set of vertices
{0, 1, 2, 3} into a new vertex “k” within the initial graph M
[49], represented in Fig. 3(b) by the shaded region. Following
the same procedure, we can evaluate the cycle fluxes of all
the cycle trajectories of our basic graph and efficiently ranks
out the top-ranked cycle fluxes. The generalized matrix-tree
theorem thus provides valuable machinery by accomplishing
the behavior of weighted graphs and their corresponding cy-
cle fluxes. Notably, the proficiency of the cycle flux ranking
scheme improves with the size of the graph [49].
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FIG. 4. The circuit fluxes J±
C (in amperes) as a function of bias

voltage U (in volts) are plotted as follows: (a) top-ranked circuit
fluxes J+

C1
, J+

C3
, J+

C4
vs U (b) lowest-ranked circuit fluxes J−

C1
, J−

C3
, J−

C4

vs U (c) third- and fourth-ranked paired circuits J±
C2

and J±
C5

vs U ,
and (d) all circuit fluxes (in logarithm scale) vs U . The parameters
are μL = 0 eV, μR = μL + |e|U , εD1 = −0.1 eV, εD2 = 1.4 eV,
εA2 = 0.9 eV, UA = 0.25 eV, Tph = TL = TR = T , T = 300 K, TS =
6000 K, γL = γR = γ D

pht = γ D
phn = 0.01γ DA

phn and γ DA
phn = 1012 s−1 [43].

IV. RESULTS AND DISCUSSION

In what follows, we utilize the aforementioned ranking
scheme to examine the nonequilibrium transport characteristic
of PV solar cells. To unfold the working principle of
the donor-acceptor molecular junctions, we begin by
decomposing the PV cell network into subcycles or a
complete set of paired cycle trajectories. In the present case,
the basic graph (Fig. 2) consists of 5 subcycles or 10 paired
one-directional circuits (cycle trajectories). Subsequently,
the efficient cycle flux ranking scheme [cf. Eq. (33)] is
implemented to rank out the top-ranked cycle fluxes and
identify the major working cycles of the molecular solar cell.
In Fig. 4, we have plotted all the circuit fluxes against the bias
voltage U and notice that the cycle flux trajectories C+

1 (|1〉 →
|2〉 → |3〉 → |0〉 → |1〉) or (|1010〉 → |0110〉 → |0011〉 →
|0010〉 → |1010〉) and C+

4 (|1〉 → |2〉 → |3〉 → |4〉 → |1〉)
or (|1010〉 → |0110〉 → |0011〉 → |1011〉 → |1010〉)
are comparable in magnitudes and can be classified
as the first-ranked circuits. The second-ranked circuit
is found to be C+

3 (|3〉 → |4〉 → |5〉 → |2〉 → |3〉) or
(|0011〉 → |1011〉 → |0111〉 → |0110〉 → |0011〉). Both the
first- and second-ranked circuits are plotted in Fig. 4(a),
while C−

1 (|1〉 → |0〉 → |3〉 → |2〉 → |1〉) or (|1010〉 →
|0010〉 → |0011〉 → |0110〉 → |1010〉), C−

3 (|3〉 → |2〉 →
|5〉 → |4〉 → |3〉) or (|0011〉 → |0110〉 → |0111〉 →
|1011〉 → |0011〉), and C−

4 (|1〉 → |4〉 → |3〉 → |2〉 → |1〉)
or (|1010〉 → |1011〉 → |0011〉 → |0110〉 → |1010〉) are the
lowest-ranked cycle trajectories shown in Fig. 4(b). On the

FIG. 5. Dual axis plot of top-ranked cycle fluxes JC1 (azure blue),
JC3 (black), JC4 (green), and electron current J (blue) on the left
vertical axis (in amperes) as a function of voltage bias U and P
(red) on the right vertical axis (in watts). The parameters are the
same as mentioned in Fig. 4. The solid lines represents J (P) in the
presence of nonradiative loss process (γ D

phn = 1010 s−1) whereas the
dashed-dotted lines represent J (P) in the absence of nonradiative
losses (γ D

phn = 0).

contrary, the third-ranked paired circuits C±
2 correspond

to sequence of states (|1〉 ↔ |4〉 ↔ |3〉 ↔ |0〉 ↔ |1〉)
or (|1010〉 ↔ |1011〉 ↔ |0011〉 ↔ |0010〉 ↔ |1010〉),
and the fourth-ranked paired circuits C±

5 correspond to
sequence of states (|1〉 ↔ |2〉 ↔ |5〉 ↔ |4〉 ↔ |1〉) or
(|1010〉 ↔ |0110〉 ↔ |0111〉 ↔ |1011〉 ↔ |1010〉) are
plotted in Fig. 4(c). From Fig. 4(d), we can understand
that circuit fluxes corresponding to C±

2 and C±
5 are not only

several orders of magnitude smaller than the first- (C+
1 and

C+
4 ) and second-ranked (C+

3 ) cycle trajectories, they also have
an equal amount of flux current in both directions. Therefore,
the cycle affinity [46] A becomes zero upon the addition of
two counterpair cycle trajectories, where the cycle affinity is
defined as A = − lnK, K = �+

C /�−
C being the ratio of the

forward and the backward rates for a specific cycle. Since
the magnitude of the cycle flux is the difference between
the circuit fluxes JC = J+

C − J−
C , it follows immediately that

cycles C1, C3, and C4 possess nonzero flux current fulfilling
K �= 1, while cycle flux associated with C2 and C5 are
identically zero, satisfying K = 1.

As a result, we conclude that the C2 and C5 cycles do not
contribute to the overall photocurrent, and the entire contri-
bution to the electron current generated within the photocell
solely comes from the first- (C1 and C4) and second-ranked
(C3) cycles. We have made a dual-axis plot to illustrate the to-
tal current [J (U )] and the corresponding power [P = UJ (U )],
where P passes through a maximum in Fig. 5, as expected.
Our analysis reveals that the total current is really the sum
of the top three cycle fluxes, i.e., J = JC1 + JC4 + JC3 , re-
gardless of the presence or the absence of the nonradiative
loss processes due to γ D

phn. To make a proper comparison, we
have taken the parameter set used by Nitzan’s group [43] and
found excellent agreement with their results. Qualitatively,
one can understand that among the five possible cycles, those
cycles (C1, C3, and C4) which involve the |2〉 ↔ |3〉 transition,
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FIG. 6. Populations (in logarithm scale) of the different states as
a function of U (in volts). The parameters are μL = 0 eV, μR =
μL + |e|U , εD1 = −0.1 eV, εD2 = 1.4 eV, εA2 = 0.9 eV, UA =
0.25 eV, Tph = TL = TR = T , T = 300 K, TS = 6000 K, γL = γR =
γ D

pht = γ D
phn = 0.01γ DA

phn and γ DA
phn = 1012 s−1 [43].

contribute a finite amount to the overall electron current,
whereas subcycles C2 and C5 which do not possess this
edge, have zero contribution to the total current. This can
be attributed to the fact that among various possible elec-
tron transfer channels, those pathways are only relevant that
do involve the electron transfer between donor and acceptor
molecules. In graph-theoretical language, this corresponds to
subcycles with nonzero edge flux along |2〉 ↔ |3〉. Further-
more, it is evident from Fig. 5 that compared to first-ranked
cycles, the second-ranked cycle C3 makes a negligible con-
tribution to the overall electron current for the majority of
the parameter range. Consequently, the total flux current J is
simply twice that of the two individual first-ranked cycles. In-
tuitively, one expects the C1 electron transfer channel to be the
one and only exclusive route for the electron transfer pathways
in photovoltaic devices [45,46]. Surprisingly, our analysis re-
veals the existence of an equally important C4 pathway that
contributes to a similar extent to the overall photocurrent,
along with the natural C1 electron transfer channel. These
findings represent the first set of important results for our
efficient ranking scheme, which goes beyond the conventional
understanding of the electron transfer pathways in molecular
photovoltaics.

Second, it can be inferred from Fig. 5 that C1 and C4 op-
erate as first-ranked cycles, while C3 acts as a second-ranked
cycle for bias voltage U around ∼1 eV. After that, both the
net current as well as the power experience a simultaneous
drop. The explanation for this behavior can be acquired from
the population plot shown in Fig. 6, as a function of U .
For bias voltages U ∼ 1 eV, |1010〉 or |1〉 is the maximally
populated state, and both the highest-ranked cycles start with
the initial state |1010〉, represented by the curve P1 in Fig. 6.

In contrast, the second-ranked cycle C3 starts with a less
populated initial state |0011〉, denoted by P0. Notably, the first
two steps of the highest-ranked cycles are identical: It starts
with the electron transfer between the levels D1 to D2 at the
donor site that involve radiative (photon-induced) and non-
radiative (phonon-induced) processes, while the second step
designates the electron transfer between donor and acceptor
molecules. It is worth pointing out that the above two steps
of the highest-ranked cycles represent their counterclockwise
(forward) cycle trajectories, namely, C+

1 and C+
4 , respectively.

This is reasonable since the backward (clockwise) cycle flux
trajectories are negligible compared to their forward coun-
terpart and because of this reason it is the counterclockwise
or forward cycle trajectories that predominantly determine
the underlying directions of the cycle flux of the individual
subcycles. In particular, the dynamical steps of the cycle C+

1
are as follows: Starting from the neutral state |1010〉 (|1〉),
the system transits sequentially into |0110〉 (|2〉) by absorb-
ing the photon (electron transfer between D1 and D2 at the
donor site), followed by |3〉 or |0011〉 (via phonon relaxation),
|0〉 or |0010〉 (one electron tunnels from A2 of the acceptor
into the right electron reservoir), and finally returns to its
initial state |1〉 or |1010〉 (where one electron tunnels from the
left reservoir into D1 of the donor). Similarly, for cycle C+

4 ,
the first two processes are common with the cycle C+

1 [i.e.,
|1010〉 → |0110〉 (|1〉 → |2〉) and |0110〉 → |0011〉 (|2〉 →
|3〉)]. The system then changes its state from |0011〉 to |1011〉
or |3〉 → |4〉, i.e., one electron tunnel from the left reservoir
into D1 of the donor and, finally, returns backs to its initial
state |1〉 or |1010〉 (where one electron tunnels from the A2
of the acceptor into the right reservoir). So, these are the two
pertinent electron transfer pathways that play equivalent roles
in a typical donor-acceptor molecular junction photocell. For
all the numerical plots presented in Figs. 4–6, we have used
the same set the parameters as Nitzan et al. [43], which are
also reasonable from the experimental perspective as reported
in Refs. [70–72].

To understand the significant drop in the total electron
current and power, after a certain bias voltage in Fig. 5, we
need to examine the steady-state populations as shown in
Fig. 6. We observe that as long as the chemical potential of the
right reservoir μR reaches the energy level of εA2, the trend of
the populations obeys P1 � P0 > P3 
 P4 > P2 
 P5. How-
ever, once μR exceeds the energy of the acceptor level A2,
the probability of finding the system in states |1010〉 (P1),
|0010〉 (P0), and |0110〉 (P2) decreases sharply. Meanwhile,
the probability of finding the system in states |1011〉 (P4)
and |0111〉 (P3) increases rapidly. This indicates that electron
tunneling from the excited state of the acceptor into the right
reservoir becomes less favorable. As a result, the circuit fluxes
J+

C1
and J+

C4
remain constant until μR reaches the energy level

of εA2, and then decrease steadily after surpassing this energy
level. We can also analyze the second-ranked circuit flux J+

C3
,

which remains constant until μR reaches the energy level
εA2, and becomes maximum precisely at the midpoint of εD2

and εA2, i.e., 1.15 eV. By carefully analyzing Fig. 5, we can
see that we have varied the bias voltages by changing μR

while keeping all other parameters fixed. Now, Fig. 2 shows
that μR governs transitions between pairs of states where
the acceptor’s excited state is occupied in at least one of
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FIG. 7. Plot of η∗ [UmaxJC (Umax)/Q̇S] vs �ε (eV) in absence
of any nonradiative loss processes and the parameters are μL =
0 eV, μR = μL + |e|U , εD1 = −0.1 eV, εD2 = 1.4 eV, εA2 = εD2 −
�ε, UA = 0.25 eV, Tph = TL = TR = T , T = 300 K, TS = 6000 K,
γL = γR = γ D

pht = 0.01γ DA
phn , and γ DA

phn = 1012 s−1 [43]. Red and black
dashed lines represent the Carnot and Curzon-Ahlborn bounds,
respectively.

them. For the counterclockwise C1 cycle, the second last edge
(|3〉 ↔ |0〉) is controlled by μR, whereas, for C4, it is the last
edge (|4〉 ↔ |1〉) that is controlled by the bias voltage. Thus,
we get a single drop in the current vs voltage diagram as μR

crosses the value of εA2. In the case of the C3 cycle, the last
two edges [(|4〉 ↔ |5〉) and (|5〉 ↔ |2〉)] are controlled by μR.
Since μR controls both transitions, the cycle current will be
maximum when both transitions are favored optimally [35],
i.e., at the average value of both energy levels εD2 and εA2. For
the present choice of parameters, this turns out to be precisely
1.15 eV, as obtained in Fig. 5. From the above analysis, it
becomes clear that the donor-acceptor energy gap plays a
crucial role in determining the performance of the photocell.
To this end, in Figs. 7 and 8 we consider for our photo-
cell a real practical quantity of interest, i.e., the efficiency
at the maximum power as a function of the donor-acceptor
energy gap �ε = εD2 − εA2. To be precise, we define the
thermodynamic efficiency [43,68,69] at maximum power as
follows:

η∗ = Pmax

Q̇S
= UmaxJ (Umax)

Q̇S
(34)

≈ UmaxJC1 (Umax)

Q̇S
+ UmaxJC4 (Umax)

Q̇S
, (35)

where Umax denotes the bias voltage at which power passes
through a maximum, i.e., at U = Umax, power becomes
Pmax = UmaxJ (Umax). In Eq. (34), the denominator Q̇S =
�EJS(Umax) represents the total energy absorbed per unit
time from the radiation field, with �E being the energy gap
between the donor excited and ground levels. We rewrite the
expression of efficiency at maximum power in terms of the
two first-ranked cycle fluxes in Eq. (35), where each term
represents the contribution of its respective cycle to the overall
efficiency. From Figs. 7 and 8, we can conclude that the cycles

m
a
x

m
a
x

max max

max max

max max

FIG. 8. Plot of η∗ [UmaxJC (Umax)/Q̇S] vs �ε (eV) in presence
of nonradiative losses arising from γ D

phn and the parameters are
μL = 0 eV, μR = μL + |e|U , εD1 = −0.1 eV, εD2 = 1.4 eV, εA2 =
εD2 − �ε, UA = 0.25 eV, Tph = TL = TR = T , T = 300 K, TS =
6000 K, γL = γR = γ D

pht = 0.01γ DA
phn , and γ DA

phn = 1012 s−1 [43]. Red
and black dashed lines represent the Carnot and Curzon-Ahlborn
bounds, respectively.

C1 and C4 are the primary electron transfer channels across the
entire parameter space, regardless of whether radiative pro-
cess or nonradiative losses are at play. Interestingly, the plots
exhibit a distinctive peak in the behavior of η∗, in the presence
of nonradiative loss processes. In such situations, η∗ attains a
maximum value as a function of �ε, where the energy gap
�ε regulates the electron transfer process between donor and
acceptor (Fig. 8). Moreover, it is worth noting that although η∗
is bounded by the Carnot (ηC = 1 − T/TS), it can exceed the
standard Curzon-Ahlborn bound [73] (ηCA = 1 − √

T/TS) in
the absence of any nonradiative losses (Fig. 7). In other words,
the strength of nonradiative loss processes is found to have
a deleterious effect on the overall performance of the solar
cell. It may even reduce the efficiency at maximum power
at a value well below the ηCA as shown in Fig. 8. Hence,
in order to improve the device performance to its ultimate
level, it becomes crucial to diligently mitigate all forms of
nonradiative losses to a considerable extent.

V. CONCLUSION

We introduce the top-ranked cycle flux ranking scheme
of network analysis as a tool to elucidate the complex
working principles of molecular junction solar cells. Our
approach takes advantage of the mapping between the dissipa-
tive Lindblad master equation for molecular systems and the
quantum-transition network that characterizes the nonequi-
librium transport behavior of molecular photocells. We now
summarize our key insights as follows:

(i) We have provided a microscopic Hamiltonian de-
scription of the phenomenological rate equations that are
commonly used to characterize molecular junction solar cells.
Based on a minimal model Hamiltonian, classical looking
rate equations are derived from detailed quantum Lindblad
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master equations. The resulting rate equations, though appear
“classical,” the underlying transition rates are shown to be
quantum mechanical in nature.

(ii) With the implementation of the effective ranking
scheme, we have predicted the existence of a counterintuitive
electron transfer pathway, which provides valuable insights
into the detailed working principles of molecular photocells.
Through rigorous analysis, we have clearly justified that cy-
cles that contribute to the overall photocurrent must involve
nonzero edge flux between donor and acceptor molecules
embedded in a complex graph of quantum transition net-
works. We provide explanations for the drop in the current and
power when measured against the bias voltage, as well as the
various cycle fluxes. Our result advances the conventional un-
derstanding of nonequilibrium electron transfer pathways in
donor-acceptor molecular junction solar cells which might be
a significant step toward making efficient photovoltaic devices
in the near future.

(iii) Finally, we obtain a crucial insight into the efficiency
of photocells, revealing that their maximum power efficiency
in the absence of nonradiative losses can exceed the con-
ventional Curzon-Ahlborn bound, yet abide by the Carnot
limit. Nonetheless, the incorporation of a nonradiative recom-
bination process at the donor site has been found to have a

detrimental effect on the photocell’s performance, reducing
its efficiency at maximum power, below the Curzon-Ahlborn
limit. These findings underscore the intricacies of various
factors that govern the overall performance of molecular pho-
tovoltaics. While in this work top-ranked cycle fluxes capture
the essential physics of molecular junction solar cells, future
research can take into account other additional effects, such
as environment-assisted electron transfer and recombination
rates [41], Marcus homogeneous and heterogeneous electron
transfer rates [44], from a similar perspective. Thus, the cur-
rent approach offers important insights for further research in
the field of photovoltaics.
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APPENDIX: DERIVATION OF THE LINDBLAD MASTER EQUATION AND THE ELECTRON CURRENTS

The total Hamiltonian of the system interacting with the environments (baths) can be written as

HT = Hel + HB + HSB, (A1)

where Hel is the Hamiltonian of the molecular system and HB is the total bath Hamiltonian which is given by HB = HL + HR +
Hpht + Hphn. The interaction Hamiltonian between different baths and molecular sites is given by

HSB = HI + Hpht
I + Hphn

I . (A2)

Here, HI = HL
I + HR

I represents the interaction of the molecular sites (donor HOMO and acceptor LUMO) with the left and
right electrodes. Hpht

I characterizes the interaction of the photon bath with the donor site only, and Hphn
I denotes the interaction

of the phonon bath with the respective molecular sites [17,18,41]. For convenience, we rewrite the interaction Hamiltonians
[Eqs. (3)–(5)] of the main text as

HL
I =

∑
l

h̄gl (d
†
l cD1 + c†

D1dl ), HR
I =

∑
r

h̄gr (d†
r cA2 + c†

A2dr ), Hpht
I =

∑
k

h̄gD
k (a†

kc†
D1cD2 + c†

D2cD1ak ),

Hphn
I =

∑
q

h̄gD
q (b†

qc†
D1cD2 + c†

D2cD1bq) +
∑

q

h̄gDA
q (b†

qc†
A2cD2 + c†

D2cA2bq). (A3)

In order to derive the master equation, one can start with the von Neumann equation for the total density matrix ρT in the
interaction picture which is given by

dρT

dt
= − i

h̄
[HSB(t ), ρT (t )]. (A4)

Under the Born-Markov approximation, the master equation in terms of the reduced density matrix ρ of the system can be
written as [26,34,35]

dρ(t )

dt
= − 1

h̄2 TrB

∫ ∞

0
ds[HSB(t ), [HSB(t − s), ρT (t )]], (A5)

where ρ(t ) = TrB{ρT } ≡ TrL,R,pht,phn{ρ(t ) ⊗ ρL ⊗ ρR ⊗ ρpht ⊗ ρphn} and TrL,R,pht,phn stands for the trace over each bath degrees
of freedom. As a result, we can rewrite Eq. (A5) as

dρ(t )

dt
= − 1

h̄2 TrL,R,pht,phn

∫ ∞

0
ds[HSB(t ), [HSB(t − s), ρ(t ) ⊗ ρL ⊗ ρR ⊗ ρpht ⊗ ρphn]]. (A6)
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Since the bath operators obey the relations

TrL[dl (t )ρL] = 0 = TrL[d†
l (t )ρL], TrR[dr (t )ρR] = 0 = TrR[d†

r (t )ρR],

Trpht[ak (t )ρpht] = 0 = Trpht[a
†
k (t )ρpht], Trphn[bq(t )ρphn] = 0 = Trphn[b†

q(t )ρphn], (A7)

one can verify that [34,35]

TrL,R,pht,phn
{[

Hα
I (t ),

[
Hβ

I (t − s), ρ(t ) ⊗ ρL ⊗ ρR ⊗ ρpht ⊗ ρphn
]]} = 0, α �= β, α, β = L, R, pht, phn. (A8)

This simplifies Eq. (A6) to

dρ(t )

dt
= − 1

h̄2

∑
α

TrL,R,pht,phn

∫ ∞

0
ds

[
Hα

I (t ),
[
Hα

I (t − s), ρ(t ) ⊗ ρL ⊗ ρR ⊗ ρpht ⊗ ρphn
]]

. (A9)

In the above equation, we use the interaction picture system operators as [26]

csi(t ) = eiHelt/h̄csie
−iHelt/h̄ =

∑
{εji}

e−iεjit/h̄csi,

c†
si(t ) = eiHelt/h̄c†

sie
−iHelt/h̄ =

∑
{εji}

eiεjit/h̄c†
si, s = D, A and i = 1, 2 (A10)

where εji = εj − εi > 0 is the transition energy associated with the jth and ith states of the molecular system. Similarly, one
can also evaluate the expressions for the interaction picture bath operators [26]. With the above prescriptions, we can derive after
a little bit of algebra the compact form of the following Lindblad master equation:

dρ

dt
= LL[ρ] + LR[ρ] + LD

pht[ρ] + LD
phn[ρ] + LDA

phn[ρ]. (A11)

The explicit forms of the Lindblad superoperator L in the above equation are given by

LL[ρ] =
∑
{εL}

γL

[
f (εL, μL, TL)

(
c†

D1(εL)ρcD1(εL) − 1

2
{cD1(εL)c†

D1(εL), ρ}
)

+ [1 − f (εL, μL, TL)]

(
cD1(εL)ρc†

D1(εL) − 1

2
{c†

D1(εL)cD1(εL), ρ}
)]

, (A12)

LR[ρ] =
∑
{εR}

γR

[
f (εR, μR, TR)

(
c†

A2(εR)ρcA2(εR) − 1

2
{cA2(εR)c†

A2(εR), ρ}
)

+ [1 − f (εR, μR, TR )]

(
cA2(εR)ρc†

A2(εR) − 1

2
{c†

A2(εR)cA2(εR), ρ}
)]

, (A13)

LD
pht[ρ] =

∑
{εD}

γ D
pht

[
n(εD, TS)

(
V †

D (εD)ρVD(εD) − 1

2
{VD(εD)V †

D (εD), ρ}
)

+ [n(εD, TS) + 1]

(
VD(εD)ρV †

D (εD) − 1

2
{V †

D (εD)VD(εD), ρ}
)]

, (A14)

LD
phn[ρ] =

∑
{εD}

γ D
phn

[
n(εD, Tph )

(
V †

D (εD)ρVD(εD) − 1

2
{VD(εD)V †

D (εD), ρ}
)

+ [n(εD, Tph ) + 1]

(
VD(εD)ρV †

D (εD) − 1

2
{V †

D (εD)VD(εD), ρ}
)]

, (A15)

LDA
phn[ρ] =

∑
{εDA}

γ DA
phn

[
n(εDA, Tph )

(
V †

DA(εDA)ρVDA(εDA) − 1

2
{VDA(εDA)V †

DA(εDA), ρ}
)

+ [n(εDA, Tph ) + 1]

(
VDA(εDA)ρV †

DA(εDA) − 1

2
{V †

DA(εDA)VDA(εDA), ρ}
)]

, (A16)

where we define the operators {V †
D = c†

D2cD1, VD = c†
D1cD2}

and {V †
DA = c†

D2cA2, VDA = c†
A2cD2} as the combination of

system operators that are responsible for the transition
between donor ground and excited states, as well as

the transition between the excited states of the donor
and acceptor molecules, respectively. The electron
transfer rates corresponding to their respective bath are
characterized by the various γ ’s. Their explicit forms
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in terms of the system-reservoir coupling constants
can be calculated by Fermi’s golden rule, as γL (R) =∑

l (r) 2π h̄|gl (r)|2δ(ε − εl (r) ), γ D
pht = ∑

k 2π h̄|gD
k |2δ(ε − εk ),

and γ r
phn = ∑

q 2π h̄|gr
q|2δ(ε − ε′

q) where r = D, DA. The
function f (ε, μ, T ) = [e(ε−μ)/kBT + 1]−1 is the Fermi-Dirac
distribution for the left (L) and right (R) bath with
energy ε, chemical potential μ, and temperature T ,
respectively. Analogously, n(ε, T ) = [eε/kBT − 1]−1 is the
Bose-Einstein distribution corresponding to the photon
and phonon baths with energy ε and temperature T ,
respectively. The distribution functions are obtained by
tracing over the respective bath density operator. For
examples, TrL (R)(d

†
l (r)dl (r)ρL(R)) = f (εl (r), μL (R), TL (R)),

and TrL (R)(dl (r)d
†
l (r)ρL (R)) = 1 − f (εl (r), μL(R), TL (R)),

where the bath operators d†
l (r) and dl (r) obey anticom-

mutation relation, whereas, Trpht (a
†
kakρpht ) = n(εk, TS),

Trpht (aka†
kρpht ) = 1 + n(εk, TS), and Trphn(b†

qbqρphn) =
n(ε′

q, Tph ), Trphn(bqb†
qρphn) = 1 + n(ε′

q, Tph ) where the

operators a†
k (b†

q) and ak (bq) follow commutation relations.
In both cases, kB is the Boltzmann constant and the transition
energies driven by the L(R) baths are εL = ε10, ε43, and
εR = ε30, ε41, ε52, respectively, while εD = ε21, ε54 (driven
by both photon and phonon bath), and εDA = ε23 (driven
by phonon bath). Finally, we note that the creation and
annihilation operators can be expressed in terms of the system
eigenstates in the following form:

c†
D1 = |1〉〈0| + |4〉〈3|, cD1 = |0〉〈1| + |3〉〈4|,

c†
D2 = |2〉〈0| + |5〉〈3|, cD2 = |0〉〈2| + |3〉〈5|,

c†
A2 = |3〉〈0| + |4〉〈1| + |5〉〈2|,

cA2 = |0〉〈3| + |1〉〈4| + |2〉〈5|. (A17)

So, the time evolution of the occupation probabilities, which
are the diagonal elements of the reduced density matrix Pi =
〈i|ρ|i〉, can be obtained using the Lindblad master equa-
tion [Eq. (A11)] in the following way. For example,

dP0
dt

= 〈0|dρ

dt
|0〉 = 〈0|LL[ρ]|0〉 + 〈0|LR[ρ]|0〉 + 〈0|LD

pht[ρ]|0〉 + 〈0|LD
phn[ρ]|0〉 + 〈0|LDA

phn[ρ]|0〉, (A18)

and the first term of the right-hand side can be calculated by using Eqs. (A12) and (A17) as

〈0|LL[ρ]|0〉 = 〈0|
∑
{εL}

γL

[
f (εL, μL, TL)

(
c†

D1ρcD1 − 1

2
{cD1c†

D1, ρ}
)

+ [1 − f (εL, μL, TL)]

(
cD1ρc†

D1 − 1

2
{c†

D1cD1, ρ}
)]

|0〉

= γL f (ε10, μL, TL)

(
〈0|1〉〈0|ρ|0〉〈1|0〉 − 1

2
〈0|0〉〈0|ρ|0〉 − 1

2
〈0|ρ|0〉〈0|0〉

)

+ γL(1 − f (ε10, μL, TL))

(
〈0|0〉〈1|ρ|1〉〈0|0〉 − 1

2
〈0|1〉〈1|ρ|0〉 − 1

2
〈0|ρ|1〉〈1|0〉

)

= γL[1 − f (ε10, μL, TL)]P1 − γL f (ε10, μL, TL)P0 ≡ k01P1 − k10P0. (A19)

Here we identify ε10 = ε1 − ε0 = εD1. Similarly, one can check that the second term reduces to

〈0|LR[ρ]|0〉 = γR[1 − f (ε30, μR, TR)]〈3|ρ|3〉 − γR f (ε30, μR, TR )〈0|ρ|0〉
= γR[1 − f (ε30, μR, TR)]P3 − γR f (ε30, μR, TR )P0 ≡ k03P3 − k30P0, (A20)

and the last three terms 〈0|LD
pht[ρ]|0〉, 〈0|LD

phn[ρ]|0〉, and
〈0|LDA

phn[ρ]|0〉 are equal to zero. Combining these results, we
obtain from Eq. (A18)

dP0
dt

= (k01P1 − k10P0) + (k03P3 − k30P0), (A21)

which corresponds to our main text equation (7) and the cor-
responding transition rates are summarized in Eqs. (13)–(20)
of the main text. Following a similar procedure, we can derive
all the main text equations (8)–(12) for the population dynam-
ics. In terms of the occupation probabilities of the individual
states, phenomenological expressions for the electron currents
can be written following Nitzan et al. [43] as

JL = [k10P0 − k01P1] + [k43P3 − k34P4], (A22)

JR = [k30P0−k03P3] + [k41P1 − k14P4] + [k52P2 − k25P5],

(A23)

JS = kr[P1 + P4] − k̃r[P2 + P5], (A24)

Jnr = knr[P1 + P4] − k̃nr[P2 + P5], (A25)

JDA = k23P3 − k32P2. (A26)

Here JL (JR) is the electron current entering (leaving) the
molecular system from (to) the electrodes, JS and Jnr are,
respectively, the radiative (photon-induced) and nonradiative
(phonon-induced losses) electron currents between ground
and excited states of the donor, and JDA is the average cur-
rent due to transfer of electrons between donor and acceptor
species. Following Ref. [41], one can derive the same from
the microscopic picture, starting from the Lindblad master
equation (A11). In particular, steady-state electron currents
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can be obtained by using the following definitions:

JL = Tr{NLLL[ρ]}, (A27)

JR = Tr{NRLR[ρ]}, (A28)

JS = Tr{NDLD
pht[ρ]}, (A29)

Jnr = Tr{NDLD
phn[ρ]}, (A30)

JDA = Tr{NDALDA
phn[ρ]} (A31)

of current where NK (K = L, R, D, DA) is the number opera-
tor which is defined as

NL = c†
D1cD1 = |1〉〈1| + |4〉〈4|,

NR = c†
A2cA2 = |3〉〈3| + |4〉〈4| + |5〉〈5|,

ND = V †
DVD = c†

D2cD1c†
D1cD2 = |2〉〈2| + |5〉〈5|,

NDA = V †
DAVDA = c†

D2cA2c†
A2cD2 = |2〉〈2|. (A32)
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