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Many real-world time series exhibit both significant short- and long-range temporal correlations. Such
correlations enhance the errors of linear trend analysis. In this paper, we provide a general framework for trend
analysis under the consideration of such correlations. We propose a parsimonious model containing both a single
short-range autoregressive parameter and long-range fractional parameter. We derive analytical closed-form
results for the error bars of the least-squares estimate of the trend for such time series, highlighting the different
effects of short- and of long-range correlations. We employ an ensemble method for the automated extraction
of scaling regions to estimate the fractional parameter of the data model together with its error bar, and the
Grünwald-Letnikov derivative for the identification of the autoregressive parameter. We apply this framework to
the study of warming trends on gridded temperature data in central Europe. We make use of the redundancy of
the trend signal in adjacent grid points using methods of spatial averaging and the first principal component of
empirical orthogonal function analysis. We find good agreement between the results of these two methods. We
find a statistically significant decadal warming trend in central Europe over the past 70 years, which shows a
particularly dramatic increase over the past 20 years.
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I. INTRODUCTION

Linear trend analysis plays a prominent role in geo-
science [1], where it is used to quantify the temperature
increases relevant to global warming [2–9], trends in stream
flow [10–13], and precipitation [14–16], among other things
[17]. It also has applications in many other fields such
as medicine, where trend analysis is used to study mor-
tality rates [18], and cognitive neuroscience [19], where
linear modeling has become increasingly ubiquitous, being
used, for example, to model neural responses to speech and
language [20,21].

Typically, in trend analysis the time series is considered
a (weak) trend plus a (large amplitude) fluctuation noise
term. The statistical significance of an observed trend depends
crucially on the null hypothesis, which in turn reflects as-
sumptions about the nature of the underlying system. If the
noise, for example, has a persistent nature, which is not cor-
rectly identified in the null hypothesis, then persistent patterns
in the noise may be incorrectly interpreted as trends. Such
correlations in the noise when correctly taken into account
thus generally weaken the trend significance [22]. It is, for
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example, a challenging problem to determine to what extent
global warming may be a consequence of an external forcing
such as increased CO2 levels, and to what extent it is an
intrinsic feature of the fluctuations themselves.

Most often this noise is assumed to be a simple kind
of short-range correlation (SRC) process with a converg-
ing autocorrelation time [23,24]. However, much evidence
has emerged that geophysical time series generally exhibit
long-range correlations (LRCs), having a diverging autocor-
relation time [25,26]. LRC has been widely reported in time
series of surface temperature records [27–29] and is well de-
scribed by a fractional Gaussian process [30,31]. The effects
of LRC on trend detection has been considered, for example,
in Refs. [32–39].

Some recent studies have suggested that temperature
anomalies, i.e., daily deviations of temperature from its clima-
tological seasonal cycle, exhibit both short- and long-range
correlations (SLRCs) and that a combination of both an au-
toregressive and a fractional parameter is most appropriate for
describing such anomalies [40,41]. An analytical treatment of
trend estimates for such a series has been an open problem.
Such a treatment is desirable, since in this way significantly
more accurate statements can be made about the statistical
likelihood of the trend compared to when using Monte Carlo
methods. We present here analytically derived expressions for
the uncertainty in trend estimation in the presence of SLRC
which show how both correlation types contribute to estima-
tion errors. Our results reproduce the already known results
for SRC and for pure LRC as special cases. Further, we pro-
vide robust methods for obtaining the short- and long-range
parameters.
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Generally, in climate science interest is not only in the
trend of a single time series, but more generally the trend
of a spatial region [42]. Thus, beyond the considerations of
temporal correlations in the noise, considerations of spatial
correlations should also be taken into account. The use of
spatially distributed data allows for more rigorous results. The
analysis of such data is, however, nontrivial, since neighboring
time series are highly correlated with each other, thus the
information gained from each new station is less than it would
be if the stations were independent.

A straightforward approach to spatially distributed data is
to create an averaged signal by performing a spatial average
of the local time series. For areas, which are not too large,
however, we will argue that a more natural way to obtain the
overall regional trend is to use empirical orthogonal functions
(EOFs), commonly also referred to as principal component
analysis (PCA) [43,44]. EOF analysis offers an objective way
to reduce noise in the data by filtering out regional anomalies
that distort the overall trend (for example, mountain ranges) as
higher order components [45]. EOFs being based on the spa-
tial covariance structure of the data are better for large-scale
analysis than analytical correlation-versus-distance functions
as these cannot take account of geographically varying tele-
connections [46]. Both methods of averaging increase the
statistical significance of the trend, since they reduce the fluc-
tuations whilst at the same time conserving the trend.

This paper is organized as follows. After introducing the
trend model and the notion of short- and of long-range cor-
related processes, we provide a rigorous argumentation for
the existence of SLRC in a time series of station tempera-
ture anomalies and show that an auto-regressive fractionally
integrated moving average model, i.e., ARFIMA(1,d ,0), is a
sufficient model as well as how to estimate the parameters of
this model. We propose a method to obtain the Hurst exponent
H , where d = H − 1/2 by combining detrended fluctuation
analysis (DFA) with a recently introduced method of auto-
mated extraction, which provides values for the uncertainty of
d , and then proceed to derive the autoregressive parameter φ

by first removing the LRCs. In the following section, we pro-
vide an analytical formula for the variance of the least-squares
trend estimator for finite samples of an ARFIMA(1,d ,0) pro-
cess. With this, both the p value and the confidence interval of
an observed trend can be easily obtained for any SLRC time
series. In the second half of this paper, we turn our attention to
spatially distributed time series. We show that while the trends
of the grid points are statistically likely for the estimated
values of d , this result depends very sensitively on d . To
obtain a single value for the spatial region, we compare the
results for both the spatially averaged time series and the first
principal component (PC), using a variation of EOF analysis.
We then estimate the warming trend of central Europe and
its statistical significance, showing that while for some grid
points the warming trend is insignificant, the regional average
is nevertheless significant.

II. UNCERTAINTY OF TREND ESTIMATES
IN SLRC TIME SERIES

The key idea of linear trend analysis is that the time series
Tt can first be preprocessed to remove periodic variations and

that the resulting anomalies can then be partitioned into a
deterministic linear trend component and a fluctuating com-
ponent such that

Tt = n + mt + εt , (1)

where n is the offset, m is the trend coefficient, and εt repre-
sents the noise, which is assumed to be a stationary process of
zero mean.

Most commonly, when SRC is considered, the fluctuations
are assumed to be of the form of a stochastic autoregressive
AR(1) process,

εt+1 = φ εt + ξt , (2)

where φ ∈ (−1, 1) is the autoregressive parameter and ξt is
Gaussian white noise (WN). Clearly, when φ = 0 this process
corresponds to discrete WN. The AR(1) process can also be
written with the backshift operator B as (1 − φB)εt = ξt [23].
Such noise has an autocorrelation, which decays exponen-
tially with a decay time τ = −1/ ln φ. Notice that the variance
of the AR(1) process depends on the parameter φ, so we later
use an additional normalization.

When, on the other hand, an LRC process is consid-
ered, the standard one-parameter time-discrete model is the
ARFIMA(0,d ,0) process [47,48], which is a time discrete ver-
sion of fractional Gaussian noise [49]. The ARFIMA process
can be written as εt = (1 − B)−dξt , where d ∈ (−0.5, 0.5)
and (1 − B)−d is known as the time-discrete fractional dif-
ferencing operator [48,50], related to the Hurst exponent as
d = H − 0.5. For the purpose of generating numerical time
series data, it is more appropriate to consider the expansion
[23]

εt =
∞∑
j=0

�( j + d )

�( j + 1)�(d )
B jξt , (3)

where in practice one truncates the sum over j at a large but
finite number. Such noise εt has an autocorrelation, which
decays asymptotically for large time lags τ as a power law
c(τ ) � τ−γ with the power γ = 1 − 2d .

In discrete time, we consider SLRC to be a combination of
both these effects, known as an ARFIMA(1,d ,0) process [48],
given by replacing the WN ξt in Eq. (2) by the power-law
correlated noise on the right-hand side of Eq. (3):

εt = φεt−1 +
∞∑
j=0

�( j + d )

�( j + 1)�(d )
ξt− j . (4)

This is the most parsimonious model of SLRC noise, contain-
ing only two parameters φ and d corresponding to SRC and
LRC, respectively.

A. An ARFIMA(1,d,0) model for temperature anomalies

We now demonstrate both the existence and implications of
an SLRC process in a daily 2 meter above ground air tempera-
ture time series using the Potsdam station in Germany [51] as
an example. As common in meteorological data analysis, we
first remove the periodicity of the annual cycle by subtracting
from every value of the time series the averaged value for the
given calendar day of the year to obtain the anomalies. For
example, from the temperature at Jan. 1, 1970, we subtract

034301-2



TREND ANALYSIS IN THE PRESENCE OF SHORT- AND … PHYSICAL REVIEW E 108, 034301 (2023)

FIG. 1. (a) Anomalies of Potsdam temperature time series with
the OLS fit of the trend. (b) DFA2 method to obtain parameter d .
Some of the different fitted power laws are shown (each with a
different color). (c) Plot to obtain φ using a linear fit.

the average temperature of Jan. 1, averaged over all the years
of our time series. It has been verified that another method
involving fitting a sinusoidal function to the data series as the
annual cycle and subtracting this yields anomalies with the
same statistical properties. The resulting time series is then
assumed to be of the form of Eq. (1). The anomalies are to a
good approximation Gaussian distributed [40].

The estimated trend m̂ is then obtained by fitting a linear
model to the data using ordinary least squares (OLS) [52,53],
which is justified, since noise has been shown to be Gaussian
[40] in good approximation, and thus the estimators are also
Gaussian, since it relies on a linear combination. We note
that even for the case that the noise is not Gaussian, the
OLS estimate of the slope parameter m has been shown to
be asymptotically normal as long as d �= 0.5 [54].

We restrict the data set to the years 1950–2020, the period
over which most of the significant global warming is believed
to have happened. We note [as can be seen in Fig. 1(a)] that
even in this timeframe, the temperature increase is somewhat
stronger than linear. While techniques such as ensemble em-
pirical mode decomposition have been introduced to address
this, a linear fit is most commonly chosen in the literature as
it is a well-justified first-order approximation and is amenable
to analytical treatment.

To test for LRC properties d of the Potsdam time series,
we use DFA [55–57]. In DFA(k), long-term correlations can
be measured while removing trends of order k by dividing the
cumulative sum of the time series Tt into time windows of
length s samples each, and in each window fitting that part
of the series with a polynomial fit Yt of order k. The squared
differences between polynomial fit and the cumulative signal
are then accumulated to form the fluctuation function F 2(s)
as a function of the scale s (window length), which obeys a
power law [see Fig. 1(b)].

This scaling region is typically fitted by eye, which is sub-
jective and often challenging due to curvatures from crossover

FIG. 2. Histograms and corresponding kernel smoothed proba-
bility distributions of d with errors (for both DFA2 and DFA3) for
the Potsdam temperature anomalies time series.

effects [58]. Here we apply a recently introduced general
automated method for fitting scaling regions to the task of
accurately determining the Hurst exponent. This method was
introduced by Deshmukh et al. in a different context of esti-
mation of fractal dimensions and Lyapunov exponents [59].
The idea is to first create an ensemble of intervals of s values
by considering all possible combinations of end points, gener-
ating a distribution of slopes from least-squares fits weighted
by the length of the fitting line and the inverse square of the fit
error [shown in Fig. 1(b)]. This set of values is then smoothed
using a nonparametric Gaussian kernel to yield a PDF of the
slopes. The mode of this distribution gives an estimate of the
slope of the scaling region (shown in Fig. 2).

A major advantage of this method is that from the distri-
bution of slopes, we can derive an estimate of the error of
d . The upper and lower errors are given by the respective
half-width half heights of this distribution. It can be seen that
the upper error is significantly larger than the lower error.
This is due to DFA tending to have a range of small s values
where the increase is more steep, which is due to exponential
correlations in the data. It can be seen that for higher order
the histogram becomes much less sharply peaked, and the
error for d becomes correspondingly bigger. This will be very
important for calculation of the p values later in this paper.

For DFA2, we obtain a value of d = 0.173+0.053
−0.040 while for

DFA3 we obtain a value of d = 0.19+0.18
−0.06. The value of d for

DFA3 lies within the error bounds of d obtained by DFA2.
The value of d for DFA3 is observed to be larger than that of
DFA2, presumably because as previously mentioned the trend
of the temperature anomalies is observed to increase more
strongly than linear. k = 4 like k = 3 also lies comfortably
within the margin of error of k = 2. We note that this tech-
nique for obtaining an accurate estimation of d with an error
can also be used in conjunction with other methods, which
rely on scaling to obtain d such as wavelet analysis [60,61] in
exactly the same way.

To quantify the autoregressive component responsible for
purely SRCs in the noise, we first rewrite Eq. (3) as

(1 − B)dεt =
∞∑
j=0

(−1) j

(
d

j

)
εt− j . (5)
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The term on the right-hand side is known as the first-order
finite-difference approximation of the Grünwald-Letnikov
derivative Dd

t εt ≡ ε̃t . We can now remove LRC from a general
ARFIMA process by applying the Grünwald-Letnikov deriva-
tive to both sides to obtain an ARIMA process. In our case,
(1 − φB)εt = (1 − B)−dξt becomes (1 − φB)Dd

t εt = ξt , and
thus we obtain a purely autoregressive process ε̃t = φε̃t−1 +
ξt . This is a general method for Gaussian noise to derive an
SRC time series from an SLRC time series [62]. We use the
value of d obtained before by DFA.

The resulting time series ε̃ is observed to have a close to
exponential decay. The Akaike information criterion suggests
that an autoregressive short memory model AR(1) [as given
by Eq. (2)] is a significantly better fit than WN. Increasing the
order of the AR process further still is not observed to signifi-
cantly improve AIC further. The autoregressive parameter φ is
obtained by plotting the data in the (Tt+1, Tt ) plane and using
a linear fit [shown in Fig. 1(c)], which yields φ = 0.679. It
can be seen that the clustering of points corresponds nicely
to a bivariate Gaussian distribution, as expected for a discrete
autoregressive process.

With the parameters φ and d thus obtained, we run the
ARFIMA(1,d ,0) model and can verify that its autocorrelation
function agrees well with the one of the temperature anoma-
lies Tt on time lags up to 50. This agreement is far superior to
that of an AR(1) model or ARFIMA(0,d ,0) model.

The Potsdam temperature anomalies time series together
with its linear fit is shown in Fig. 1(a), where the estimated
trend is m = 0.29 ± 0.09 K/decade (p value of 0.0011) for
this data set, where the error estimate refers to one standard
deviation.

B. Statistical significance

To obtain the statistical significance of the trend, we use
the correlation properties of the noise to study trend estimates
of samples of the null hypothesis that there is no trend. We
denote the distribution of estimated as trends P(m; N ), where
m is the trend and N is the length of the time series. On
samples satisfying the null hypothesis, this distribution can
be assumed to be Gaussian with mean zero, since it is an OLS
estimator, and as such is unbiased and consistent.

Since the distribution of trends P(m; N ) of the null hypoth-
esis is approximately Gaussian and of mean zero, it is clear
that only knowledge of the variance σ 2[m̂] is further needed
to obtain not only a measure of the error of the trend but
also the statistical significance of the observed trend. This
is given by the p value, defined as the probability that the
trend estimate for data satisfying the null hypothesis is larger
than this observed trend (one-sided test) or that it differs more
from zero than the observed trend (two-sided test). Using a
two-tailed test and considering symmetry of P(m; N ), this is
given by

p(m̂; N ) = 2
∫ ∞

m̂
P(m′; N ) dm′. (6)

As is common in the literature, we consider the observed
trend to be statistically likely if the p value is less than 5%.
For a Gaussian distribution P(m; N ), this is the case when

FIG. 3. Histograms show estimated trends of Monte Carlo nu-
merically generated trendless ARFIMA(0,d ,0) and ARFIMA(1,d ,0)
time series (representing the null hypothesis) for Potsdam station
data. Fitted using Gaussian distribution. Dashed lines are 95% confi-
dence interval, and red line is measured trend of the Potsdam series.

the observed trend is approximately more than two standard
deviations away from zero (μ ± 2σ ) [63].

Increasing the parameters φ and d increases the noise
persistence, which may give the appearance of a trend,
even where none exists. Indeed, numerical trend estimates
of ARFIMA time series without trend can yield both pos-
itive and negative trend values. We create the distributions
of estimated trend values numerically for samples of 1000
time series of equal length as the Potsdam data and with the
parameters φ and d obtained from the data. It can be seen
that ARFIMA(1,d ,0) has a wider distribution than that of
ARFIMA(0,d ,0), due to the larger persistency of these noise
anomalies (see Fig. 3). The measured trend of the Potsdam
time series is significantly larger than the upper 95% confi-
dence interval of both and is thus considered to be statistically
significant. When using Monte Carlo estimates, we obtain
p(0,d,0) = 3.4 × 10−9 and p(1,d,0) = 0.00081.

Due to the fact that the p value depends only on the tails
of the distribution, it is very sensitive to differences in the
value of d . If we use the upper error bar of DFA2 d + 	d =
0.216 instead of d = 0.173, then we obtain, for example,
p(1,d+	d,0) = 0.011, more than an order of magnitude larger.
The p value for this reason also varies a lot if we repeat the
Monte Carlo simulations with a different ensemble of trajec-
tories. A more reliable estimate of the p value can be obtained
using analytics, which will be the focus of the next section.

C. Analytical results for trend significance

We now give an analytical expression for how the variance
of the OLS estimator m̂ for SLRC time series depends on the
autoregressive parameter φ, the fractional parameter d and the
time-series length N .

The result of the OLS fit m̂ of the linear trend can be
rewritten as a linear filter on the time series for which the fit is
performed. Assuming Eq. (1) as the proper time series model
we find (see Appendix) that m̂ = m + ∑N

t=1 atεt , where the
weight is given by

at = 12t − 6(N + 1)

N3 − N
. (7)
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We see that m̂ is a Gaussian random variable if εt is Gaussian.
Importantly, even with auto correlations in εt , the estimation
is unbiased, since 〈m̂〉 = m. The variance of the distribution
of the estimator of the trend σ 2[m̂] depends on the autocovari-
ance of the noise C(s) = 〈εtεt+s〉, as [64]

σ 2[m̂] = 12/(N3 − N ) + 2
N−1∑
s=1

C(s)L(s), (8)

where L(s) is a weighting function defined as

L(s) =
N−s∑
t=1

at at+s. (9)

Using these results, we analytically calculate σ 2[m̂] for the
ARFIMA(1,d, 0) model. The full expression of σ 2[m̂] for
ARFIMA(1, d, 0) is derived in the Appendix. The asymptotic
behavior of σ 2[m̂] for a large length N of the time series
follows the power law

σ 2[m̂] ∼ σ 2[T ] f (φ, d )N2d−3 , (10)

where σ 2[T ] is the variance of the analyzed time series and
f (φ, d ) is calculated to be

f (φ, d ) := 1 + φ

(1 − φ)(22F1(1, d, 1 − d, φ) − 1)

× 36(1 − 2d )�(1 − d )

d (1 + 2d )(3 + 2d )�(d )
, (11)

where �(·) and 2F1(·) are the gamma and hypergeometric
functions. As a special case of this, we also obtain both the
known asymptotics of σ 2[m̂] [65–67] for AR(1),

σ 2[m̂] ∼ σ 2[T ] 12

(
1 + φ

1 − φ

)
N−3, (12)

from which the WN limit can also be easily seen by setting
φ = 0, and ARFIMA(0,d, 0):

σ 2[m̂] ∼ σ 2[T ]
36(1 − 2d )�(1 − d )

d (1 + 2d )(3 + 2d )�(d )
N2d−3. (13)

A comparison of the analytical results of the variance to those
of the numerically generated time series is shown in Fig. 4. It
can be seen that the asymptotic formulas [shown in Fig. 4(a)]
are a good fit for N � 200. For purely LRC noise, the asymp-
totic fits are a good approximation for any N .

It can be seen that for time series with small N and SRC,
the asymptotic formulas tend to somewhat overestimate σ 2[m̂]
and consequently weaken the significance of the estimated
trends. Thus, in cases where N is less than 200 and there exists
a significant presence of SRC, we suggest that the full closed
formulas may be more appropriate. This is often the case, for
example, in climate studies, which make use of monthly data.

More importantly, our closed form expressions and their
asymptotics allow us to identify the different effects of SLRCs
in detail. It can be seen from Eqs. (12) and (13) that the
autoregressive parameter φ does not alter the asymptotics of
the decay of the variance σ 2[m̂] as a function of N , which
is like N−3 for both WN and an AR(1) process. However,
the short-range correlations increase the error bars by a φ-
dependent prefactor, which can be interpreted as reduction of

FIG. 4. (a) Closed formulas, asymptotic behaviors [Eqs. (10)–
(13)] and the numerically simulated results of the variance of the
OLS trend estimator for the indicated models with d = 0.45, φ =
0.95 as function of time series length N . σ 2[T ] = 1 for all data ex-
cept ARFIMA(0,d ,0), where σ 2[T ] = 0.01 (shifting the entire curve
downward by two orders of magnitude) for more clear presentation.
(b) Variances of the models of (a) divided by the variance assuming
WN on top of the trend.

the sample size by measuring it in numbers of the correlation
time interval, and they introduce a crossover regime in N . The
situation is very different for long-range correlated ARFIMA
noise: the parameter d �= 0 changes the power by which σ 2[m̂]
drops in N from −3 to 2d − 3. Interestingly, for very short
data sets, N � 10, the noise model with largest uncertainty
is the WN, while the model with smallest uncertainty is
the ARFIMA(1,d ,0) model. But for large N (over 150), we
observe the variance of ARFIMA(1,d, 0) to be the largest.
This, in turn, means that for large N it is essential to use the
appropriate noise model in order not to underestimate the error
bars.

A quite unexpected finding is the reduction of uncertainty
by correlations for very short time series, as compared to WN
[most clearly visible in Fig. 4(b)]. This can be understood
quite easily: For strongly correlated noise, the empirical vari-
ance of a small sample, N ≈ 10, is much smaller than unity
(the variance of the marginal distribution) and hence such
noise affects more so the estimate of the offset n than that
of the slope m in Eq. (1).

For the Potsdam anomalies time series of Fig. 1, using
our parameters d = 0.173+0.043

−0.029 (from DFA2), φ ≈ 0.683, and
N = 25567 (70 years), the p value is obtained analytically for
LRC as pan,(0,d,0) = 5.5 × 10−9 and for SLRC as pan,(1,d,0) =
0.00149. These values are comparable to those of the Monte
Carlo method, however, much more accurate. As previously
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FIG. 5. Values at grid points in central Europe (ERA5 reanalysis data). (a) AR(1) exponents φ(x, y), (b) trends m(x, y), (c) fractional
exponents d (x, y), and (d) p values obtained with an ARFIMA(1,d ,0) ansatz. (e)–(f) Upper bounds (d + 	d )(x, y) and resulting p values
obtained with ARFIMA(1,(d + 	d),0) ansatz. Red indicates the region where the p value is statistically insignificant.

mentioned, the Monte Carlo method fluctuates particularly
strongly even for large numbers of simulations, since the
p value depends on the amount of simulations with values
higher than the measured trend, which is even for large num-
bers of simulations not very many.

The difference of the p values of the observed trend under
two different model assumptions emphasizes the importance
of taking into account the SRCs in the data by using the
ARFIMA(1,d ,0) model. In the example of the Potsdam time
series of the previous section, the difference between the p
values with and without consideration of SRCs are orders of
magnitude pan,(1,d,0)/pan,(0,d,0) ∼ 106.

III. SPATIALLY DISTRIBUTED TIME SERIES

We now apply our results to spatially distributed data.
We use daily grid land data of central Europe from 1950 to
2020 collected from the reanalysis ERA5 data set with a grid
separation of 0.5◦ [68]. The values of φ, m, d , and the p
values of the different grid points are shown in Figs. 5(a)–5(d),
respectively, where d has been obtained by DFA2. It can be
seen in Fig. 5(a) that the autoregressive parameter φ assumes
large values over the whole region, although the values are
somewhat smaller nearer the coast. It can also be clearly seen
in Fig. 5(c) that the fractional exponent d is significantly
larger near the coast. This causes the p value to be larger
near the coast [Fig. 5(d)], although we note that all trends are
statistically significant.

The error bars of d have a dramatic effect on the reliability
of the p value. The spatially dependent fractional exponent
and corresponding p value for the case that the upper bound
of d (using DFA2) is used are shown in Figs. 5(e)–5(f). In-
terestingly, the error 	d seems to generally be largest in the
Southwest of Germany [compare Figs. 5(c) and 5(e)]. It can
be seen that the trend in this case is not statistically significant

in all regions of central Europe. This raises the question of
whether the overall trend of central Europe is statistically
significant?

To answer this question, we need to go beyond our analysis
of the temporal correlations on the variance σ 2[m̂] of the
time series [making use of Eq. (10)] and further consider the
effect of spatial correlations on the variance σ 2[T ]. As can
be seen from Eqs. (10) and (12), the uncertainty of the trend
estimation is proportional to the magnitude of the fluctuations
of the signal σ 2[T ]. We now wish to exploit the redundancy
of the trend information contained in spatially distributed data
to construct a signal with lower amplitude fluctuations.

To explore the redundancy in such data to obtain more
accurate trend estimates we compare two different methods.
Both involve deriving a single time series from the gridded
data and then evaluating that time series using the previously
discussed methods. The first method is to calculate the time
series as a spatial average of the gridded time series, and the
second method is to use PCA. While the first method of taking
the spatial average over all time series may be conceptually
simple, it can obscure important spatial detail and may well
obscure much of the physics associated with the majority of
the observed variation. PCA offers a more elegant alternative
by partitioning the series into series representing different
geographical patterns, where higher order patterns may be
discarded as noise.

In both methods, the fact that grid points of greater latitude
are closer together in the longitudinal direction and thus each
have a smaller surface area than those nearer the equator is
respected by using spatial weighting [69].

A. Averaged signal

We first explore the method of defining the averaged signal
as the average over the time series at each grid point weighted
by the area of the grid cells. In this case, the area weighted
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average series is given by

T̄t := 〈Tt (x, y)〉aw = 1

A

∑
(x,y)

A(x, y)Tt (x, y), (14)

where 〈·〉aw is the area weighted average, A is the total spatial
area, and A(x, y) is the area of the grid cell at location (x, y).
We now once again use Eq. (1) as an ansatz for our system,

T̄t = n̄ + m̄t + ε̄t , (15)

where m̄ := 〈m(x, y)〉aw and ε̄t := 〈εt (x, y)〉aw are the area-
weighted averages. Since averaging over the different fluctua-
tions leads to a reduction of the variance, it holds that

σ 2[ ˆ̄m] � σ 2[m̂]. (16)

If the εt (x, y) were all independent (which they are not!)
the variance would decrease proportional to the number of
time series which we average over σ 2[ ˆ̄m] = σ 2[m̂]N−1. Since
time series which are spatially close to each other are more
correlated, we find that the variance decreases more gradually.

We find exactly the same trend if we perform an area-
weighted average over the trend values of the single grid
points, since both averaging the time series, averaging the
trends, and calculation of the OLS trend are linear operations
and hence commute. However, using the averaged time series,
we can determine the statistical significance of the trend m̄
right away using Eq. (10).

B. Principal component analysis

The idea of EOF analysis, otherwise known as PCA, is to
find a relatively small number of independent variables, which
account for as much of the original signal as possible [70,71].
It uses a set of EOFs and PCs to represent the time series in
the following way:

Tt (x, y) =
N∑

k=1

ckPt,k
1

ck
Ek (x, y), (17)

where Ek (x, y) represents the kth spatial pattern (EOFk where
k = 1, 2, ...) and Pt,k represents the principal components
(PCk), which describe how the amplitude of each EOF varies
with time. ck is a scaling constant.

The basic procedure for EOF analysis is that the spatially
distributed time series is first arranged into a matrix T , which
in turn is used to calculate the covariance matrix R = T T .
From this, an eigenvalue problem is solved to obtain the EOFs
(which correspond to the eigenvectors), the EOF variances
(which correspond to the eigenvalues), and the PCs (which
are computed from the projection of T onto the EOFs).

Here, for purposes which will become clear later in this pa-
per, we rescale the PCs and the EOF in Eq. (17) by coefficients
ck . At this point, we deviate from the traditional literature
on PCA and introduce a different normalization ck := 〈Ek〉
over the spatial region to normalize the EOFs to one. By
introducing this normalization, the scaled PCs Pt,k → ckPt,k

become normalized to the magnitude of the spatial average
of the original time series Tt . Thus, given this normalization, a
simple summation of the PC series Pk is sufficient to construct

FIG. 6. First three EOFs and PC1 in units of ◦C. The mean of the
EOFs have all been normalized to 1.

spatially averaged time series:

〈Tt (x, y)〉 =
N∑

k=1

Pt,k . (18)

This property is desirable, since the combined effect of several
PCs can be studied. It will mean in simple cases that the first
PC is simply the spatially homogeneous part of the spatiotem-
poral time series. This can be underlined by the fact that the
PCs can all be assigned the physical unit K (Kelvin), while the
EOFs are dimensionless.

In contrast to our choice of ck , typically in the literature
Pk is made comparable to other time series by defining ck as
the square root of the kth singular value [24]. In that case,
the renormalized patterns carry the physical units and the
coefficients are dimensionless (zero mean and unit standard
deviation).

Our introduced method of dividing by the mean has how-
ever two advantages for the purposes of analyzing a spatially
averaged signal. First, dividing by the mean rewards homo-
geneity by making PCs with more homogeneous EOFs larger.
Second, it allows the averaged signal to be written simply
as a sum of the PCs as in Eq. (18). This means that we can
construct a sequence of increasingly better approximations of
the averaged signal by adding more and more PCs, starting
from the Pt,1 as opposed to treating the PCs separately as is
typically done in the literature.

PCA can smooth out details which are not necessary to the
overall trend of a system, and can reduce grid data to a single
time series. For a topologically simple region, which is not too
large, the first PC-EOF pair describes the overall trends over
the entire region, while higher order terms tend to describe
fluctuations around this trend. The second and third pairs, for
example, describe the fluctuations around this overall trend in
the north-south and east-west directions, respectively. This is
a straightforward consequence of the orthogonality condition
of EOF analysis. An example of this is shown in Fig. 6 for the
case of central Europe.
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TABLE I. Comparison of the properties of the averaged signal
〈T (x, y)〉 and the first principal component for central Europe (data
of Figs. 5 and 6). Potsdam is the single time series of the Potsdam
station [Fig. 1(a)].

〈T (x, y)〉 P1 (PC1) Potsdam

m (K/decade) 0.27 ± 0.08 0.27 ± 0.08 0.29 ± 0.09

d 0.16+0.11
−0.06 0.16+0.11

−0.06 0.173+0.053
−0.04

φ 0.804 0.800 0.679

pan,(0,d,0) 1 × 10−14 1 × 10−14 5.5 ×10−9

pan,(1,d,0) 0.0011 0.0011 0.00149

pan,(1,d+	d,0) 0.026 0.030 0.011

The higher order EOFs have a mean value close to zero,
which in turn means that ckPt,k are very small for k ∈ {2, 3}.
Normalization thus reveals that the trend of the first PC is
dominant while the higher order PCs have trends, which are
several orders of magnitude smaller. The size of these PCs are
thus not only a function of the variance of each PC (given by
the eigenvalue of the covariance matrix) but also of ck . This
is because when we are exploring the overall trend we are not
interested in geographical fluctuations around the mean and
normalizing the PCs discounts the effect of these fluctuations
in a very simple way. The first PC is thus more significant than
the higher not only because it is by design the PC which de-
scribes the largest proportion of the variance but also because
the first PC describes the homogeneous component, which is
most relevant to the trend.

Related to this is the fact that unusual topographical fea-
tures in a spatial region (such as mountain ranges) typically
only affect higher PCs and thus this version of PCA offers an
objective way to filter out such effects. This is in contrast to
the spatial mean where such features may distort the spatial
mean. The effective variance of the PCs for the purposes of
determining the overall trend of a spatial region is thus even
smaller than that suggested by the eigenvalues. This method,
its validity, and its effects will be the topic of a separate paper.

The reasons that the trend is almost completely contained
in Pt,1 are described in the Appendix. The basic idea is that if
E1 (EOF1) is spatially homogeneous and the trend almost the
same for all grid points, then it will only affect P1 (PC1) and
leave all other PCs unchanged. Since this homogeneity is to
a good approximation satisfied by E1, P1 carries the trend. In
the case of central Europe, both conditions are well satisfied
(see Fig. 6).

The tendency for PCA to produce simple patterns such as
a homogeneous component, an east-west component, etc. is
reliant on two things. The first is the simplicity of the topol-
ogy, water, ice coverage, etc. of the system and the second
is that the geographical region should not be too large. Both
of these conditions are met in the case of the land data of
central Europe. These things will be explored in more detail
in a separate paper.

C. Results for central Europe

All main results are summarized in Table I, where we
compare the trends obtained (including the standard devia-

FIG. 7. The time-resolved trend analysis for PC1(t ) of the ERA5
temperature anomalies. Linear trend estimated on overlapping 21-
year intervals windows together with error bars (standard deviation).
Orange error bars additionally consider error 	d with Gaussian error
propagation.

tions of the OLS estimator which can be considered as error
bars), the parameters of the optimal ARFIMA(1,d ,0) model,
and the analytical p values of the estimated trends for the
averaged signal T̄t and for the first PC P1 of central Europe.
Results of the Potsdam single time series are also included
for comparison. We see that for this spatial region of central
Europe there is only minimal variation between the methods
of spatial averaging and PCA. In terms of climate change, it is
evident that the estimated trend for this region is statistically
significant, even when taking a reasonable upper bound for d .
It is, however, nevertheless important to note that the p value
is orders of magnitude larger when taking the upper bound of
the error of d . In comparison to the single station time series of
Potsdam, the error bars of the trend value have reduced in size
only slightly. This is due to the strong spatial correlations—
the noise cancellation effect of spatial averaging is small: the
variance σ 2[T ] of the signal only drops from 14.6 to 9.8,
while at the same time the SRCs got slightly stronger with φ,
increasing from 0.679 to 0.80. The significance of pan,(1,d,0)

is somewhat larger for Potsdam compared to central Europe,
principally due to d being larger in Potsdam (due to Potsdam
being nearer to the coast).

As a final application of the results of this paper, we ex-
plore change in the trend of central Europe over time and the
corresponding error bars. This is shown in Fig. 7. The trends
have been obtained by performing linear trend analysis on
moving time windows of 21 years length for the PC1(t ) time
series. For years 〈Year〉 later than 2012, where no ten-year
intervals into the future exist, we estimate the trend on the
interval [〈Year〉 −10, 2022]. With the estimated values of d
and φ and the actually used time window length, we then
calculate the error bars. As the figure shows, trend values are
usually found to be generally positive but small until the time
window reaches around 2006, after which the trend increases
dramatically. The increase of error bars in recent years is
due to the shorter-than-20-years time windows. These rather
dramatic results of temperature increase make evident that
the long-term temperature change is not linear. Trend models
that display trends comparable to an exponential trend are
generally not considered in the literature and seem to be more
dramatic than predictions made using climate simulations.
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D. Conclusions

This paper provides important tools for linear trend analy-
sis both in the presence of SLRCs and of spatial correlations.
We demonstrate under the consideration of climatological
spatial regions (of gridded data) that neither short nor long
temporal correlations can be disregarded without deriving
misleading conclusions with regard to the statistical signif-
icance the trend. This is significant, since in the literature
generally only consideration is made of either short-range
or long-range temporal correlations. We expect such effects
may also be important in other complex systems such as brain
activity.

We have considered a realistic and still parsimonious
model for the fluctuating part of such a signal, the
ARFIMA(1,d ,0) process. For this model, we have analytically
derived the calculation of the variances of OLS estimators
of the trend on data. Simple asymptotic approximations are
found to be valid for time series of length N � 200. This
enables quick and accurate calculation of the p value, which
is otherwise observed to fluctuate dramatically when obtained
using (even very long and time consuming) Monte Carlo sim-
ulations. From this, both the error bars of the estimated trend
value and the p value can be obtained to quantify the statis-
tical significance of the estimated trend. These formulas also
highlight the different impacts of the SLRCs on the accuracy
of the trend estimate. We have applied a particularly accurate
automated method to the task of obtaining the long-range
fractional parameter (Hurst exponent) together with its error.
This automation is particularly necessary in the context of
big data sets, where visual inspection of each individual time
series would not be practical. We have shown that the error
bars of this parameter are important in that within the margin
of error, the p value can fluctuate by orders of magnitude,
causing trends of many time series to become statistically
unlikely.

For dealing with spatial data, we have argued that the most
natural way to consider spatial correlations is with the use of
PCA. We have introduced a practical normalization technique
such that the spatially averaged time series can be written
simply as the sum of PCs. We have shown that given the
not-too-large size and homogeneity of the region, an analysis
of the first PC is sufficient to obtain the overall trend for the
region of central Europe. As a final result, we have obtained
a warming trend over the past 70 years in central Europe of
0.27± 0.08 K/decade, which is statistically significant with a
p value of 0.0011 in a two-sided test. We have also applied
the techniques of this paper to demonstrate that the magnitude
of the warming trend of central Europe has increased more
dramatically over the last 20 years than previously assumed.
From the point of view of trend analysis methodology, this
result suggests that an important next step could be going
beyond OLS methods to consider nonlinear trends such as
exponential trends.

APPENDIX: ANALYTICAL CALCULATION OF THE
DISTRIBUTION OF THE OLS ESTIMATED TREND

In this Appendix, we derive both the full closed form and
its asymptotics for large N of the distribution of the OLS

estimated trend values of time series Tt , using the ansatz of
Eq. (1),

Tt = n + mt + εt , t = 1, ..., N,

for different types of correlated noises εt . Without loss of gen-
erality and to highlight the effects of other model parameters,
we assume {εt } to have unit variance. For the trend estimation,
we calculate the linear fitting polynomial

pt = m̂t + n̂ (A1)

for Tt by OLS. Minimizing the sum of the squared residu-
als

∑N
t=1(Tt − pt )2 with parameters n̂ and m̂, we obtain two

equations:

N∑
t=1

(pt − Tt ) = 0,

N∑
t=1

t (pt − Tt ) = 0. (A2)

We solve these two equations for m̂ and n̂, where m̂ is the
estimated trend and reads

m̂ =
N∑

t=1

S0t − S1

S0S2 − S1
2 Tt . (A3)

Here, S j = ∑N
t=1 t j for j = 0, 1, 2. For the Gaussian process

{εt }N
t=1, the conditional distribution P(m̂|m; N ) of the esti-

mated trend m̂ given m is a Gaussian itself and hence is
completely characterized by the first two conditional moments
〈m̂|m〉 and 〈m̂2|m〉. In the following, we use the short hand
notation:

at := S0t − S1

S0S2 − S1
2

= 12t − 6(N + 1)

N3 − N
, (A4)

where the second equation follows from S0 = N , S1 = N (N +
1)/2, and S3 = N (N + 1)(2N + 1)/12. The first conditional
moment can now be obtained as the ensemble average of
Eq.(A3) for given m:

〈m̂|m〉 =
N∑

t=1

at 〈Tt |m〉

=
N∑

t=1

at (n + mt + 〈εt 〉). (A5)

Since εt has zero mean, the first conditional moment is found
to be

〈m̂|m〉 = m. (A6)

This is in agreement with common knowledge that OLS esti-
mators are unbiased.

The second conditional moment is correspondingly given
by

〈m̂2|m〉 =
〈(

N∑
t=1

at Tt

)2〉
. (A7)
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Under the assumption of statistical independence between
noise and trend, i.e., 〈εk (mt + n)〉 = 〈εk〉(mt + n) = 0 for any
t and k, we can split the expanded square of (A7) into two
parts: 〈(

N∑
t=1

at Tt

)2〉
=

〈(
N∑

t=1

atεt

)2〉

+
〈(

N∑
t=1

at (mt + n)

)2〉
. (A8)

The second term gives m2 since
∑

at = 0 and
∑

tat = 1. The
first part, denoted by 〈m̂2|m〉ε , reflects the correlations of the
noise εt :

〈m̂2|m〉ε =
〈(

N∑
t=1

atεt

)2〉
=

N∑
t,k=1

〈εtεk〉at ak

=
N−1∑
s=0

N−s∑
t=1

〈εtεt+s〉at at+s. (A9)

Thus the second conditional moment is

〈m̂2|m〉 = 〈m̂2|m〉ε + m2. (A10)

Consequently, the variance of the estimated trend σ 2[m̂|m]
can be obtained as 〈m̂2|m〉 − 〈m̂|m〉2 = 〈m̂2|m〉ε . In summary,
the conditional distribution of the estimated trend m̂ given m
is

p(m̂|m) = N (m, 〈m̂2|m〉ε ). (A11)

To obtain this distribution, we only need to know the variance
σ 2[m̂|m] = 〈m̂2|m〉ε , which completely depends on the auto-
covariance of the noise 〈εtεt+s〉 as shown in Eq. (A9).

1. Trend variance for SRC or LRC correlated noise

In this subsection, we consider the cases of ε as WN, AR(1)
noise (parameter φ), and fractional Gaussian noise (parameter
d), corresponding to ARFIMA(0,0,0), ARFIMA(1,0,0), and
ARFIMA(0, d, 0), respectively. The most general case of an
ARFIMA(1,d ,0) noise will be treated separately, but being
based on these results.

In the following, we derive the asymptotic dependency of
σ 2[m̂|m] on φ and d , which we will denote by the function
f (φ, d ), as well as on N . As notation, we use the subscript
{φ,d} to denote the noise model used, and we distinguish the
noise processes as follows: ε{0,0} is WN with unit variance,
ε{φ,0} is AR(1) noise but normalized to unit variance, and ε{0,d}

is ARFIMA(0,d ,0)-noise normalized to unit variance. This
normalization is part of our trend model Eq. (1) and is used
to remove the trivial proportionality between the variance of
the trend estimator and the square of the noise amplitude,
and to be able to study the effect of correlations of the noise
independent of its variance. For WN,

〈ε{0,0}tε{0.0}t+s〉 = δs,0. (A12)

Using Eq. (A9), we obtain

σ 2[m̂|m]{0,0} = 12

N3 − N
∼ f (0, 0)N−3, (A13)

where f (0, 0) = 12. For a normalized AR(1) noise,

ε{φ,0} = (1 − φB)−1 ξ√
1 − φ2

,

where φ ∈ (−1, 1). The autocovariance function is

〈ε{φ,0}tε{φ,0}t+s〉 = φsσ 2
{φ,0}, (A14)

with the variance of ε{φ,0} = 1 due to the rescaling of ξ .
We can now, as previously, obtain the variance of the trend
estimator as

σ 2[m̂|m]{φ,0} = −1

(φ − 1)4(N6 − 2N4 + N2)

× (12(φ − 1)3(1 + φ)N3 + 72φ(φ − 1)2N2

− 12(φ − 1)3(φ + 1)N − 72φ(1 + φ)2

+ 72φN+1((1 − φ)N + 1 + φ)2)

∼ f (φ, 0)N−3, (A15)

where

f (φ, 0) = 12

(
1 + φ

1 − φ

)
.

In the case of ARFIMA(0,d ,0) noise before normalization:

ε{0,d} = (1 − B)−dξ .

Thus, the autocovariance function is given by

〈ε{0,d}tε{0,d}t+s〉 = �(s + d )�(1 − 2d )

�(s + 1 − d )�(1 − d )�(d )
, (A16)

and the variance of ε{0,d} is given as

σ 2
{0,d} = �(1 − 2d )

�2(1 − d )
. (A17)

We can now calculate the till now unpublished closed form of
σ 2[m̂|m]{0,d} for normalized ARFIMA(0, d, 0) by renormaliz-
ing ε{0,d} by σ{0,d} and get

σ 2[m̂|m]{0,d} = 1

d (1 + 2d )(3 + 2d )

1

�(1 − 2d )�(d )�(N − d )(N6 − 2N4 + N2)

× [−36�(N + d )�(1 − d )�(1 − 2d )((−1 + 2d )N3 + d (−1 + 2d )N2 + N + d )

+ 12�(N − d )�(1 − 2d )((3 + 8d + 4d2)(d�(d ) − �(1 + d ))N3

+ 3d (3 + 2d )�(1 + d )N2 − (3 + 8d + 4d2)(d�(d ) − �(1 + d ))N − 3d�(1 + d ))]

∼ f (0, d )N2d−3, (A18)
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where

f (0, d ) = 36(1 − 2d )�(1 − d )

d (1 + 2d )(3 + 2d )�(d )
. (A19)

We see that not only the prefactor is affected by d but, more
importantly, also the power in N by which the variance drops
when N is increased is reduced. This was to be expected
because the effective sample size is reduced by correlations.
For consistency, it is relevant to observe that both results, for
AR(1) and ARFIMA(0,d ,0), converge to the WN result for
φ → 0 or d → 0, respectively.

2. Trend variance for SLRC correlated noise

A short-long-range correlated noise generated by an
ARFIMA(1, d, 0) process has an autocovariance function
which is too complicated to be inserted into Eq. (A9).
We therefore use prewhitening so we can relate the
ARFIMA(1,d ,0) process to the ARFIMA(0,d ,0) process.
More precisely, we perform the operation (1 − φB) on both
sides of Eq. (1) and use the substitutions ε̃t = (1 − φB)εt ,
T̃t = (1 − φB)Tt , m̃ = (1 − φ)m and ñ = φm + (1 − φ)n to
obtain a new time series:

T̃t = ñ + m̃t + ε̃t . (A20)

This way, we transform the ARFIMA(1, d, 0) process into an
ARFIMA(0, d, 0) process. The estimated trend ˆ̃m of T̃t has the
distribution

P( ˆ̃m|m̃; N ) = N (m̃, 〈 ˆ̃m
2|m̃〉). (A21)

As previously, 〈 ˆ̃m
2|m̃〉 depends only on the autocovariance

〈ε̃t ε̃t+s〉. Given the stationarity, the autocovariance of WN,
AR(1), ARFIMA(0, d, 0), and ARFIMA(1, d, 0) should only
depend on the time lag s. Hence, we denote the autoco-
variances of ε and ε̃ as C(s) = 〈εtεt+s〉 and C̃(s) = 〈ε̃t ε̃t+s〉,
respectively. The relationship between C(s) and C̃(s) is easily
found to be

C̃(s) = (1 + φ2)C(s) − φC(s − 1) − φC(s + 1). (A22)

As a special case, C(0) and C̃(0) are, respectively, the variance
of ε and ε̃. We define

L(s) :=
N−s∑
t=1

at at+s

= 24s3 + (12 − 36N2)s + (12N3 − 12N )

N2(N2 − 1)2
, (A23)

where at was defined in Eq. (A4), and reexpress the variance
of the corresponding estimated trends in Tt and T̃t according
to Eq. (A9) as

σ 2[m̂|m] =
N∑

t=1

C(0)a2
t + 2

N−1∑
s=1

C(s)L(s) (A24)

and

σ 2[ ˆ̃m|m̃] =
N∑

t=1

C̃(0)a2
t + 2

N−1∑
s=1

C̃(s)L(s). (A25)

We now focus on the term
∑N−1

s=1 C̃(s)L(s). Given the gen-
eral relationship between C(s) and C̃(s) in Eq. (A22), we can
use C(s) to reexpress

∑N−1
s=1 C̃(s)L(s) as follows:

N−1∑
s=1

C̃(s)L(s) =
N−1∑
s=1

(1 + φ2)C(s)L(s)

− φ

N−1∑
s=1

C(s − 1)L(s)

− φ

N−1∑
s=1

C(s + 1)L(s). (A26)

This equation can be further simplified as
N−1∑
s=1

C̃(s)L(s) =(1 − φ)2
N−1∑
s=1

C(s)L(s) − A, (A27)

with A as

A = φ

(
144

N2(N2 − 1)2

(
N−1∑
s=1

C̃(s)s

+ φ(C(0) − C(N − 1)N + C(N )(N − 1))

)
+ C(0)L(1) − C(N − 1)L(N )

+ C(N )L(N − 1) − C(1)L(0)

)
. (A28)

Here, C(0), C(1), C(N − 1), and C(N ) are already known.
Therefore, A can be calculated directly and we find the fol-
lowing expression:

σ 2[ ˆ̃m|m̃] =
N∑

t=1

C̃(0)a2
t + 2

N−1∑
s=1

C̃(s)L(s)

=
N∑

t=1

C̃(0)a2
t + 2(1 − φ)2

N−1∑
s=1

C(s)L(s) − 2A.

(A29)

Given the relationship between C̃(0) and C(0), we can
obtain σ 2[m̂|m] from the corresponding σ 2[ ˆ̃m|m̃]. Usually,
the calculation of σ 2[ ˆ̃m|m̃] is much easier due to its simpler
autocovariance structure. Therefore, such calculation based on
the relationship Eq. (A22) can provide an alternative way to
obtain σ 2[m̂|m] for more complicated processes.

In particular, for AR(1) noise εφ,0 and the corresponding
WN ε̃φ,0 = ε0,0,

C̃{φ,0}(0) = (1 − φ2)C{φ,0}(0), (A30)

while for ARFIMA(1, d, 0) noise εφ,d and the corresponding
ARFIMA(0, d, 0) noise ε̃φ,d ,

C̃{φ,d}(0) = (1 + φ2 − 2φρ)C{φ,d}(0), (A31)

where ρ is the lag 1 autocorrelation of ARFIMA(1, d, 0) given
by

ρ = (1 + φ2)F (1, d; 1 − d; φ) − 1

φ[2F (1, d; 1 − d; φ) − 1]
, (A32)

where F (a, b; c, z) is the hypergeometric function.
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Before tackling the calculation of σ 2[ ˆ̃m|m̃]{φ,d},
we first show how the relationship Eq. (A22) can be
used to derive σ 2[m̂|m]{φ,0} for AR(1) noise εφ,0 from
σ 2[ ˆ̃m|m̃]{0,0} for WN, ε̃φ,0 = ε0,0. From the unit variance
of ε, it follows that C(0) = 1. Therefore, σ 2[ ˆ̃m|m̃]{0,0}

should be accordingly renormalized: σ 2[ ˆ̃m|m̃]{0,0} =
(1 − φ2)σ 2[m̂|m]{0,0}.

For normalized AR(1) noise C{φ,0}(s) = φs, and for WN
C̃{0,0}(s) = 0 if s � 1. In this sense, Eq. (A29) can be specified
as

σ 2[ ˆ̃m|m̃]{0,0} =
N∑

t=1

C̃{0,0}(0)a2
t + 2(1 − φ)2

N−1∑
s=1

C(s){φ,0}L(s) − 2A

= (1 − φ2)
N∑

t=1

C{φ,0}(0)a2
t + 2(1 − φ)2

N−1∑
s=1

C{φ,0}(s)L(s) − 2A

= (1 − φ)2

(
1 − φ2

(1 − φ)2

N∑
t=1

C{φ,0}(0)a2
t + 2

N−1∑
s=1

C{φ,0}(s)L(s)

)
− 2A

= (1 − φ)2

(
N∑

t=1

C{φ,0}(0)a2
t + 2

N−1∑
s=1

C{φ,0}(s)L(s) + 2φ

1 − φ

N∑
t=1

C{φ,0}(0)a2
t

)
− 2A

= (1 − φ)2

(
N∑

t=1

C{φ,0}(0)a2
t + 2

N−1∑
s=1

C{φ,0}(s)L(s)

)
− 2A + 2φ

1 − φ

N∑
t=1

C̃{0,0}(0)a2
t

= (1 − φ)2σ 2[m̂|m]{φ,0} − 2A + 2φ

1 − φ

N∑
t=1

C̃{0,0}(0)a2
t . (A33)

Consequently, we can obtain σ 2[m̂|m]{φ,0} from σ 2[ ˆ̃m|m̃]{0,0} as

σ 2[m̂|m]{φ,0} = 1

(1 − φ)2
σ 2[ ˆ̃m|m̃]{0,0} + 2

(1 − φ)2
A − 2φ

(1 + φ)(1 − φ)2

N∑
t=1

C̃{0,0}(0)a2
t ,

= 1 − φ2

(1 − φ)2
σ 2[m̂|m]{0,0} + 2

(1 − φ)2
A − 2φ

(1 + φ)(1 − φ)2

N∑
t=1

C̃{0,0}(0)a2
t , (A34)

We can further simplify Eq. (A34) and obtain as expected the
result Eq. (A15). Asymptotically,

2

(1 − φ)2
A − 2φ

(1 + φ)(1 − φ)2

N∑
t=1

C̃{0,0}(0)a2
t

∼ −72
φ1(1 + φN )

(1 − φ)2
N−4. (A35)

Therefore, the asymptotic behavior of σ 2[m̂|m]{φ,0} is
dominated by

1 − φ2

(1 − φ)2
σ 2[m̂|m]{0,0} ∼ 12

(
1 + φ

1 − φ

)
N−3,

consistent with that previously obtained in Eq. (A15).
For ARFIMA(1, d, 0) noise ε{φ,d}, it is too compli-

cated to calculate the corresponding variance σ 2[m̂|m]{1,d}
directly based on Eq. (A9). However, the above indi-
rect calculation of σ 2[m̂|m]{φ,0} from σ 2[m̂|m]{0,0} based
on the relationship Eq. (A22) provides us an alternative
way to calculate σ 2[m̂|m]{φ,d} from σ 2[m̂|m]{0,d}, where
σ 2[m̂|m]{0,d} has already been obtained in the previous sub-
section. For ARFIMA(φ, d, 0) ε{φ,d} and the corresponding

ARFIMA(0, d, 0) ε̃{φ,d},

C{0,d} = C̃{φ,d}(s) = �(s + d )�(1 − d )

�(s + 1 − d )�(d )
(1 + φ2 − 2φρ),

(A36)

and

C{φ,d}(s) = C̃{φ,d}(s)

1 − φ2
(F (1, d + s; 1 − d + s; φ)

+ F (1, d − s; 1 − d − s; φ) − 1). (A37)

It should be noted that C̃{0,d}(s) is different from Eq. (A16),
because it has to be renormalized to ensure the unit variance of
ε. Accordingly, σ 2[ ˆ̃m|m̃]{0,d} = (1 + φ2 − 2φρ)σ 2[m̂|m]{0,d}.
Based on the relationship from Eq. (A22), the closed form of
σ 2[m̂|m]{φ,d} can calculated from σ 2[m̂|m]{0,d} as

σ 2[m̂|m]{φ,d} = (1 + φ2 − 2φρ)

(1 − φ)2
σ 2[m̂|m]{0,d} + 2

(1 − φ)2
A

− 2φ(1 − ρ)

(1 + φ2 − 2φρ)(1 − φ)2

N∑
t=1

C̃{0,d}(0)a2
t ,

(A38)
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with σ 2[m̂|m]{0,d}, A, and C̃{0,d}(0) given in Eqs. (A18), (A28),
and (A31), respectively. We note that

2

(1 − φ)2
A − 2φ(1 − ρ)

(1 + φ2 − 2φρ)(1 − φ)2

N∑
t=1

C̃{0,d}(0)a2
t

∼ − 24φ

(1 − φ)2
((φ − ρ)N−3 + (3φN + φ − ρ + 3)N−4).

(A39)

The asymptotic behavior of σ 2[m̂|m]{φ,d} is thus given by

σ 2[m̂|m]{φ,d} ∼ (1 + φ2 − 2φρ)

(1 − φ)2
σ 2[m̂|m]{0,d}

= (1 + φ2 − 2φρ)

(1 − φ)2
f (0, d )N2d−3

= f (φ, d )N2d−3, (A40)

where ρ and f (0, d ) are given by Eqs. (A32) and (A19),
respectively.

3. Criteria under which the trend is in PC1

In the following, we show that if the first EOF is homo-
geneous and the trend is the same for all grid points, then
the trend will be completely contained within the first PC.
Without loss of generality, we assume evenly spaced Cartesian
grid points,

Tt (x, y) = n(x, y) + m(x, y)t + εt (x, y), (A41)

where, as usual, the anomalies Tt (x, y) are constructed to have
zero mean on the considered time interval. We use the notation
Ai = (x j, yk ), where i, j, k are integers and each i corresponds
to a unique pair j, k.

Correlations between the noise are quantified by the
covariance matrix C with (C)i j = 〈ε(Ai )ε(Aj )〉. We first as-

sume that all time series have the same deterministic trend
m(x, y) = m and n(x, y) = n for all grid points. We now calcu-
late the covariance matrix of the time series with these trends,

〈Tt (Ai )Tt (Aj )〉 = 〈(n + mt + εt (Ai ))(n + mt + εt (Aj ))〉
= (C)i j + 〈(n + mt )2〉
= (C)i j + m2(〈t2〉 − 〈t〉2), (A42)

where we have used that n = −m〈t〉 due to the series having
zero mean. We write this in matrix form as (M)i j = m2(〈t2〉 −
〈t〉2). We make use of a decomposition of the covariance ma-
trix, whose eigenvectors are orthogonal to each other because
of its symmetry, into matrices formed by its eigenvectors,
which we call the set of eigenmatrices: C = ∑n

i=1 λiVi, where
Vi = �vi ⊗ �v†

i , where �vi is the eigenvector corresponding to
eigenvalue λi. Notice that each individual Vi is a real symmet-
ric matrix. Evidently, if we add to C the matrix aVl for given l ,
then the eigenvalues of the new matrix are λl + a and all other
eigenvalues unchanged. This is true because Vi�v j = δi j �vi due
to orthogonality of the eigenvectors.

In the case of strong positive correlations among the noises
εi(t ) as for our gridded temperature data, the first EOF, �v1, is
usually close to a constant, i.e., v1,i ≈ c ∀i, and hence V1 is a
good approximation to the fully degenerate matrix M (up to
some scalar factor). If so, then the trend m in the time series
should affect the eigenvalue λ1 of the covariance matrix of
�T , and also the nonstationarity of Tt (Ai ) due to the term mit
should predominantly be visible in the first PC Pt,1.

This reasoning becomes exact if two requirements are ful-
filled: The EOF1 of the covariance matrix, i.e., its eigenvector
�v1, is precisely a multiple of the vector (1, 1, 1, . . . , 1) and the
trend is exactly the same for all grid points. If either of these
conditions is violated, the additional trend matrix M in the
covariances of Eq. (1) cannot be mapped onto a single EOF,
and hence the trend will not be fully contained in Pt,1. In this
(more realistic) case, the trend contained in Pt,1 will be an
underestimation of the true trend.
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