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Quantum graphs and microwave networks as narrow-band filters
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We investigate properties of the transmission amplitude of quantum graphs and microwave networks com-
posed of regular polygons such as triangles and squares. We show that for the graphs composed of regular
polygons, with the edges of the length l, the transmission amplitude displays a band of transmission suppression
with some narrow peaks of full transmission. The peaks are distributed symmetrically with respect to the
symmetry axis kl = π , where k is the wave vector. For microwave networks the transmission peak amplitudes
are reduced and their symmetry is broken due to the influence of internal absorption. We demonstrate that for the
graphs composed of the same polygons but separated by the edges of length l ′ < l, the transmission spectrum is
generally not symmetric according to the axis kl ′ = π . We also show that graphs composed of regular polygons
of different size with the edges being irrational numbers are not fully chaotic and their level spacing distribution
and the spectral rigidity are well described by the Berry-Robnik distributions. Moreover, the transmission
spectrum of such a graph displays peaks which are very close to one. Furthermore, the microwave networks are
investigated in the time-domain using short Gaussian pulses. In this case the delay-time distributions, though very
sensitive to the internal structure of the networks, show the sequences of transmitted peaks with the amplitudes
much smaller than the input one. The analyzed properties of the graphs and networks suggest that they can be
effectively used to manipulate quantum and wave transport.
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I. INTRODUCTION

Quantum graphs of connected one-dimensional quantum
wires were introduced by Pauling [1]. Nowadays they play
a crucial role in the study of quantum chaos and complex
quantum systems [2–8,11–14]. A quantum graph is a metric
graph � = (V, E ) composed of v vertices, v ∈ V , connected
by one-dimensional e edges, e ∈ E , which is equipped with
the self-adjoint Laplace operator L(�) = − d2

dx2 acting in the
Hilbert space of square integrable functions. It has discrete
and nonnegative spectrum [8].

The wave transport through a graph can be characterized
by the off-diagonal elements S12(ν) and S21(ν) of the two-port
scattering matrix Ŝ(ν) of the graph [9,10]

Ŝ(ν) =
[

S11(ν) S12(ν)
S21(ν) S22(ν)

]
. (1)

Quantum graphs can be experimentally simulated by
microwave networks [7,12,15–19]. Such simulation is pos-
sible because of the formal analogy of the one-dimensional
Schrödinger equation describing quantum graphs and the tele-
grapher’s equation describing microwave networks [7,17].
Microwave networks allow for the experimental realiza-
tion of systems described by the main three symmetry
classes in random-matrix theory (RMT): Gaussian orthog-
onal ensemble (GOE) [7,12,15,16,20–24], Gaussian unitary
ensemble (GUE) [7,18,25–29]—systems with broken time re-
versal symmetry,—and Gaussian symplectic ensemble (GSE)
[30–32]. Thus, any theoretical prediction obtained for quan-
tum graphs can be verified experimentally using microwave

networks. Quantum graphs and microwave networks with pre-
served time reversal symmetry are reciprocal, therefore, their
scattering matrices Ŝ(ν) are symmetric which leads to the
relationship S12(ν) = S21(ν). In this analysis we will consider
the most frequently analyzed graphs and microwave networks
with the Neumann, also called standard, vertex boundary con-
ditions [16] which impose that the functions are continuous at
vertices and the sums of their oriented derivatives at vertices
are equal to zero.

For the completeness of the presentation one should men-
tion that in the simulation of other complex quantum systems,
microwave plane billiards [33–47] and atoms excited in strong
microwave fields [48–57] are used as model systems.

The transmission through a network accompanied by
backscattering (reflection) of a wave is the main feature of
particles and wave dynamics. The absence of backscattering
leads to the reflectionless absorption [58] or the reflectionless
transmission [59]. The latter case is particularly important
from an application point of view, e.g., in the condensed
matter while transport of spin, charge, or other carriers are
considered in nanomaterials.

The Green’s function approach is often used in analyzing
of scattering properties of quantum graphs [60–64]. Drinko
et al. [64] applied this mathematical formalism to inves-
tigate the scattering properties of dissipationless quantum
graphs composed of regular polygons such as triangles C3

and squares C4 with the edges of the same optical length l
[see Fig. 1(a)]. In Ref. [64] the global transmission ampli-
tudes tC3 (k) and tC4 (k) were also calculated for the triangles
C3 and squares C4 possessing the Neumann vertex boundary
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FIG. 1. The schemes of the triangle-square-triangle C3C4C3

[panel (a)] and the square-triangle-square C4C3C4 [panel (b)] quan-
tum graphs with vertices of degree three and two. (c) The photo of the
microwave network C3C4C3. The network was connected to the ports
of the vector network analyzer Agilent E8364B in order to measure
the transmission amplitude |S12(ν )| of the network [panel (d)].

conditions (Eq. (6) in [64]). However, they were printed with
some errors. The correct formulas are the following:

tC3 (k) = 4z(z3 − 1)(z + 1)

9 − z2 − 8z3 − z4 + z6
,

tC4 (k) = 4z(z4 − 1)(z2 + 1)

9 − z2 − 8z4 − z6 + z8
, (2)

where z = eikl .
One should also remark that in Ref. [65] the quantum states

of regular polygonal structures possessing from three to six
vertices made of 1D quantum wires were calculated treating
each polygon vertex as a scatterer.

In this article we go beyond a simple modeling of dissipa-
tionless graphs presented in Ref. [64] and analyze numerically
and experimentally open quantum graphs and microwave net-
works with internal dissipation and complicated geometry.

II. NUMERICAL CALCULATIONS

In the analysis of transport properties of graphs and mi-
crowave networks we will consider graphs and networks
with the Neumann boundary conditions for which the vertex

scattering matrices σ
(v)
e,e′ [66] are described by

σ
(v)
e,e′ = 2

dv

− δe,e′ , (3)

where dv is degree of the vertex v and δe,e′ is the Kronecker
delta.

The numerical calculations of the transmission amplitude
of graphs were performed using the method of pseudoor-
bits [21,67,68]. In the calculations we took into account
dissipation inside microwave networks by replacing the
wave vector k, characterizing dissipationless systems, with
the one k + iβ

√|k| accounting for their absorption, where
β = 0.009 m−1/2 [7,69].

The presence of dissipation in quantum graphs gives rise
to a multitude of distinctive behaviors. It induces exponential
decay of quantum states, leading to a rapid decrease in the
probability amplitude over time. Because of internal dissipa-
tion of the networks, their resonances show up as poles [22,70]
occurring at complex wave numbers km = 2π

c (νm − i�νm),
where c is the vacuum velocity of light, and νm and 2�νm are
associated with the positions and the widths of resonances,
respectively. Recently, the dissipative spectral form factor has
been introduced to diagnose dissipative quantum chaos and
reveal correlations between real and imaginary parts of the
complex eigenvalues [71]. Dissipation disrupts interference
patterns, a fundamental aspect of quantum mechanics, and
dampens resonance behavior. This deteriorating influence of
dissipation is especially important in application of quantum
filters, therefore, we decided to study it experimentally and
numerically.

III. EXPERIMENT

In order to simulate quantum graphs we applied microwave
networks which are composed of microwave coaxial cables
and T junctions that correspond to the edges and vertices
of degree three of quantum graphs, respectively. The coaxial
cable consists of an outer conductor with an inner radius
r2 = 0.15 cm and an inner conductor of a radius r1 = 0.05 cm.
These two conductors are separated by Teflon with an ex-
perimentally determined dielectric constant ε = 2.06. Below
the cut-off frequency υcut = c

π (r1+r2 )
√

ε
� 33 GHz [72,73]

only the fundamental TEM mode propagates in a cable.
The internal absorption of microwave networks was taken
into account on the basis of absorption of their edges made
of the microwave cables and their absorption coefficient
β = 0.009 m−1/2.

The experimental investigations of the transport properties
were realized by using microwave networks containing reg-
ular polygons: Triangles C3 and squares C4. Each polygon is
constructed of edges of the same optical length l = √

εlph =
0.25 m, where lph is the physical length of the edge. In our
investigations we focused on microwave networks simulating
quantum graphs containing three polygons: Triangle-square-
triangle C3C4C3 and square-triangle-square C4C3C4 [Figs. 1(a)
and 1(b)]. The polygons were connected by the edges of
length l ′. In the case of triangles C3 and squares C4, the
edges of polygons connected to the vertices of degree dv = 2,
where dv is the number of edges incident to the vertex v, were
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FIG. 2. The transmission amplitude of the graphs and microwave
networks composed of regular triangles and squares with the edges of
the same optical length l separated by the edges of the length l ′ = l
(see Fig. 1): (a) the triangle-square-triangle graph C3C4C3 and (b) the
square-triangle-square graph C4C3C4. The numerical results with the
absorption coefficient β = 0 and β = 0.009 m−1/2 are demonstrated
respectively by black solid and green dotted lines. The experimental
spectra of the microwave networks are shown by red solid lines.

replaced by the rings of coaxial cables with the corresponding
optical lengths 2l and 3l [see Fig. 1(c)].

The two-port scattering matrices Ŝ(ν) of the microwave
networks were measured using Agilent E8364B vector net-
work analyzer (VNA) [see Fig. 1(d)]. Two flexible microwave
cables HP 85133-616 and HP 85133-617 were applied to
connect the networks to the VNA. They are equivalent to
attaching semi-infinite external leads L∞

1 and L∞
2 to the

quantum graph [74]. In such a way the transmission am-
plitude |S12(ν)| of the network was measured as a function
of microwave frequency ν. In the real physical systems, ab-
sorption of microwaves in coaxial cables is unavoidable. It
results in resonance broadening and overlapping, therefore,
the transmission spectra were measured for low frequency
range 0.01 − 1.2 GHz.

In Fig. 2(a) we present the transmission amplitude
TC3C4C3 (k) ≡ |S12(ck/2π )| as a function of kl for the graph
(filter) C3C4C3 (triangle-square-triangle) with the edges l ′ = l
[see Fig. 1(a)]. The numerical results (black solid line)
obtained for the absorption coefficient β = 0 m−1/2 are
in full agreement with the theoretical predictions utilizing
the Green’s function approach [64]. The constructive quan-
tum interference leads to the appearance of narrow peaks
with the full width at half maximum FW HM � 3 MHz
[see Fig. 2(a)]. They achieve maximum of the transmis-
sion amplitude TC3C4C3 (kL) = 1 in the region of transport
suppression. The transmission amplitude obeys the relation
TC3C4C3 (π + kl ) = TC3C4C3 (π − kl ) for kl ∈ [0, π ]. In Fig. 2(a)
we show also the experimental results (red solid line) obtained

for the microwave network simulating the quantum graph
C3C4C3. Due to internal absorption of the network the experi-
mental transmission coefficient is compared to the numerical
one (green dotted line) obtained for the absorption coefficient
β = 0.009 m−1/2. The agreement between these results are
very good. Figure 2(a) shows also that the experimental trans-
mission peaks compared to the dissipationless situation are
reduced by absorption leading to energy transport losses and
the symmetry breaking in the transmission structures. It is
important to point out that the amplitudes of the transmission
peaks can be significantly increased by reducing the length l
of the network edges.

In Fig. 2(b) we show the numerical results obtained for the
unconsidered earlier dissipationless graph C4C3C4 with l ′ = l
(black solid line). Also, in this case the transmission coeffi-
cient is symmetric with respect to the symmetry axis kl = π .
In Fig. 2(b) we compare the experimental results obtained for
the microwave network C4C3C4 (red solid line) and the numer-
ical results obtained for the graph C4C3C4 with the absorption
coefficient β = 0.009 m−1/2 (green dotted line). Figure 2(b)
shows that both experimental and numerical results are in
good agreement.

A completely different situation will appear if we change
the construction of the filters C3C4C3 and C4C3C4 and allow
the polygon elements of the graphs to be separated by the
edges l ′ < l . With l ′ rationally related to l , e.g., l ′ = l/3,
we also expect to have multiple bands of transmission sup-
pression with the narrow transmission peaks but this time
distributed symmetrically according to the symmetry axis
kl ′ = π . In Figs. 3(a) and 3(b) we show the numerical results
obtained for the dissipationless graphs C3C4C3 and C4C3C4

with l ′ = l/3 (black solid lines). To show the symmetry in
the transmission coefficient the range of kl was extended to
6π . Indeed, the symmetry axes of the transmission structures
of the graphs at kl = 3π is clearly seen. For l ′ = l/3 the
positions of the transmission peaks are differently distributed
than in the case of l ′ = l , showing that the properties of the
filters can be easily modified by replacing the edges l ′ = l
with the edges l ′ rationally related to l . In Figs. 3(a) and 3(b)
the transmission amplitude of the dissipationless graphs is
compared with the one obtained for the absorption coefficient
β = 0.009 m−1/2 (blue dotted line). Also, in this case the
presence of absorption causes the transmission peaks to be
reduced in height leading to energy transport losses and the
symmetry breaking in the transmission structures.

For the graphs C3C4C3 and C4C3C4 with the edges l ′ not
rationally related to l we do not have a symmetry axis in
the transmission amplitude of the graphs. As an example of
such a situation in Figs. 4(a) and 4(b) we show the trans-
mission amplitude (black solid line) for the dissipationless
filters C3C4C3 and C4C3C4 with l ′ = l/π . Indeed, in the range
0 � kl � 6π the transmission amplitudes show the unique
structures without any visible repetition. However, even in
such a case the structures of the suppression bands with the
narrow transmission peaks are also present and the tuning
of l ′ can be effectively used to modify the filters properties.
The results for the dissipationless graphs are compared to the
ones obtained for the graphs with the absorption coefficient
β = 0.009 m−1/2 (red dotted line), showing that the presence
of absorption causes the transmission peaks reduction.
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FIG. 3. The transmission amplitude of the graphs composed
of regular triangles and squares with the edges of the same
optical length l separated by the edges of the length l ′ = l/3
(see Fig. 1): (a) the triangle-square-triangle graph C3C4C3 and (b) the
square-triangle-square graph C4C3C4. The numerical results with the
absorption coefficient β = 0 and β = 0.009 m−1/2 are shown by
black solid and blue dotted lines, respectively.

FIG. 4. The transmission amplitude of the graphs composed
of regular triangles and squares with the edges of the same op-
tical length l separated by the edges of the length l ′ = l/π
(see Fig. 1): (a) the triangle-square-triangle graph C3C4C3 and (b) the
square-triangle-square graph C4C3C4. The numerical results with the
absorption coefficient β = 0 and β = 0.009 m−1/2 are shown by
black solid and red-yellow dotted lines, respectively.

FIG. 5. (a) The scheme of the graph C3C4C′
3 composed of reg-

ular polygons of different size with edges that are not rationally
related. (b) The transmission amplitude of the dissipationless graph
(gray solid line) is compared with the one obtained for the ab-
sorption coefficient β = 0.009 m−1/2 (green dotted line). (c) The
nearest-neighbor spacing distribution (NNSD) (histogram) obtained
using 1811 eigenfrequencies of the graph. The numerical NNSD
is compared to the Poisson (green dashed line) and GOE (blue
dash -dotted line) theoretical distributions. The fit of the formula
(7) (solid red line) to the numerical data yields the parameter ρ1 =
0.496 ± 0.019. (d) The numerical spectral rigidity �3(L) (gray open
circles) is compared to the Berry-Robnik (solid red line), Poisson
(green dashed line), and GOE (blue dash dotted line) distributions.
The error bars in panels (c) and (d) represent the standard deviation
of uncertainty.

To consider an even more general situation in this ar-
ticle we analyze the transmission spectrum of the graph
C3C4C′

3 (see Fig. 5) composed of regular polygons of dif-
ferent size with edges that are not rationally related. The
edge lengths of the polygons are the following: l/e, l/

√
3,

and l/
√

5 for the polygons C3, C4, and C′
3, respectively,

where e = 2.71828182... is the Euler’s irrational number.
The polygons are separated by the edges of the length
l/π . In Fig. 5(b) we show the transmission amplitude of
the dissipationless graph (gray solid line) which is com-
pared with the one obtained for the absorption coefficient
β = 0.009 m−1/2 (green dotted line). Even in the case of
the dissipationless graph not all resonances are well sepa-
rated, suggesting that we deal with a system characterized
by the intermediate between Poisson and GOE level spacing
distribution.

To corroborate this observation we performed the analysis
of the spectral statistics of the transmission spectra. For that
reason the set of ordered eigenvalues of the graph was con-
verted to a set of normalized spacing. The procedure is carried
out by replacing the resonance frequencies νm by the smooth
part of the integrated level density that is given by the Weyl’s
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formula Nav (νm) [22],

εm = Nav (νm) � 2L
c

νm, (4)

where L is the sum of the lengths of the edges of the
graph. This gives dimensionless eigenvalues εm with mean
value unity, 〈s〉 = 1 of the spacing sm = εm+1 − εm between
adjacent levels. Properties of the spectral statistics will be
analyzed applying the nearest-neighbor spacing distribution
(NNSD) and the spectral rigidity. The NNSD is the most
commonly used measure of spectral regularity of quantum
systems which gives information on short-range correlations.
The analytical results for the NNSD for classically regular
systems PPoisson(s) and the chaotic ones described by the
Gaussian Orthogonal Ensemble in RMT PGOE(s) are given by
the following formulas [75]:

PPoisson(s) = e−s, (5)

PGOE(s) = π

2
se−(π/4)s2

. (6)

Spectral properties of complex systems that are usually not
fully regular or fully chaotic that can be described by sta-
tistically independent superposition of the Poisson and GOE
statistics are well approximated by the Berry-Robnik distribu-
tion PBR(s, ρ1) [76,77],

PBR(s, ρ1) = ρ2
1 e−ρ1serfc

(
1

2

√
πρ2s

)

+
(

2ρ1ρ2 + 1

2
πρ3

2 s

)
exp

(
−ρ1s − 1

4
πρ2

2 s2

)
,

(7)

where erfc(·) is the complementary error function and
ρ2 = 1 − ρ1.

It interpolates between the Poisson PPoisson(s) (ρ1 = 1,
ρ2 = 0) and the Wigner distribution PGOE(s) (ρ1 = 0,
ρ2 = 1), i.e., it characterizes the transition from fully uncorre-
lated to correlated energy levels. By fitting the Berry-Robnik
distribution to NNSD, the parameter ρ1 can be evaluated.

In Fig. 5(c) we show the NNSD (histogram) obtained using
1811 eigenfrequencies of the graph. The numerical NNSD
is compared to the Poisson (green dashed line) and GOE
(blue dash dotted line) theoretical distributions. The fit of
the formula (7) (solid red line) to the numerical data yields
the parameter ρ1 = 0.496 ± 0.019 which shows that the nu-
merical NNSD displays the intermediate quantum behavior
characterized by the mixture of uncorrelated and correlated
energy levels. In Fig. 5(c) the error bars represent the standard
deviation of uncertainty.

The spectral rigidity �3(L) measures the least square devi-
ation of the spectral staircase function N (ε) from the best line
fitting it:

�3(L) = 1

L

〈
minA,B

∫ L/2

−L/2
[N (ε) − Aε − B]2dε

〉
, (8)

where 〈·〉 denotes a local average. The statistical independence
of regular and chaotic components of the mean level density
ρ1 and ρ2 leads to the theoretical formula for the Berry-

Robnik spectral rigidity [77]

�BR
3 (L, ρ1) = �Poisson

3 (ρ1L) + �GOE
3 (ρ2L), (9)

where �Poisson
3 (L) and �GOE

3 (L) are the spectral rigidity distri-
butions for the Poisson and GOE systems, respectively.

In Fig. 5(d) the numerical spectral rigidity �3(L) (gray
open circles) evaluated for the graph C3C4C′

3 is compared to
the Berry-Robnik spectral rigidity �BR

3 (L, ρ1) (solid red line),
calculated for ρ1 = 0.496 ± 0.019. The error bars in Fig. 5(d)
represent the standard deviation of uncertainty. The agreement
between the numerical spectral rigidity �3(L) and the Berry-
Robnik spectral rigidity �BR

3 (L, ρ1) is very good. In Fig. 5(d)
the numerical spectral rigidity �3(L) is also compared to the
spectral rigidity distributions �Poisson

3 (L) (green dashed line)
and �GOE

3 (L) (blue dash dotted line) predicted for classically
regular and chaotic quantum systems, respectively.

Summarizing, the nearest-neighbor spacing distribution
P(s) and the spectral rigidity �3(L) of the graph C3C4C′

3 show
the transition from Poisson to GOE quantum chaotic behavior
which is well described by the Berry-Robnik distributions. It
is important to point out that, despite that the graph is partially
chaotic, its transmission spectrum displays peaks which are
very close to one, e.g., at kl � 7.2π and 11.3π , allowing to
use such a graph as a spectral filter.

Additionally, to the continue wave measurements we
also investigated the scattering properties of the networks
presented in Figs. 1(c) and 6(a) using delay-time distributions
of short Gaussian pulses (see Fig. 6). The signal of
FW HM = 125 ps and amplitude A=0.41 V was synthesized
by the waveform generator AWG 7082C. The output signal
after network’s penetration was detected and stored by
the digital oscilloscope MSO-X-91304A. In Fig. 6(b) we
show the experimental delay-time distributions obtained
for the microwave networks C3C4C3 and C4C3C4 with
l ′ = l denoted by blue dotted and green solid lines,
respectively. The positive and negative peaks transmitted
through the networks are formed due to the interference
of signals traveling along many very complicated available
paths. For example, the first three peaks recorded for the
network C3C4C3, marked as 5l , 6l , and 7l , are attributed to
the paths: acdgh j, abcdgh j + acdghi j, and acde f gh j +
abcdghi j + acacdgh j + acdcdgh j + acdgdgh j + acdghgh j
+ acdgh jh j, respectively. In the case of the network C4C3C4

the first three peaks 5l , 6l , and 7l are attributed to the paths:
adeghk, ade f ghk, and abcdeghk + adeghi jk + adadeghk +
adedeghk + adegeghk + adeghghk + adeghkhk, respectively.
The application of the Neumann boundary conditions
[Eq. (3)] to vertices being on the paths assigned to the
peaks 5l , 6l, and 7l shows that for both networks the peaks
5l and 7l should have the same heights while the peak
6l for the network C3C4C3 should be two times higher
than the one for the network C4C3C4. Figure 6(b) shows
that the theoretical predictions are in agreement with the
experimental results. Our experimental results also show
that the sequences of the transmitted peaks possess much
smaller amplitudes than the input one. For example, the
ratio of the amplitude of the peak 7l and the input one for
the dissipationless network should be U 7l/U in = 0.224,
what is very close to the experimental one 0.21 ± 0.02.
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FIG. 6. (a) The square-triangle-square C4C3C4 microwave net-
work simulating the quantum graph C4C3C4. A Gaussian input
signal synthesized by the waveform generator AWG 7082C with
the amplitude A = 0.41 V and the FWHM of 125 ps enters the
network through the attached input lead and propagates inside it
until it leaves through the output lead. The output signal is de-
tected and stored by the digital oscilloscope MSO-X-91304A. The
lengths of the edges: l = 0.250 ± 0.001 m, 2l = 0.500 ± 0.002 m,
and 3l = 0.750 ± 0.002 m. (b) The experimental delay-time distri-
butions obtained for the microwave networks C3C4C3 and C4C3C4

are denoted by blue dotted and green solid lines, respectively. The
positive and negative peaks transmitted through the networks are
formed due to the interference of signals traveling along many
very complicated available paths. The peaks marked as 5l , 6l ,
7l, . . ., are appropriately attributed to the paths of the length: 5l ,
6l, 7l, . . ..

IV. SUMMARY

We investigated numerically and experimentally trans-
port properties of quantum graphs and microwave networks
C3C4C3 and C4C3C4 composed of simple regular polygons:
Triangles C3 and squares C4. The transmission spectra exhibit
suppression bands, i.e., regions of full transmission suppres-
sion with narrow peaks of FW HM � 3 MHz and maximum
transmission which are the consequence of constructive wave
interference. The structures of bands and transmission max-
ima can be controlled by changing the geometry of the graphs.
In particular if the polygon elements of the graphs are sepa-
rated by the edges l ′ irrationally related to l the transmission
structures of the graphs do not posses any symmetry axis. The
numerical results for the absorption-free graph C3C4C3 are
in good agreement with theoretical predictions [63]. We also
investigated microwave networks simulating quantum graphs
with absorption. We showed that the experimental results are
in agreement with the numerical ones obtained for the graphs
with the absorption coefficient β = 0.009 m−1/2. The nearest-
neighbor spacing distribution P(s) and the spectral rigidity
�3(L) of the graph C3C4C′

3 composed of regular polygons
of different size with the edges that are not rationally re-
lated show intermediate behavior between the Poisson and
GOE one, well described by the Berry-Robnik distributions.
We showed that the transmission spectrum of such a graph
displays transmission peaks which are very close to one,
e.g., at kl � 7.2π and 11.3π , indicating that even the graphs
composed of irrational edges can be used as spectral filters.
The time resolved domain was experimentally investigated
measuring delay-time distributions of short Gaussian pulses
of FW HM = 125 ps propagating through the microwave
network. Our results shed new light on the design and con-
struction of new spectral devices, in particular ultranarrow
bandpass filters, with controllable multiple transmission max-
ima and zeros, which can be used to manipulate the quantum
and wave transport.
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and L. Sirko, Phys. Rev. E 69, 056205 (2004).
[8] G. Berkolaiko and P. Kuchment, Introduction to Quantum

Graphs (American Mathematical Society, Providence, 2012).
[9] S. Kumar, A. Nock, H.-J. Sommers, T. Guhr, B. Dietz, M.

Miski-Oglu, A. Richter, and F. Schäfer, Phys. Rev. Lett. 111,
030403 (2013).

[10] M. Ławniczak, B. van Tiggelen, and L. Sirko, Phys. Rev. E 102,
052214 (2020).
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