
PHYSICAL REVIEW E 108, 034216 (2023)

Dynamic mode decomposition with memory

Ryoji Anzaki,1,* Kei Sano,2,† Takuro Tsutsui,3,‡ Masato Kazui,2,§ and Takahito Matsuzawa2,‖
1Advanced Engineering 1st Department, Digital Design Center, Tokyo Electron Ltd.,

Akasaka Biz Tower, 3-1 Akasaka 5-chome, Minato-ku, Tokyo 107-6325, Japan
2Advanced Engineering 1st Department, Digital Design Center, Tokyo Electron Ltd.,

Daido Seimei Sapporo Building, 1, Kita 3-jo, Nishi 3-chome, Chuo-ku, Sapporo City, Hokkaido 060-0003, Japan
3Advanced Engineering 2nd Department, Digital Design Center, Tokyo Electron Ltd.,

Daido Seimei Sapporo Building, 1, Kita 3-jo, Nishi 3-chome, Chuo-ku, Sapporo City, Hokkaido 060-0003, Japan

(Received 13 March 2023; accepted 24 August 2023; published 28 September 2023)

This study proposed a numerical method of dynamic mode decomposition with memory (DMDm) to analyze
multidimensional time-series data with memory effects. The memory effect is a widely observed phenomenon in
physics and engineering and is considered to be the result of interactions between the system and environment.
Dynamic mode decomposition (DMD) is a linear operation-based, data-driven method for multidimensional
time-series data proposed in 2008. Although DMD is a successful method for time-series data analysis, it is based
on ordinary differential equations and thus cannot incorporate memory effects. In this study, we formulated the
abstract algorithmic structure of DMDm and demonstrate its utility in overcoming the memoryless restriction
imposed by existing DMD methods on the time-evolution model. In the numerical demonstration, we utilized
the Caputo fractional differential to implement an example of DMDm such that the time-series data could be
analyzed with power-law memory effects. Thus, we developed a fractional DMD, which is a DMD-based method
with arbitrary (real value) order differential operations. The proposed method was applied to synthetic data from a
set of fractional oscillators and model parameters were estimated successfully. The proposed method is expected
to be useful for scientific applications and aid in model estimation, control, and failure detection of mechanical,
thermal, and fluid systems in factory machines, such as modern semiconductor manufacturing equipment.
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I. INTRODUCTION

Dynamic mode decomposition (DMD) [1–4] is a data-
driven, linear algebra-based method for time-series data
analysis. It was first developed by Schmid for the analysis of
experimental data in fluid dynamics [1] and is now widely
used in a wide variety of scientific fields such as climatology
[5,6], plasma physics [7], dissipative quantum systems [8],
and fluid dynamics applications [9]. In addition to its success
in data-driven science, the mathematical structure of DMD
has garnered attention, particularly in terms of its connection
with Koopman theory [3,10,11].

The basic idea of DMD is to find the best-fit matrix
coefficient assuming a constant-coefficient linear difference
equation for a given multidimensional time-series data. Using
DMD, we can extract the coefficients of the time-evolution
equation and time-dependent modes of the dynamics. In
DMD, a mode varies both in spatial and temporal direc-
tions, and that is the reason for the name dynamic mode
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decomposition. For example, Sasaki et al. [7] extracted the
time-evolution patterns of the plasma using DMD.

A. DMD algorithm

We show the DMD algorithm in its simplest form,
exact DMD [2,4]. Consider a set of time points T =
{t0, t1, . . . , tm−1} with t j > ti for j > i. Assume a collec-
tion of data, such as instantaneous observations of a system
{x0, . . . , xm−1}. Each observation xk ∈ Rn(k = 0, . . . , m − 1)
is a state (column) vector at a time tk ∈ T. The exact DMD
is formulated as the least-squares method for ẋk with the
time-evolution model in continuous time, as follows:

ẋ(t ) = Ax(t ), (1)

where A ∈ Rn×n is a coefficient matrix of the continuous
time-evolution model. For a uniformly discretized T with time
interval �t > 0, A is estimated by matrix manipulation by
letting X = [x0, x1, . . . , xm−2] and X ′ = [x1, x2, . . . , xm−1] as
follows:

A � A − 1̂n

�t
, A = arg min

A′
‖X ′ − A′X‖ = X ′X +, (2)

where 1̂n is the n × n unit matrix and ‖ • ‖ is the matrix
Frobenius norm. For time-series data that obey the first-order
difference equation, the matrix A becomes the transition ma-
trix Axk = xk+1. The Moore–Penrose pseudoinverse •+ can
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be calculated using singular value decomposition (SVD) X =
U�V ∗. Here U ∈ Cn×n and V ∈ Cm×m are unitary; that is,
U ∗U = 1̂n and V ∗V = 1̂m, where •∗ denotes the adjoint ma-
trix. In this paper, we use Ka×b to denote the set of a × b
matrices with their matrix elements being in K = R, C. Ma-
trix � ∈ Rn×m contains singular values of X . Note that we use
the full SVD, i.e., � is an oblong matrix, whereas U and V
are square matrices, so that the equalities UU ∗ = 1̂n = U ∗U
and VV ∗ = 1̂m = V ∗V holds exactly. The pseudoinverse X +
is now calculated as X + = V �+U ∗. Consequently, the param-
eter of the discrete-time-evolution model is expressed as

A = X ′V �+U ∗. (3)

The rank-r approximation of the SVD for a positive integer
r < n becomes X � Ur�rV ∗

r for Ur ∈ Cn×r , �r ∈ Cr×r , and
Vr ∈ Cn×r . Thus, we can obtain the rank-r representation of
the discrete-time time-evolution model as follows:

Ar = U ∗
r AUr = U ∗

r X ′Vr�
+
r . (4)

Low-rank representations are frequently used for data with
large dimensions.

B. Time-evolution model

The time-evolution model of the existing DMD is the first-
order ordinary differential equation (ODE) [Eq. (1)], whose
generic solution is expressed as the superposition of the DMD
modes (i.e., the eigenvectors of the coefficient matrix A) with
the time-evolution function expressed as a time-dependent
exponential function,

x(t ) =
n−1∑
j=0

�φ j exp(ω jt )b j = � exp(�t )b, (5)

where � = [ �φ0, �φ1, . . . , �φn−1] and � =
diag(ω0, ω1, . . . , ωn−1) are the eigenvectors and eigenvalues
of A, respectively. The vector �φ j is the jth DMD mode
corresponding to the DMD eigenvalue ω j , and b j is
the loading for each DMD mode. The DMD mode and the
corresponding exponential function have the same eigenvalue
to satisfy Eq. (1). A low-rank representation corresponds to
the replacement of

∑n−1
j=0 → ∑r−1

j=0 in Eq. (5) for 1 < r < n.
Using the generic solution listed above, the time-evolution

model Eq. (1) can be solved for a particular initial value x0 by
replacing b = �+x0 in Eq. (5).

C. Nonuniform time points

A set of time points T can be uneven in several realistic
situations. In these cases, a discretized representation of the
time-derivative operator can be constructed. Hereafter, we as-
sume that data matrix X is defined by X = [x0, x1, . . . , xm−1].
The time-evolution model now has the form

XD(1)
m = A[0, x1, x2, . . . , xm−1], (6)

where the matrix D(1)
m ∈ Rm×m is

D(1)
m =

⎡⎢⎢⎢⎢⎢⎣
0 −θ01 0 0
0 +θ01 −θ12 0

0 0 +θ12
. . . 0

...
. . . −θm−2,m−1

0 0 0 +θm−2,m−1

⎤⎥⎥⎥⎥⎥⎦, (7)

where θk−1,k = 1/(tk − tk−1) > 0. Equation (6) exhibits itself
as a special case of the following generic matrix equation for
an integer 0 � q � m − 1 and an upper triangular matrix D ∈
Cm×m whose first q columns are zero vector 0 = [0, . . . , 0]	,

XD = A[0, . . . , 0, xq, xq+1, . . . , xm−1], (8)

where D is a matrix acting on the temporal indices of the data
matrix X ∈ Cn×m and A ∈ Cn×n is a matrix that acts on the
spatial indices of X .

D. DMD with control

Among the extensions of DMD, DMD with control
(DMDc) [12] is a method used for analyzing time-series data
corresponding to a nonautonomous dynamical system. The
term nonautonomous refers to the existence of an exogenous
external force, whose time dependence is not affected by
the status of the dynamical system itself. One example is
the forced oscillation, wherein an external force is applied
to the oscillator. The generic form of the nonautonomous
dynamical system of interest is expressed as follows:

dx
dt

= Ax(t ) + Bu(t ), (9)

where x is the n-dimensional state vector and u is the �-
dimensional external force vector. Coefficients A ∈ Rn×n and
B ∈ Rn×� are constant over time. The DMDc is formulated as
the estimation of matrices A, B from the observations X and
external force ϒ = [u0, u1, . . . , um−1] as follows:

[A B] � [Ā B̄] = XD(1)
m

[
[0, x1, x2, . . . , xm−1]
[0, u1, u2, . . . , um−1]

]+
, (10)

where [A B] is a block matrix with two blocks A and B.
The application of the standard procedure for singular-value
decomposition leads to reduced representation [12].

E. Other related works

The simple, highly extensive algorithmic structure of DMD
has aided researchers in developing better numerical methods
based on the original DMD. Residual DMD (resDMD) [5] is
a neural network–based method with residual blocks, and its
reference is replaced by the results of the DMD algorithm. The
incorporation of neural networks enables resDMD to handle
time-series data that are best fitted by highly nonlinear time-
evolution models. The optimized DMD (optDMD) [13] and
bagging, optimized DMD (BOP–DMD) [6] are extensions
of DMD, with their nonlinear optimization yielding better
debiasing outcomes. Conversely, the bagging of snapshots
provides a better convergence to the optimization and enables
uncertainty quantification.
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F. Generic time-evolution equation

In this paper, we define time evolution as an initial-value
problem (IVP). An IVP is a pair of initial conditions and
time-evolution equation. For instance, for � ∈ Z>0, a �th or-
der ODE d�x

dt� = f (x(t ), t ), x ∈ Rn with � initial conditions
x(0) = xini,0, . . . , x(�−1)(0) = xini,�−1 is an IVP. The number
of independent initial conditions q necessary to specify the
time-series x(t ) depends on the time-evolution equation. Let
us call the number of initial conditions q the nullity of the
time-evolution equation or the corresponding operator in the
time domain. In the example above, q is equal to the order
of the ODE. This generic idea can be further generalized to
other types of time-evolution equations, such as difference
equation in the discrete cases. In this paper, we concentrate on
the IVPs, leaving other ways to specify the degrees of freedom
(e.g., final-value problem) for the future works.

In general, the time-evolution equation on the set of time
points T has the form

π (x)(t ) = f (x(t ), t ), x ∈ Rn, t ∈ T , (11)

where π is a functional of x, corresponding to the trans-
formation of x in time domain. To interpret Eq. (11) as a
time-evolution equation, one has to impose the causality on
the functional π : π (x)(t ) is not dependent on x(t ′) for any
t ′ > t (t, t ′ ∈ T ). If the functional π is not causal, Eq. (11)
together with initial conditions falls into a self-reference and
thus is irrelevant for a time-evolution function.

Note that in a functional space with sufficiently smooth
functions, a differential operator d�

dt� has causality, since it is
equivalent to the left derivative and thus can be calculated
without using the future states. Let us suppose that the set
of time points is an interval, i.e., T = [0, T ] with T > 0.
At the minimum of the interval t = 0, a function has no left
derivative, and thus the domain of the differential operator d�

dt�

is (0, T ]. The lack of the derivatives at t = 0 is the origin of
the nonzero nullity of the ODEs as time-evolution equations.

Let us discretize the interval [0, T ] into m time points ti =
i�t for i = 0, . . . , m − 1 with �t = T/(m − 1). Then we can
construct a discretized representation of the �th order ODE as
follows:

D(�)
m [x(t0), x(t1), . . . , x(tm−1)]

= [0, . . . , 0, f (x(t�), t�), . . . , f (x(tm−1), tm−1)], (12)

where D(�)
m is a �th order difference operator. For � = 1, one

can find D(1)
m in Eq. (7). Note that the rank of the difference

matrix is given by rank(D(�)
m ) = m − �, and thus our choice

of the term nullity coincides with that in linear algebra (i.e.,
dimension minus rank for a square matrix). To specify the
vectors x(ti ) for i = 0, 1, . . . , m − 1, one needs q = m − �

independent initial conditions, such as

x(t0) = c0, x(t1) − x(t0) = �tc1,

x(t2) − 2x(t1) + x(t0) = �t2c2 . . . , (13)

for given constant vectors c0, c1, c2, . . . , corresponding to
the position, velocity, and acceleration at t = 0. In general,
one can specify the initial conditions by the following linear

equation:

[x(t0), x(t1), . . . , x(tq−1)]
 = γ, (14)

for given constant vector γ ∈ Rq and an invertible matrix

 ∈ Rq×q.

G. Memory effects

Despite the tremendous success of the aforementioned
methods, there is scope for improvement in terms of incor-
poration of time-evolution models by DMD. Existing DMDs
either use the first-order ODE (exponential) model [2,3,12] or
a neural network-based method to deal with the nonlinearity
in time-evolution models [5]. Moreover, the time-evolution
model can be extended within the linear model but with mem-
ory effects.

Many known fundamental physical processes are governed
by first- or second-order ODEs, leading to exponential-like
behaviors over time. Thus, exponential time evolution plays a
crucial role in theoretical physics.

Although microscopic and fundamental physics are gov-
erned by integer-order ODEs (i.e., memoryless equations of
motion), systems with strong coupling to an external system
or reservoir behave differently. Consider that the internal state
of the system is known and no microscopic information on
the internal state of the reservoir is available. On applying a
stimulus to the system, the system state changes, thus leading
to a change in the reservoir state via the system-reservoir inter-
actions. Subsequently, changes in the reservoir may also affect
the system via the system-reservoir surface. Such an indirect
effect via an external system leads to a memory effect wherein
the time evolution of the system appears to be affected by the
current status and history of its time evolution [14,15].

In the realm of materials science and engineering, mem-
ory effect is also known as hysteresis. It is also referred as
the non-Markovian effects in some realms of science and
engineering. Among the wide variety of phenomena that ex-
hibits hysteresis, the B-H response of the magnetic materials,
friction [16], and piezoelectricity [17] are well-known exam-
ples in engineering. For instance, piezoelectric actuators are
used in high-accuracy position controller in modern industrial
machines (e.g., semiconductor processing equipment) and its
behavior including the hysteresis is of great interest in control
theory [17,18].

As explained above, the memory of a system implies
nonlocal behavior in the time domain, which mostly arises
from the limitations of our observations. In the time-evolution
equations explained in the previous section, memory effect
corresponds to the nonlocality in the functional π . Assuming
a linear functional, one can express π as follows:

π (x)(t ) =
∫

dt ′g(t, t ′)x(t ′), (15)

with g(t, t ′) being the memory kernel. One example of the
memory kernel is the power memory kernel [19]: g(t, t ′) ∝
(t − t ′)−α for t ′ < t . The power memory kernel corresponds
to a memory weight which decays in time according to the
power law, and it is shown that the power memory kernel leads
to an equation of motion described by fractional differential
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equations (e.g., Ref. [20]). Another important example of
memory kernel is the exponential memory kernel [21].

H. Study aims

In this study, we proposed a DMD with memory (DMDm)
method, whose time-evolution models are described by a
wider class of equations that enable the description of the
system with memory effects. As the basis of our discussion,
we used the definition of the exact DMD given by Tu et al.
(Definition 1 in Ref. [2]). Let us assume a linear functional
relation, y = π (x) for two time-series datasets, x : t �→ x(t )
and y : t �→ y(t ). As we have seen in Sec. I F, if the value
y(t ) = π (x)(t ) is not affected by the values x(t ′) for t ′ > t ,
then the linear map π is causal, because the operation is
performed without knowing the future values of x.

Moreover, the construction of an eigenfunction of a causal
linear operator can also be formulated as an IVP. This is
also true in discrete-time-series data and in the discretized
representation of the linear operator Dπ , as shown in the next
section. The discretized representation of the eigenfunction
z : t �→ z(t ) ∈ R corresponding to an eigenvalue λ is an array
of numbers [z(t0), z(t1), . . . , z(tm−1)] that satisfy the following
matrix equation:

[z(t0), z(t1), . . . , z(tm−1)]Dπ

= λ[0, . . . , 0, z(tq ), . . . , z(tm−1)], (16)

where the first q columns of matrix Dπ are zero vectors and
m − q is the rank of Dπ . For a causal Dπ , the element of the
array z(tk ) is constructed using an IVP or by applying the
transition operator Ktk to the initial q states of the system
z(t0), z(t1), . . . , z(tq−1). This results in a mode decomposition
of a form similar to Eq. (5),

x(t ) =
r−1∑
j=0

�φ jFπ,λ j ,zini (t ). (17)

In Eq. (17), the vector �φ j ∈ Rn is the DMD mode of the
problem and the function Fπ,λ,zini is the solution to the
IVP π (z)(t ) = λz(t ), [z(t0), z(t1), . . . , z(tq−1)] = zini. Here
the eigenvector in the spatial direction �φ j and eigenfunction in
the time domain Fπ,λ j and zini share the common eigenvalue
λ j , corresponding to the factorization of the solution into tem-
poral and spatial parts. In addition, the proposed framework
contains the exact DMD, because

F d
dt ,λ,[1] = exp(λt ). (18)

For π = d
dt , the rank of the discretized representation D d

dt
∈

Rm×m is m − 1.
As an example of this discussion, we use fractional

calculus [14,15,22,23] for time-domain transformation. The
fractional derivatives of real-valued [15,22,23] and complex-
valued orders [24] are useful in physics with memory effects
using power law [14,15]. The idea of introducing a fractional-
(noninteger) order derivative has also attracted attention in
control theory [25,26]. One notable application of fractional
calculus in control theory is the PIλDμ controller [26].

The αth-order fractional integral of an integrable function
f and real value α > 0 are expressed as [22,23]

(Iα f )(t ) = 1


(α)

∫ t

−∞
dt ′ f (t ′)

(t − t ′)1−α
, (19)

where 
 : α �→ 
(α) is the gamma function. Note that
the above definition corresponds to the case g(t, t ′) = (t −
t ′)α−1/
(α), i.e., the power memory kernel.

The fractional integral satisfies the following properties for
any integrable function f , g and the real values α, β > 0:

(1) Iα ( f + g) = Iα f + Iαg,
(2) IαIβ f = Iα+β f ,
(3) I1 f (t ) = ∫ t

−∞ dt ′ f (t ′).
The first and second conditions correspond to linearity with

respect to the function and additivity of the order, respectively.
The third condition is the equivalence of Iα to the Riemann
integral, for α = 1. As the integral is the inverse of the deriva-
tive, the α-order derivative can be constructed for any α ∈
R [22] for a smooth, integrable function f : (−∞, t1] → R
(t1 > −∞ is the upper bound of the domain of f ).

Although the power law in memory effects is just an ap-
proximation in some applications (e.g., Ref. [19]), the use of
power memory kernel in terms of fractional derivative has
two major advantages: (1) The set of fractional derivative
operators forms a one-parameter group and (2) the implemen-
tation is relatively easy, because we can use the libraries for
fractional derivatives.

In the following sections, we present the generic idea of
DMDm and the detailed algorithm of fractional DMD or
fracDMD. The fracDMD is a DMDm method wherein frac-
tional differential equations determine the time dependency
of each DMD mode instead of first-order differential equa-
tions. DMDm is a theoretical extension of DMD, enabling the
analysis of multidimensional time-series data with memory
effects in the DMD framework. Compared with existing DMD
methods, our method has a wider degree of freedom in time-
evolution models.

The remainder of this paper is organized as follows. In
Sec. II, we investigate the properties of a causal linear function
and its eigenfunctions. In Sec. III, we introduce the DMDm.
In Secs. IV and V, we introduce an arbitrary order DMD
(fracDMD) as an example of the DMDm. In Secs. VI and VII,
we apply fracDMD to synthetic time-series data to demon-
strate the validity of the proposed method. Further, Sec. VIII
discusses the numerical results, and finally, Sec. IX concludes
the study.

Throughout this study, we denote a n × m matrix as V =
[V0,V1, . . . ,Vm−1] = [Vi j] so that we can refer the column
vectors Vi and elements Vi j with 0 � i � n − 1 and 0 � j �
m − 1. We frequently use zero-padded matrices for a given
matrix V , e.g.,

[0, . . . , 0,Vq, ...,Vm−1] ∈ Rn×m. (20)

Hereafter, we assume that a zero-padded matrix is of the same
shape as the original matrix, and thus one can assume that
appropriate number of zero vectors are used.
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II. CAUSAL LINEAR OPERATORS AND ITS PROPERTIES

In this section, we investigate the conditions for linear
operator π , introduced in the previous section. Let us denote
the set of maps { f : D → C} from set D to set C by hom(D, C)
or CD.

For a particular set of time points T ⊆ R, we denote a
set of one-dimensional (1D) time-series data by CT . A time-
series datum V ∈ CT is a map from the set of time points T
to complex numbers; that is, V : T → C.

A. Causal linear operator

Assume a set of time points T and its subset S ⊆ T . The
original set T is either a closed interval in R or finite subset of
R. We define a causal linear operator π : CT � V �→ W ∈
CS as a linear functional π ∈ hom(CT , CS ) between two
time series that satisfy the causality condition. For a bounded
set T , we assume that min(T ) = 0 and max(T ) = T > 0
without loss of generality.

(i) Let Ṽ (−, t ′) : t �→ Ṽ (t, t ′) is a function such that
Ṽ (t, t ′) = V (t )�(t ′ − t ).

(ii) Then, π is causal
def⇔ π (V )(t ) = π (Ṽ (−, t ′))(t ) for

any t, t ′ ∈ S satisfying 0 � t � t ′ � T ,
where � : R → C is the step function, �(t ) = 0 for t < 0 and
�(t ) = 1 for t � 0. We use a placeholder − to distinguish the
function f (−) and value f (x) for f : x �→ f (x). Note that the
more intuitive definition given in Sec. I F coincides with the
above definition.

B. Eigenfunction of the causal linear operator

Hereafter, we assume that the causal linear operator π has
a positive nullity q � 1, so that, by definition, we have to
impose q initial condition(s). This means that the domain of
the operator π is smaller than the set of time points we are
interested in. Let the set of time points considered here be T =
[0, T ] for T > 0, and the domain of the operator π becomes
S = (0, T ]. Note that the lack of t = 0 in S corresponds to the
needs for the initial conditions for time-evolution equations of
the form π (x)(t ) = f (x(t ), t ).

For a particular causal linear operator π ∈ hom(CT , CS )
and the initial conditions, we can approximate the eigenfunc-
tion of π using an iterative method as follows. First, we
introduce and fix a finite subset of T as follows:

T = {ti ∈ T |i = 0, 1, 2, . . . , m − 1, ti > t j for i > j, t0 = 0, tm−1 = T } ⊂ T . (21)

Furthermore, we introduce a (row) vector representation of
time series V on T as V = [V0,V1, . . . ,Vm−1], where Vk =
V (tk ) ∈ C (k = 0, 1, . . . , m − 1). Then the matrix representa-
tion of π is introduced using the following equation:

V Dπ = π (V ), (22)

where standard matrix multiplication is assumed on the left-
hand side. Owing to the causality of the linear operator π , the
matrix representation Dπ is an upper-triangular matrix whose
first q (1 � q � m − 2) column vectors are zero,

Dπ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 ∗ · · · ∗ ∗
. . .

... ∗ · · · ∗ ∗
0 ∗ · · · ∗ ∗

πqq ∗ ∗
. . .

...
...

πm−2,m−2 ∗
O 0 πm−1,m−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(23)

Hereafter, we assume that the product of the
lower m − q diagonal elements is nonzero, that is,
πqqπq+1,q+1 · · · πm−1,m−1 �= 0. The integer q corresponds
to the nullity of the operator π . Note that the zeroth column
vector of the matrix Dπ corresponds to t = 0 �∈ S .

The eigenvalue problem for the linear operator π is ap-
proximately expressed by the following matrix equations in
association with the initial condition for the row vector V and
matrix Dπ :

V Dπ = λ[0, . . . , 0,Vq,Vq+1, . . . ,Vm−1], (24)

[V0,V1, . . . ,Vq−1]
 = γ, (25)

where 
 ∈ Cq×p is a matrix and γ ∈ Cp is a constant row
vector. For the IVP Eq. (24) and Eq. (25) to be solvable, we
must impose that rank(
) = q. Note that the second equa-
tion Eq. (25) corresponds to the initial conditions, specifying
the first q components of vector V , and the first equation spec-
ifies the other components Vq,Vq+1, . . . ,Vm−1 based on the
first q values. The simplest class of initial conditions is to
assign the first q values to the time series V :

[V0,V1, . . . ,Vq−1] = [Vini,0,Vini,1, . . . ,Vini,q−1], (26)

corresponding to the cases 
 = 1̂q and γ =
[Vini,0,Vini,1, . . . ,Vini,q−1] in Eq. (25).

The eigenfunction of the operator π is numerically ap-
proximated via the following successive calculations for the
particular initial condition: for k = 0, 1, . . . , q − 1,

Vk =
p−1∑
j=0

(
+) jkγ j, (27)

and for k = q, q + 1, . . . , m − 1, solving Eq. (24) for Vk in
terms of V0, . . . ,Vk−1 yields the iterative equation:

Vk =
[

[V0, . . . ,Vk−1, 0, . . . , 0]Dπ

λ − πkk

]
k

. (28)

The procedure to obtain the approximated eigenmode of
the causal linear operator π from the first q values
V0,V1, . . . ,Vq−1 is summarized in Algorithm 1.

By using a sequence of time points T with the maximum
time interval �tmax → +0, Algorithm 1 can approximate a
smooth function. To ensure that Algorithm 1 functions prop-
erly, we must identify a matrix Dπ whose first q columns
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Algorithm 1. Approximated eigenfunction φπ,λ,Vini
for a causal

linear operator π

Require: Nullity of the operator q, parameter λ, initial values
Vini = [V0,V1, . . . ,Vq−1] ∈ Cq, matrix representation Dπ

corresponding to the discrete set of time points T
V ← [V0,V1, . . . ,Vq−1, 0, . . . , 0] ∈ Cm

for k ∈ {q, q + 1, . . . , m − 1} do
Vk ← [ [V0,...,Vk−1,0,...,0]Dπ

λ−πkk
]k

V ← [V0,V1, . . . ,Vk, 0, . . . , 0] ∈ Cm

end for
φπ,λ,Vini

← V
Return φπ,λ,Vini

are zero vector, whereas the other column vectors are linearly
independent.

III. DYNAMIC MODE DECOMPOSITION WITH MEMORY

Using the causal linear operator and its eigenfunctions in-
troduced in the previous section, we postulated the concept of
DMDm, which is a numerical method that includes memory
effects in the DMD framework. It employs a causal linear
operator instead of the difference operator used in existing
DMD. This enabled us to handle the effects of past data in
the time-evolution model without losing the advantages of
the DMD framework. Throughout this section, we define the
intervals T ,S ⊂ R as T = [0, T ] and S = (0, T ] ⊂ T for
T > 0.

A. Model definition

We assume that the linear functional π : T → S is causal.
We introduce a linear time-evolution model of the form

π (x)(t ) = Ax(t ) (t ∈ S ), (29)

where A ∈ Rn×n denotes the constant matrix. By restricting t
to the (finite) set of time points T = {ti ∈ T |i = 0, 1, . . . , m −
1, t0 = 0, tm−1 = T, ti > t j for i > j} ⊂ T , the continuous
time-evolution model can be discretized to obtain the matrix
representation

XDπ = A
[
0, . . . , 0, xq, . . . , xm−1

]
, (30)

where matrix A and n-dimensional time-series data X are used
instead of scalar λ and 1D time-series V in Eq. (24). The
nullity q depends on the nature of operator π . Considering
the use of (full) SVD X = U�V ∗ with the unitary (square)
matrices U and V , we can transform Eq. (30) as follows:

U ∗XDπ = U ∗AU (U ∗[0, . . . , 0, xq, . . . , xm−1]). (31)

For a diagonalizable matrix A ∼ diag(λ0, . . . , λn−1), an array
can always be identified with new variables � = U−1U ∗X
(i.e., we define a new variable as ξ(t ) = U−1U ∗x(t ) and � =
[ξ0, ξ1, . . . , ξm−1]) for an appropriate matrix U such that

�Dπ = diag(λ0, . . . , λn−1)[0, . . . , 0, ξq, . . . , ξm−1]. (32)

The equation above leads to a solution for the original variable
x in the following form:

[x(t0), x(t1), . . . , x(tm−1)] = UU

⎡⎢⎣ φ	
π,λ0,ξ0,ini

...

φ	
π,λn−1,ξn−1,ini

⎤⎥⎦
=

n−1∑
i=0

(UUei )φ
	
π,λi,ξi,ini

, (33)

where the column vector φπ,λ0,ξi,ini
is defined in Algo-

rithm 1 and ei = [δ0i, δ1i, . . . , δn−1,i]	 with the Kronecker
delta δi j (δii = 1 and δi j = 0 for i �= j), and ξi,ini =
[ξi,0, ξi,1, . . . , ξi,q−1] is a vector comprising the values of ξi =
ei · ξ at the first q time points. The expression above is similar
to that of Eq. (17).

B. Model fitting based on DMD scheme

Our goal is to determine an appropriate matrix A that can
be used to explain the data X on a discrete set of time points T.
We assume that model Eq. (30) holds for the observed data X .
The best-fit parameter A that achieves least squares for π (x)(t )
is estimated as follows:

A = arg min
A′

‖XDπ − A′[0, . . . , 0, xq, . . . , xm−1]‖
= XDπ [0, . . . , 0, xq, . . . , xm−1]+. (34)

Similarly to Eq. (3), we can compute A using SVD
[0, . . . , 0, xq, . . . , xm−1] = U�V ∗ to obtain an explicit ex-
pression for DMD with memory:

A = XDπV �+U ∗. (35)

The low-rank approximation can also be performed in a man-
ner similar to that in Eq. (4).

C. DMDc with memory

The DMDc scheme is applicable to the proposed method.
In the resultant method, DMD with control and memory, we
assume the following time-evolution model for a causal linear
operator π : T → S ,

π (x)(t ) = Ax(t ) + Bu(t ) (t ∈ S ), (36)

which corresponds to the matrix representation,

XDπ = A[0, . . . , 0, xq, . . . , xm−1]

+ B[0, . . . , 0, uq, . . . , um−1], (37)

where A ∈ Cn×n and B ∈ Cn×� are coefficient matrices and q
is the nullity of Dπ . The DMDc prescription provides direct
calculation of the optimal coefficients, similarly to Eq. (10),
as

[A B] = XDπ

[
[0, . . . , 0, xq, . . . , xm−1]
[0, . . . , 0, uq, . . . , um−1]

]+
. (38)
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Algorithm 1 is readily applicable for the multidimen-
sional case, and the time evolution of the model Eq. (37)
for a given initial condition X
 = 
, external force ϒ =
[u0, u1, . . . , um−1], and coefficient matrices A, B is ob-
tained by the following successive calculations: for k =

0, 1, . . . , q − 1,

Xk =
p−1∑
j=0

(
+) jk
 j, (39)

and for k = q, q + 1, . . . , m − 1:

Xk =
[

(A[x0, . . . , xk−1, 0, . . . , 0] + B[u0, . . . , uk−1, 0, . . . , 0])Dπ

A − πkk 1̂n

]
k

. (40)

where the fractions of matrices G ∈ Cn×m and H ∈ Cn×n are
defined by G/H = H−1G.

IV. FRACTIONAL DMD

The order of the differential operator can be extended to
any real-valued number [22,23]. The term for this generalized
differentiation, the fractional derivative, is actually mislead-
ing. This is because we can also specify an irrational number
α ∈ R\Q as the order of differentiation. One of the definitions
of the αth order differential of a smooth integrable function
f : R → R is the Caputo derivative. Specifically, for t > 0,

dα f

dtα
(t ) =

{
1


(ν)

∫ t
0 dt ′ f (n+

α ) (t ′ )
(t−t ′ )1−ν (α �∈ Z�0)

f (α)(t ) (α ∈ Z�0)
, (41)

where n+
α = max(0, �α�), ν = n+

α − α, f (�) is the �th order
derivative of the function f for � ∈ Z�0, and the ceiling
y = �x� is the minimum integer y ∈ Z such that y − x � 0.
The exception for α ∈ Z�0 [the second line in Eq. (41)] is
not necessary because the two cases in Eq. (41) coincide at
α → α0 ∈ Z�0, both of which yield d� f

dt� = f (�) for � ∈ Z�0.
Moreover, the right-hand side of Eq. (41) with α �∈ Z�0 coin-
cides with the definition of the fractional integral in Eq. (19)
with the replacements α �→ ν and f �→ f (�) and 0 < ν < 1. In
this section, we consider real-valued functions for simplicity.

We can construct the corresponding eigenmode for the
αth order differential operator with an initial condition. To
demonstrate this, we denote the discrete representation of a
generic-order fractional differential operator dα

dtα by D(α)
m for

α ∈ R.
If a square matrix D(�)

m ∈ Rm×m satisfies the following
equation for N ∈ Z�0, then let D(�)

m be an N th order approxi-
mation of the �th order integer-order derivative: For a smooth
function f : C → C and finite set of time points T = {ti ∈
R|i = 0, 1, . . . , m − 1, ti > t j for i > j}.

D(�)
m

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f (t0)
...

f (t�−1)
f (t�)

...

f (tm−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
f (�)(t�) + O[(�tmax)N ]

...

f (�)(tm−1) + O[(�tmax)N ]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (42)

where �tmax = max({ti+1 − ti|i = 0, 1, . . . , m − 2}) is the
maximum time interval and O is a big O notation. Here
rank(D(�)

m ) = m − �. The explicit expression of D(α)
m is now

constructed using the Caputo fractional differential [22] as
follows:

D(α)
m = D(n+

α )
m

[
w

(n+
α −α)

0 ,w
(n+

α −α)
1 , . . . ,w

(n+
α −α)

m−1

]
. (43)

For the lowest order, weight w
(ν)
k is approximated as follows:[

w
(ν)
k

]
i =

{ 1

(ν+1) [(tk+1 − ti )ν − (tk+1 − ti+1)ν] (i � k)
0 (i > k)

,

(44)
where �ti = ti+1 − ti. The approximation error Eq. (44) is
O(T �tmax), where T = tm−1 − t0 is the total time. The matrix
representation for the fractional derivative is then decomposed
into the �th order (integer-order) differential and the (−ν)th
order fractional derivative (i.e., the fractional integral of order
0 < ν < 1). Clearly, the discretized representation D(α) sat-
isfies linearity and causality, thereby ensuring the existence
of eigenmodes constructed by Algorithm 1. More elaborate
implementations with higher-order schemes may be used in an
actual numerical analysis. In the continuous limit, the eigen-
function of the fractional derivative operator is expressed by
the Mittag-Leffler function [23,27,28].

Because rank(D(�)
m ) = m − � and {w(ν)

k |k = 0, 1, . . . , m −
1} is a set of m linearly independent vectors for ν �= 1, we can

conclude that rank(D(α) ) = rank(D(n+
α )

m ) = m − n+
α . Thus, the

discretized equation for the fractional differential equation,
coupled with the initial condition [x0, . . . , xn+

α −1]
 = 
 for

 ∈ Cn+

α ×p and 
 ∈ Cn×p is expressed as follows:

XD(α) = A
[
0, . . . , 0, xn+

α
, . . . , xm−1

]
;

[
x0, . . . , xn+

α −1
]

 = 
.

(45)

For the given time-series data X ∈ Rn×m arranged in matrix
form and a fixed order of derivative α, the best-fit matrix A for
the model equation Eq. (45) is obtained as follows:

A = XD(α)[0, . . . , 0, xn+
α
, . . . , xm−1

]+
. (46)

The expression above is analogous to Eq. (3) for a first-
order (ordinary) DMD. The SVD of the matrix X = Û �̂V̂ ∗ �
Ûr�̂rV̂ ∗

r with rank 0 < r ≡ rank(�̂r ) < n and unitary matri-
ces Û , Ûr, V̂ , V̂r , diagonal matrices �̂, �̂r yield a low-rank
representation of the dynamics for ξ = Û ∗

r x ∈ Rr ,

dαξ

dtα
= �ξ, � = Û ∗

r XD(α)V̂r�̂
−1
r . (47)

If the order α is unknown, matrix A∗ and the optimal fractional
order α∗ is estimated using Algorithm 2.

The above algorithm is to find the optimal α∗
that minimizes the reconstruction error L(α) =
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Algorithm 2. Grid search for order α

Require: Time-series data in matrix form X , candidates
α = {α0, α1, ...}
for α ∈ α do

A ← XD(α)[0, . . . , 0, xn+
α
, . . . , xm−1]+

L(α) ← ‖XD(α) − A[0, . . . , 0, xn+
α
, . . . , xm−1]‖

end for
α∗ ← arg minα[L(α)]
A∗ ← XD(α∗ )[0, . . . , 0, xn+

α
, . . . , xm−1]

‖XD(α) − A[0, . . . , 0, xn+
α
, . . . , xm−1]‖ with A being

the optimal coefficient matrix for a given α: A =
XD(α)[0, . . . , 0, xn+

α
, . . . , xm−1]+. Using this algorithm,

one can find the optimal order and coefficient without using
any a priori information.

V. FRACTIONAL DMD WITH CONTROL

The fracDMD proposed in the previous section is only
valid for autonomous dynamical systems. Analogous to
DMDc [12], we can extend our method to nonautonomous
systems with input terms. We assume that T = [0, T ] and
S = (0, T ] ⊂ T . The Caputo derivative is a causal linear
operator, dα

dtα : T → S . Consider the following dynamical
system:

dαx
dtα

= Ax + Bu(t ) (t ∈ S ), (48)

with the state vector x ∈ Rn and an external force (exogenous
input) vector u(t ) ∈ R�. Let us define matrices X and ϒ

by X = [x0, x1, . . . , xm−1] and ϒ = [u0, u1, . . . , um−1]. Sim-
ilarly to Eq. (10), we obtained the following estimation for the
coefficients:

[A B] � [
Ā B̄

] = XD(α)

[
[0, . . . , 0, xn+

α
, . . . , xm−1]

[0, . . . , 0, un+
α
, . . . , um−1]

]+
. (49)

The SVDs X = Û �̂V̂ ∗ � Ûr�̂rV̂ ∗
r and

[X
ϒ

] = Ũ �̃Ṽ ∗ �
Ũp�̃pṼ ∗

p with p > r can be used to obtain an approximate
low-rank representation of the dynamics for ξ = Û ∗x ∈ Rr ,
as follows:

dαξ

dtα
= �ξ + 
u,

[� 
] � Û ∗
r XD(α)Ṽp�̃

−1
p Ũ ∗

p

[
Û ∗

r 0
0 1̂p−r

]
. (50)

Thus, the time-series data of the input u(t ) and output x(t )
can be analyzed for a system in the fracDMD framework,
as well as for autonomous systems. The fracDMD algorithm
is described explicitly in Algorithm 3. Function SVD(•, r)
denotes the SVD of a matrix with rank r.

VI. QUANTITATIVE MODEL EVALUATIONS

The fracDMD and existing DMD minimize the Frobe-
nius norm of the matrix ‖X ′ − AX − Bϒ‖, where X ′ is
the fractional derivative XD(α) for fracDMD. The Frobe-
nius norm-based reconstruction error L(α)

Frobenius(A, B; X ) =

Algorithm 3. FracDMD with control

Require: Input data in matrix form ϒ , observation data in matrix
form X , ranks p > r > 0, and order of the fractional differential
equation α

Ûr, �̂r, V̂r ← SVD([0, . . . , 0, xn+
α
, . . . , xm−1], r)

Ũp, �̃p, Ṽp ← SVD

([
[0, . . . , 0, xn+

α
, . . . , xm−1]

[0, . . . , 0, un+
α
, . . . , um−1]

]
, p

)
X ′ ← XD(α)

[� 
] ← Û ∗
r X ′Ṽp�̃

−1
p Ũ ∗

p

[
Û ∗

r 0
0 1̂p−r

]

‖XD(α) − AX − Bϒ‖ is considered to be the square root of
the sum of the squared reconstruction error in αth order time
derivative, with AX + Bϒ regarded as the reconstruction by
the model.

Another method of evaluating the model is to use the
sum of squared errors (SSE) in the reconstructed states
xi (i = 0, 1, . . . , m − 1). The explicit expression of the SSE
L(α)

SSE(A, B; X ) as a function of α, A, B and the observation data
X = [x0, x1, . . . , xm−1] is given by

L(α)
SSE(A, B; X ) =

m−1∑
i=0

|x(ti ) − xi|2, (51)

where x(ti) is the solution of the time-evolution equa-
tion Eq. (48) with the coefficients A and B and the initial
condition, whose explicit expression is shown in Eq. (33).

VII. NUMERICAL EXPERIMENTS

We performed numerical experiments to demonstrate the
utility of the fracDMD against synthetic data. We numerically
generated a solution for the fractional oscillator [29] analyzed
by Svenkeson et al. [14] in the context of spectral decompo-
sition. Svenkeson et al. performed numerical tests on the real-
time behavior of a single noise-free fractional oscillator with
known parameters to demonstrate the utility of fractional-
order calculus in analyzing memory effects. We extended their
method to include multidimensional noisy fractional oscilla-
tors. In addition, we used an observation matrix R �= 1̂ such
that the mode reconstruction became highly nontrivial.

A. Numerical setup

A 1D fractional linear oscillator is expressed by the follow-
ing equation of motion [14]:

dνya

dtν
= Qaya; ya =

[
xa

va

]
,

Qa =
[

0 1
−ω2

a 0

]
(a = 0, 1, . . . , k − 1), (52)

where the frequency ωa > 0 is a real-valued parameter and
a = 0, 1, . . . , k − 1 is the oscillator index. Let us consider the
multidimensional time-evolution equation, as follows:

dνx
dtν

= �x; x =

⎡⎢⎢⎣
y0
y1
...

yk−1

⎤⎥⎥⎦ ∈ R2k, (53)
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� =

⎡⎢⎢⎣
Q0 O

Q1
. . .

O Qk−1

⎤⎥⎥⎦ ∈ R2k×2k, (54)

where ya and Qa denote the state vector in the single-oscillator
phase space and 2 × 2 matrix, respectively. We also consid-
ered the following observation equation:

z(t ) = Rx(t ) + ε(t ),

εi(t )
iid∼ N (0, σ 2) (i = 0, 1, . . . , n − 1), (55)

where R ∈ Rn×2k is the constant observation matrix, and each
element of ε(t ) = [ε0(t ), ε1(t ), . . . , εn−1(t )] ∈ Rn is the inde-
pendent and identically distributed (iid) Gaussian noise, and
z ∈ Rn represents the observed signal. This numerical setup is
useful for describing a situation wherein the oscillators do not
interact with each other; however, the resulting signal is the
superposition of the oscillators.

Hereafter, we assume n � 2k. The observation matrix
R comprises randomly sampled 2k basis vectors vs(μ) ∈
Rn (μ = 0, 1, . . . , 2k − 1) for a random orthonormal basis
{v0, v1, . . . , vn−1} and a permutation s ∈ Sn, as follows:

R = [vs(0), vs(1), . . . , vs(2k−1)] ∈ Rn×2k . (56)

Note that s(i) �= s( j) for i �= j. In the following numerical ex-
periments, both basis and permutation are randomly generated
for each sample.

B. Numerical tests

Numerical tests were performed to determine the fre-
quency ωa (a = 0, 1, . . . , k − 1) in Eq. (52) and Eq. (53).
The eigenvalues of coefficient matrix � are ±√−1ωa (a =
0, 1, . . . , k − 1). We also denote the eigenvalues of the
coefficient matrix A obtained using fracDMD as λi (i =
0, 1, . . . , 2k − 1). It is assumed that ω0 > ω1 > · · · >

ωk−1 > 0 and Imλ0 > Imλ1 > · · · > Imλk−1 > Imλ2k−1 >

Imλ2k−2 > · · · > Imλk .
The error L in the frequency estimation is expressed as

follows:

L =
k−1∑
i=0

|λi − ωi|2 +
k−1∑
i=0

|λi+k + ωi|2. (57)

In the full reconstruction case, λi = √−1ωi and λk+i =
−√−1ωi (i = 0, 1, . . . , k − 1) such that L = 0.

We show the frequency reconstruction error L for various
values of the noise standard deviation σ and the dimensions of
the observation vectors n in Figs. 1 and 2 below. We assume
that rank 2k and order ν of the system equation Eq. (53) are
known. We used second-order numerical discretization of the
Caputo fractional differential instead of the first-order scheme
shown in Eqs. (43) and (44). We also modified Eq. (46) to
use the fractional integral instead of the fractional differ-
ential with a positive order α to achieve better numerical
convergence. For details on the numerical implementations,
see Appendix B.

We can construct the observed data in two ways: One is
to give the analytical solution using Mittag-Leffler functions

10−4 10−3 10−2 10−1
10−4

10−3

10−2

10−1

100

σ

L
(σ

)

n = 8 n = 32 n = 64 n = 128

FIG. 1. Frequency reconstruction error L [Eq. (57)] for the ana-
lytically generated observation data. We plot the error L as a function
of the noise standard deviation σ for various values of observation
size n. The numerical setups are k = 4, ωi = i + 1 (i = 0, 1, 2, 3),
and the order of the system equation Eq. (53) is set to ν = 1.2. The
fracDMD parameters are as follows: The SVD rank r is set to the
actual system size 2k, and the order α is set to the actual value ν. Each
mark denotes a mean of 10 synthetic data generated by the system
equation with different noise realizations and initial conditions. The
initial conditions for each oscillator are randomly chosen such that
the initial (pseudo) energy of each oscillator becomes unity. We
discretize the time interval [0,5] to 100 time points, and we use all
time points in fracDMD. The observed data are calculated using the
Mittag-Leffler functions with the coefficients specified above.

with the given coefficient matrices, and the other is to give
the result of the numerical time evolution using Algorithm 1.
The numerical solution of the time-evolution equation has
discretization errors, and thus does not coincide with the ana-
lytical solutions.

The estimated coefficients by fracDMD are optimized for
the numerical time-evolution scheme with finite time step, and
thus we have a greater reconstruction error for the analytically
obtained observation data, as shown in Figs. 1 and 2. In other

10−4 10−3 10−2 10−1

10−6

10−5

10−4

10−3

10−2

10−1

100

σ

L
(σ

)

n = 8 n = 32 n = 64 n = 128

FIG. 2. Frequency reconstruction error L [Eq. (57)] for the nu-
merically generated observation data. We plot the error L as a
function of the noise standard deviation σ for various values of
observation size n. The numerical setups are the same as in Fig. 1.
The observed data are calculated by Algorithm 1 with the coefficients
specified above.
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FIG. 3. Frequency reconstruction error L as a function of the
order α used in the fracDMD. Upper panel: ν = 1.2. Lower panel:
ν = 1.5. In both tests, σ = 10−2 and n = 8. The other numerical
setups are the same as in Fig. 1. The SVD rank r is set to the actual
system size 2k. The achieved numerical minima are at α = 1.200 for
(a) and α = 1.478 for (b).

words, a reconstruction error of the analytically generated
(continuous) time-series data includes both discretization er-
ror Ldisc and modeling error Lmodel, whereas we can suppress
Ldisc in a case with numerically generated observation data.

Figure 3 shows the function L(α) with its minima located
approximately at α = ν, thus indicating that an erroneous
value of α leads to a larger reconstruction error value.

We also show the results of the frequency reconstruction
for the case with nonzero external forces u ∈ R2. We used
three different profiles of u, as shown below.

u(t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0.4�(t − 2.5)

0.2�(t − 1.25)�(3.75 − t )

]
(stepwise)[

1
1

]
δ(t ) (impulse)[

1
1

]
(constant)

. (58)

We set the coefficient B as follows:

B = 1

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (59)

The results are shown in Figs. 4 and 5 below.
In Fig. 4, we can see the similar tendency to the case

without external forces (Fig. 2) for the reconstruction error
L = L(σ ), whereas the greater errors are seen in the case
with external forces. Figure 5 shows that the achieved minima
is hugely dependent on the input profile u = u(t ), and the
estimation becomes worse in the case ν = 1.5. The constant
input tends to have greater errors, while stepwise and impulse
inputs have better reconstructions.

10−4 10−3 10−2 10−1

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

σ

L
(σ

)

n = 8 n = 32 n = 64 n = 128

FIG. 4. Frequency reconstruction error L as a function of the
noise standard deviation σ for various values of observation size n for
the system of fractional oscillators with external force. The external
force is the stepwise function shown in Eq. (58). The other numerical
setups are the same as in Fig. 1. The observed data are calculated by
Eq. (40) with the coefficients specified above.

C. Numerical tests with partial observations

We next perform a more realistic numerical demonstration
with a larger system of fractional oscillator. We assume that
the observation matrix R is now a n × 2k matrix with n < 2k,
so the observation is now partial. We also assume that k = rd d
for d, rd ∈ Z>0. We set the oscillator frequencies as follows:
using the division remainder function rem(−,−) such that
rem(a, b) is the remainder of a divided by b for a, b ∈ Z>0,

ωi = rem(i, d ) + 1 (i = 0, 1, . . . , k − 1). (60)

Note that the each frequency repeats rd times in �. This
is to mimic a realistic physical situation in which several
oscillation modes share common frequencies. We use no
external force in this subsection.

Let us construct the observation matrix R as follows: using
a random orthogonal basis of 2k-dimensional vector space

0.8 1 1.2 1.4 1.6 1.8
0

50
100
150
200
250

α

L

step-wise
impulse
constant

0.8 1 1.2 1.4 1.6 1.8
0

50
100
150
200
250

α

L

step-wise
impulse
constant

FIG. 5. Frequency reconstruction error L as a function of the or-
der α used in the fracDMD, with external forces defined in Eq. (58).
Upper panel: ν = 1.2. Lower panel: ν = 1.5. In both tests, σ = 10−2

and n = 8. The other numerical setups are the same as in Fig. 4. The
SVD rank r is set to the actual system size 2k.
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(b) d = 4
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(c) d = 6
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FIG. 6. Reconstruction error (mean RMSE) as a function of the
number of observations n used in the fracDMD. The ground truth
is the observation data. The parameters are as follows: (a) d = 3,
rd = 4; (b) d = 4, rd = 3; and (c) d = 6, rd = 2. The mean is taken
over 30 iterations with different realization of the observation matrix
R. The SVD rank r is set to the actual observation size n.

{w0,w1, . . . ,w2k} and a permutation s ∈ S2k ,

R = [ws(0),ws(1), . . . ,ws(n)]
	 ∈ Rn×2k . (61)

The observed data are constructed using Eq. (55). For each
value of n, we performed 30 times of numerical experiments
with different realization of observation matrix R. The recon-

(a) d = 3, n = 5

0 1 2 3 4 5
−2,000

−1,000

0

1,000

2,000

3,000

t

obs 0 recon 0 obs 1 recon 1
obs 2 recon 2 obs 3 recon 3
obs 4 recon 4

(b) d = 3, n = 6

0 1 2 3 4 5

−5

0

5

10

t

obs 0 recon 0 obs 1 recon 1
obs 2 recon 2 obs 3 recon 3
obs 4 recon 4 obs 5 recon 5

FIG. 7. Reconstructed and observed time-series data. A circle
(◦) denotes an observed data point (obs), and a cross (×) denotes
a reconstructed data point (recon). In the legend, the numbers fol-
lowing the type of data (i.e., obs or recon) denote the indices of the
data. The parameters are as follows: (a) d = 3, n = 5 and (b) d = 3,
n = 6. For both panels, σ = 10−4. The SVD rank r is set to the actual
observation size n.

struction error (RMSE) against the observed data is calculated
for each numerical experiment and we plot the mean RMSE
against the observation dimension n in Fig. 6.

We can see that the reconstruction is relatively good for
n � 2d . Note that the number of independent time-evolution
modes is 2d , because we have d unique frequencies in � and
each frequency corresponds to a two-dimensional subspace in
the state space. In this sense, the intrinsic dimension of the
system is 2d .

Examples of the reconstructed time-series data for n = 3
and n = 4 with σ = 10−4 are shown in Fig. 7 and in Fig. 8,
respectively. We can see that the reconstructions are success-
ful for n � 2d cases, while the reconstructions significantly
deviate from the observed data for n < 2d .

Since the observation matrix R is randomly generated us-
ing Eq. (61), the reconstructed data sometimes suffers from
huge reconstruction errors, resulting in the deviations of mean
RMSEs from its trend in Fig. 6.
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(a) d = 4, n = 6
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(b) d = 4, n = 7
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(c) d = 4, n = 8
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FIG. 8. Reconstructed and observed time-series data. A circle (◦)
denotes an observed data point (obs), and a cross (×) denotes a re-
constructed data point (recon). In the legend, the numbers following
the type of data (i.e., obs or recon) denote the indices of the data.
The parameters are as follows: (a) d = 4, n = 6; (b) d = 4, n = 7;
and (c) d = 4, n = 8. For all panels, σ = 10−4. The SVD rank r is
set to the actual observation size n.

VIII. DISCUSSION

A fractional oscillator is an oscillator with power-law
memory effects. The reconstruction of the frequencies in the
previous section was consistent with the ground truth. The re-
construction error increased as a function of the noise standard
deviation, whereas the dimension of the observation space did
not significantly affect the error. Thus, we conclude that the
fracDMD can reconstruct isolated fractional oscillators well.

We also performed numerical experiments for various val-
ues of α. The reconstruction error L has a minimum value at
approximately α = ν for the case without external forces with
sufficiently weak noise. This implies that the proposed method
is useful for estimating the order of the system equation. Not-
ing that the case α = 1 corresponds to DMD, we can also infer
that our method achieved better reconstruction than DMD for
fractional oscillators. Although this inference appears to be
exact, the introduction of a higher-order scheme and fractional
integral may lead to small discrepancies between the DMD
and fracDMD results, even for α = 1.

The cases with external forces need more careful consid-
eration: the reconstructed frequencies and order may have a
huge discrepancy from the ground truth, while the error is
dependent on the time profile of the external force and the
noise standard deviation σ . We have not conducted a compre-
hensive research on the effects of the external forces, however,
it seems that the external forces only with low-frequency
components lead to erroneous results. In the impulse case,
the reconstruction error has its minima appropriately at the
ground truth α = ν, meaning a successful estimation of the
order α.

We performed numerical tests with partial observations
using the fractional oscillators as well. We successfully re-
constructed the partial observation data using the proposed
method for sufficiently large observation dimensions. The
minimum dimension of the observation needed to reconstruct
the observed data approximately coincides with the intrinsic
dimension of the system. This implies that the modeling of
memory effects using the proposed method might be useful in
various fields of science to extract the intrinsic dynamics from
the observations. For example, in a macroscopic solid-state
matter, we have around NA (Avogadro’s number) variables
each of which describes the coordinate of an atom. However,
the oscillation normal modes of the matter are usually highly
degenerate and the dynamics of the oscillation is described
by a small number of frequencies, enabling us to reconstruct
the dynamics from a relatively small number (� NA) of
observations.

Our method can be used to model unknown physical
processes such as the mechanical motion of industrial ma-
chines and thermal systems. One possible manner of using
this method is to estimate the memory effects of the system.
If the reconstruction error by fracDMD has its minima at
approximately α = 1, it can be concluded that the system is
memoryless; otherwise, the optimal value of α can be used to
include the memory effects in the model.

Among the possible extensions, modifications to incorpo-
rate the nonlinearity to the fractional DMD scheme might be

034216-12



DYNAMIC MODE DECOMPOSITION WITH MEMORY PHYSICAL REVIEW E 108, 034216 (2023)

of utmost importance. Another way to include more complex
situations is to use non-power-law memory. In our current
numerical setup, we used power-law memories that were
mathematically shown to be equivalent to fractional-order
equations of motion [14]. However, in principle, the memories
in real data can decay according to any smooth function.
Possible extensions are to use the Caputo-Fabrizio fractional
derivative [30], or exponential-law memory [19]. We can use
the Caputo-Fabrizio fractional derivative to circumvent the
singularity around the origin of time difference, while the use
of exponential-law memory might enable us to incorporate
different types of physics.

We can further extend our method by using an arbitrary
memory kernel function g(t, t ′) in Eq. (15). Noting that the
causal linear operator π has a one-to-one correspondence to
the memory kernel such that g(t, t ′) = g(t, t ′)�(t − t ′), one
can construct the corresponding matrix Dπ using the method
described in the main text. Although we can no longer en-
joy the advantages of fractional derivatives (i.e., they form a
one-parameter group, and easily estimated using the existing
numerical libraries), this generalization might be quite useful
in some cases where the power law does not holds.

Within the scope of fractional derivative, another possible
extension is to include multiple derivatives in the time-
evolution model of x, as follows:

K∑
k=0

Ak
dα+kx
dtα+k

= Bu(t ), (62)

where Ak is the coefficient matrix for α + kth order derivative,
and B is the coefficient for the external force u(t ). In this
way, we might extend our method for the systems with frac-
tional transfer functions. One famous example is the Warburg
impedance, extensively studied in the context of lithium-ion
batteries [31].

In the reconstruction considered herein, we assumed that
we knew the actual size of the problem (i.e., system size).
This assumption makes the problem easier to solve. However,
in realistic situations, the actual dimensions of system equa-
tions are rarely known. In future work, we may optimize the
rank of the system and coefficients.

IX. SUMMARY

We proposed a numerical framework DMDm (a DMD-
based numerical tool) to analyze time-series data. The use
of a more generic linear operator instead of a finite dif-
ference operator enabled us to consider the memory effects
in time-evolution models. The memory effect is an exten-
sively observed phenomenon in the real world, as observed
in (among others) viscoelastic matter and fluid dynamics. As
an example of DMDm, we formulated fracDMD to indicate
the use of a fractional-order derivative. The incorporation of a
fractional-order derivative in DMDm is equivalent to assum-
ing power-law memory effects. We successfully demonstrated
that by using fracDMD, the frequencies of fractional os-
cillators can be reconstructed from noisy observations. The
proposed method is expected to be useful for modeling un-
known physical processes such as thermal and mechanical
processes in modern industrial machines.
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APPENDIX A: IMPROVEMENTS IN NUMERICAL
IMPLEMENTATION

In the main text, we introduced fractional dynamic mode
decomposition (fracDMD) using first-order discretization of
the Caputo derivative. In this section, we present two ingredi-
ents to improve the numerical scheme for the fracDMD.

In Appendix A 2, we present a scheme wherein the
discretization error converges to zero with respect to second-
order time intervals. A more accurate reconstruction was
expected for the second-order scheme. In Appendix A 3, we
demonstrate the use of the fractional integral instead of the
fractional derivative in fracDMD. In fractional calculus, it
may be considered that the derivative and integral are treated
in a unified manner; however, there are certain subtleties in the
fractional derivative because the derivative of the order α > 1
requires integer-order derivatives in the Caputo derivative. In
certain limited cases, the use of fractional derivatives can be
circumvented and hence, integer-order derivatives can be ap-
plied by integrating both sides of the time-evolution equation.

In this section, we assume a set of time points T = {ti =
i�t |i = 0, 1, . . . , m − 1} for �t > 0.

1. First-order numerical scheme revisited

We discretize the following equation within a first-order
error in �t , assuming T = tm−1 − t0 is constant. For a
smooth integrable function f : C → C, the αth order frac-
tional derivative at time t is derived as follows:

D(α)
f (t ) = 1


(α)

∫ t

0
dτ f (τ )(t − τ )α−1. (A1)

Note that f (τ ) = f (ti ) + O(�t ) for τ ∈ [ti, ti+1], and the
above expression for t = tk+1 becomes

D(α)
f (tk+1)

= 1


(α)

k∑
i=0

∫ ti+1

ti

dτ [ f (ti ) + O(�t )](tk+1 − τ )α−1

= 1


(α)α

k∑
i=0

f (ti)[(tk+1 − ti )
α− (tk+1− ti+1)α] + O(�t ),

(A2)
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where we use the fact O(k�t2) = O(�t ) for k � m.
Hence,

D(tk+1) = 1


(α + 1)

k∑
i=0

[(tk+1 − ti )
α − (tk+1 − ti+1)α] f (ti )

+ O(�t ). (A3)

In the matrix representation Eq. (43) in the main text, we
require matrix W (α) = [w(α)

0 ,w
(α)
1 , . . . ,w

(α)
m−1] to be invert-

ible. To achieve this, the derivative at t = tk+1 can be stored
in the kth element of the resultant (row) vector �y = �xW (α)

for given time-series data �x such that the diagonal elements
of W (α) become nonzero without violating the requirements
of the first-order scheme. By adopting this convention, we
can derive the expression for weights Eq. (44) in the main
text.

2. Second-order numerical scheme

In this subsection, we derive a second-order discretization
scheme for the Caputo derivative. We performed discretiza-
tion of the following integral:

D(ν)
f (t ) = 1


(ν)

∫ t

0
dτ

f (τ )

(t − τ )1−ν
, (A4)

where the integrand f : C → C is an integrable scalar func-
tion and ν < 1 is the real-valued order. The value of D(ν)

f (t ) is
evaluated as

D(ν)
f (tk+1) = D(ν)

f [(k + 1)�t]

= 1


(ν)

∫ (k+1)�t

0
dτ

f (τ )

[(k + 1)�t − τ ]1−ν
. (A5)

Let us define Fk = { f0, f1, . . . , fk| fi = f (ti )} for k =
1, 2, . . . , m. We approximate D(ν)

f (tk+1) (0 � k < m − 1) us-

ing Fk+1. The direct calculation of D(ν)
f (tk+1) is as follows.

1


(ν)

∫ (k+1)�t

0
dτ

f (τ )

[(k + 1)�t − τ ]1−ν

= 1


(ν)

k∑
i=0

∫ (i+1)�t

i�t
dτ

f (τ )

[(k + 1)�t − τ ]1−ν

= 1


(ν)

k∑
i=0

∫ 1

0
ds�t

f (i�t + s�t )

[(k + 1)�t − (i�t + s�t )]1−ν

= 1


(ν)

k∑
i=0

∫ 1

0
ds�t[(k + 1)�t − (i + s)�t]ν−1

× f (i�t + s�t ). (A6)

Assuming that f is sufficiently smooth, we can use the
Taylor expansion to obtain the following approximation for
0 < s < 1:

f (i�t + s�t ) = (1 − s) fi + s fi+1 + O(�t2). (A7)

Substituting Eq. (A7) into Eq. (A6), we obtain the following
expression for D(ν)

f (tk+1):

D(ν)
f (tk+1) = 1


(ν)

k∑
i=0

∫ 1

0
ds�tν[(k + 1) − (i + s)]ν−1

× [(1 − s) fi + s fi+1] + O(�t2). (A8)

We introduce the distance between time points k, i as Ck,i =
k − i + 1 and the normalized (inverse) distance Dk,i = 1 −
C−1

k,i ∈ [0, 1). A straightforward calculation yields:

D(ν)
f (tk+1) = 1


(ν + 2)

k∑
i=0

�tνCν+1
k,i

{
fi
(
Dν+1

k,i − Dk,i − νC−1
k,i

)
+ fi+1

[
1 − Dν

k,i

(
1 + νC−1

k,i

)]} + O(�t2). (A9)

Subsequently, we attempt to express the summation in
Eq. (A9) using the dot products of the constant-weight
vectors. Let ψ(k+1) = [ψ (k+1)

0 , ψ
(k+1)
1 , . . . , ψ

(k+1)
k+1 ]	 ∈ Rk+2

denote a weight vector.

ψ
(k+1)
i =

⎧⎪⎪⎨⎪⎪⎩
P(ν)

k+1(0) (i = 0)

P(ν)
k+1(i) + Q(ν)

k+1(i − 1) (1 � i � k)

Q(ν)
k+1(k) (i = k + 1),

(A10)

where

P(ν)
k+1(i) = 1


(ν + 2)
�tνCν+1

k,i

(
Dν+1

k,i − Dk,i − νC−1
k,i

)
,

Q(ν)
k+1(i) = 1


(ν + 2)
�tνCν+1

k,i

[
1 − Dν

k,i

(
1 + νC−1

k,i

)]
.

(A11)

The value of the fractional derivative D(ν)
f at time t = tk+1 was

estimated using the following expression:

D(ν)
f (tk+1) = [ f0, f1, . . . , fk+1]ψ(k+1) + O(�t2). (A12)

Note that Eq. (A12) is the second-order scheme for
Eq. (A4). To implement the second-order numerical scheme
for fracDMD, the weight vector w

(ν)
k in Eq. (44) can be simply

replaced by the following expression:(
w

(ν)
k

)
i =

{
ψ

(k)
i (i � k)

0 (i > k).
(A13)

The vanishing elements for i > k correspond to causality in
the time-evolution equation.

3. Use of the fractional integral

In the main text, we derived fracDMD using the fractional
differential equation Eq. (48), wherein the fractional deriva-
tive of the time-dependent variable x ∈ Rn is expressed in
terms of a linear function of x and the exogenous input term
u(t ) ∈ R�, as follows:

dαx
dtα

= Ax + Bu(t ). (A14)

However, a naïve discretization of the original form Eq. (A14)
leads to subtlety in the numerical treatments at approximately
t = 0, and the solution of the time-evolution equation Eq. (48)
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is, in general, a nonzero vector at t = 0. However, the Caputo
derivative of a function vanishes at the initial time t = 0, lead-
ing to an inconsistency at t = 0. This is the primary reason
for the assumption that π ∈ hom(CT , CS ) with S = (0, T ] ⊂
[0, T ] = T for linear operator π in the main text.

Alternatively, to circumvent this difficulty, we can perform
a fractional derivative of order −α on both sides of equa-
tion Eq. (A14) to cancel the derivative on the left-hand side
and obtain an alternative form for α < 0 as follows:

x
?= d−α

dt−α
[Ax + Bu(t )]. (A15)

We can demonstrate that this transformation is accurate for
α < 0 [23]. However, for an arbitrary integrable function
x = x(t ) and α > 0, the transformation from the original form
Eq. (A14) to the alternative form Eq. (A15) is not possible
because, in general, the function x has nonzero integer-order
derivatives at t = 0. However, it can be shown that the differ-
ence between the original function x and the retrieved function
x̃ = d−α

dt−α
dαx
dtα can be expressed as a polynomial of t , as (see

Lemma 2.22 in Ref. [23]),

d−α

dt−α

dαx
dt−α

= x(t ) −
n+

α −1∑
�=0

x(�)(0)

�!
t�. (A16)

Because α = 0 is a trivial case, mode decomposition can be
performed by discretizing the alternative form Eq. (A15) for
α < 1. The resultant equation is as follows:

x = d−α

dt−α
[Ax + Bu(t )] + x(0). (A17)

Even for α > 1, Eq. (A17) is an approximation of the exact
fractional integral equation Eq. (A16). An alternative version
of fracDMD uses Eq. (A17) and the same procedure described
in the main text.

APPENDIX B: NUMERICAL TEST

In Sec. VIII, we used the approximated alternative form of
fracDMD shown in the previous section [i.e., the fractional
integral equation Eq. (A17) and second-order discretization
Eq. (A13)].

[1] P. J. Schmid, Dynamic mode decomposition of numerical and
experimental data, J. Fluid Mech. 656, 5 (2010).

[2] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton,
and J. N. Kutz, On dynamic mode decomposition: Theory and
applications, J. Comput. Dyn. 1, 391 (2014).
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