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The combination of the two hot topics of spin-orbit coupling and honeycomb lattices leads to the appearance
of fascinating issues. In this paper, we investigate the existence and stability of vector gap solitons of spin-orbit-
coupled Bose-Einstein condensates loaded in honeycomb optical lattices. The existence and stability of vector
gap solitons are highly sensitive to the properties of interspin and intraspin atomic interaction. We numerically
obtain the parametric dependence of the existence of vector gap solitons both in the semi-infinite gap and in
the first gap. Since only dynamically stable localized modes in nonlinear systems are likely to be generated
and observed in experiments, we examine the stability of the vector gap solitons by using the direct evolution
dynamics, and obtain the phase diagram of stable and unstable vector gap solitons on the parameter plane of
interspin and intraspin atomic interactions.
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I. INTRODUCTION

Spin-orbit coupling (SOC) has attracted much attention in
condensed matter studies for its essential role in many exotic
phenomena, such as the realization of topological insulators
[1–3], topological superconductors [2,4], spin Hall effects
[5–7], Floquet topological phases [8,9], and so on. In ultra-
cold atomic gases, SOC has been realized both in fermionic
[10,11] and in bosonic [12,13] systems by Raman coupling.
Since ultracold atoms provide a clean and ideal platform, the
achievement of SOC has opened up a progressively growing
interest in the physics of mixtures of spinor Bose-Einstein
condensates (BECs) in studies of matter waves. Respectively,
such objects as Skyrmions [14–16] and solitons [17–27] have
been reported for spin-orbit (SO)-coupled BECs.

BECs loaded in periodic optical lattices were widely rec-
ognized as a particularly efficient manipulation of BECs [28],
which can share many features with waves in nonlinear sys-
tems. In particular, the interplay of the intrinsic nonlinearity
of BECs with the periodicity of optical lattices suggests pos-
sibilities for the creation of gap solitons, i.e., the existence
of a novel kind of localized modes that reside in the linear
energy gaps between the Bloch bands [29,30]. The creation
of gap solitons has been predicted theoretically [31–35] and
first experimentally observed in fiber Bragg gratings [36]. Gap
solitons of BEC in optical lattices have been an active topic
[28,37–39] and have been observed experimentally [40,41].

The SO-coupled spinor BEC in optical lattices offers new
possibilities for creating gap solitons. In the aspect of gap
solitons in spinor SO-coupled BECs, several studies have
been devoted, such as bright profiles with repulsive atomic
interaction [17], symmetries and stability in a periodic Zee-
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man field [42,43], existence and stability of multipole and
half-vortex gap solitons in a lattice created by the Zeeman
field [44], spin-dependent parity symmetry [45], existence
and stability analysis in one-dimensional Zeeman lattices with
attractive nonlinearity [46], quasi-one-dimensional existence
and dynamics with SOC and time-varying Raman frequency
[47], one- and two-dimensional existence and dynamics in
free space with Zeeman splitting SOC [48,49], dipole gap
solitons in microwave-mediated interaction induced trapping
potentials [50], and two-dimensional gap solitons belonging
to the semi-infinite gap created by periodically modulated
SOC [51], to name only a few.

The underlying spatially periodic structures play a key role
in producing spectral band gaps, in which gap solitons can
be created. It was shown that the band structures of a SO-
coupled quantum gas can be induced by an external periodic
field, which leads to the appearance of new gaps [52,53].
Apart from the simple representative cubic optical lattice, past
experiments with ultracold atoms have utilized exotic lattices
such as triangular [54], honeycomb [55], and Kagome lattices
[56]. Among them, honeycomb optical lattices can lead to
significantly different results due to underlying symmetries. It
is noteworthy that gap solitons in honeycomb optical lattices
have been studied both theoretically and experimentally [57],
such as in honeycomb photonic lattices [58,59] and dynam-
ical lattices [60]. In previous studies by some of us [61,62],
for the single-component BEC, gap solitons in honeycomb
optical lattices have been investigated. However, as far as
we know, for the SO-coupled BECs loaded in honeycomb
optical lattices, there has been little work on the formation and
dynamical properties of vector gap solitons. It is well known
that the SOC provides a new degree of freedom to regulate
striking interaction features of the localized structures and
dynamics.

To fill the gap, in this paper, we investigate the formation
and dynamical stability of vector gap solitons of SO-coupled
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two internal states of BECs loaded in honeycomb optical
lattices. It is found that the two-dimensional honeycomb opti-
cal lattices admit vector gap solitons for SO-coupled BECs.
The existence of vector gap solitons is dependent on the
properties of atomic interactions. Interestingly, the two com-
ponents of vector gap solitons always show phase separation
regardless of whether interspin or intraspin atomic interac-
tions are dominant. We numerically obtain the existence of
vector gap solitons in the parameter plane of interspin and
intraspin atomic interactions both in the semifinite gap and
in the first gap. Based on the direct evolution of the coupled
Gross-Pitaevskii equations, we examine the dynamic stability
of vector gap solitons in the different regimes for both the
semifinite gap and first gap, respectively. The phase diagram
accurately reflects that the combined effects of interspin and
intraspin atomic interaction on dynamic stabilities of vector
gap solitons are obtained. Our results are of significance in the
field of matter-wave studies. They also have potential applica-
tions in the investigation of localized structures in nonlinear
optics.

The paper is organized as follows. In Sec. II, we formulate
the theoretical model for SO-coupled BEC in honeycomb
optical lattices. In Sec. III, the band-gap structures induced by
the SOC and the existence of vector gap soliton are presented.
In Sec. IV, we propose the nonlinear dynamics of vector gap
solitons. Finally, the main results of the present paper are
summarized in Sec. V.

II. THE MODEL

We consider a mixture of BECs composed of the two
internal states of 87Rb [63], and label them pseudospin up
and pseudospin down, namely, |↑〉 ≡ |F = 1, mF = 0〉 and
|↓〉 ≡ |F = 1, mF = −1〉. The BECs with Rashba SOC are
loaded in a honeycomb optical lattice. In real experiments,
the system contains about 1.8 × 105 atoms [63]. Within the
framework of zero temperature mean-field theory, where the
quantum and thermal fluctuations are negligible, the dynamics
of these SO-coupled BECs can be well approximated by the
following coupled Gross-Pitaevskii equations:

ih̄
∂

∂t
�↑(r, t ) =

[
− h̄2

2m
∇2 + V (r) + g↑↑|�↑(r, t )|2

+ g↑↓|�↓(r, t )|2
]
�↑(r, t ) + iκ∂−�↓(r, t ),

ih̄
∂

∂t
�↓(r, t ) =

[
− h̄2

2m
∇2 + V (r) + g↓↑|�↑(r, t )|2

+ g↓↓|�↓(r, t )|2
]
�↓(r, t ) + iκ∂+�↑(r, t ).

(1)

Here the condensate wave functions are normalized as Nσ =∫ |�σ (r, t )|2dr with �σ (r, t ) (σ =↓,↑) being the wave
function of the spin-σ component, while the total number
of atoms, i.e., the sum of numbers N↑ and N↓ of atoms of
the spin σ , is N = N↑ + N↓. m is the atom mass and gσσ ′ =
4π h̄2aσσ ′

m with aσσ ′ being the s-wave scattering lengths between
the species where spin σ and spin σ ′ denote the intra- and

interspin interaction gσσ and g↑↓, respectively. To highlight
the effects of intercomponent contact interaction, we further
fix the intracomponent interactions as g↑↑ = g↓↓, which is
most closely relevant to the 87Rb system [64]. κ represents
the strength of SOC, and ∂± = ∂/∂x ± i∂/∂y.

In what follows, we assume that the condensed atoms are
trapped in a very thin honeycomb potential, i.e., the trapping
potential in the x-y plane is much weaker than that in the
z direction. In this case, the external trapping potential is
given by the two-dimensional potential V (r) that constructs
the honeycomb optical lattice, which can be realized experi-
mentally by superposing three coplanar traveling laser beams
[65,66]. The three coplanar traveling laser beams have the
same angular frequency ωL = ck0 with k0 the wave vector of
the radiation. Then, the lattice potential can be denoted by [67]

V (r) = V0

∣∣eik0b1·r + η1eik0b2·r + η2eik0b3·r∣∣2
, (2)

where V0 > 0 is optical depth, b1 = (0, 1), b2 = (−
√

3
2 ,− 1

2 ),

b3 = (
√

3
2 ,− 1

2 ), and η1 and η2 are relative intensities of the
plane wave. Following Ref. [67], we only consider the same
intensity case where η1 = η2 = η > 0. In order to form a hon-
eycomb lattice, the condition η > 1

2 should be satisfied. When
the polarizations of all three waves are parallel, i.e., η = 1,
the optical lattice has a perfect hexagonal structure similar to
graphene. In this paper, we consider a standard honeycomb
optical lattice and take η = 1.

After integrating out the z coordinates, we obtain the fol-
lowing quasi-two-dimensional dimensionless equations for
the x-y plane of the wave functions:

i
∂

∂t
�↑(r, t ) = [−∇2 + V (r) + g↑↑|�↑(r, t )|2

+ g↑↓|�↓(r, t )|2]�↑(r, t ) + iκ∂−�↓(r, t ),

i
∂

∂t
�↓(r, t ) = [−∇2 + V (r) + g↓↑|�↑(r, t )|2

+ g↓↓|�↓(r, t )|2]�↓(r, t ) + iκ∂+�↑(r, t ).

(3)

In the dimensionless units adopted above, the energy scale is
in units of 4h̄2k2

0/m, the length scale is in units of 1/2
√

2k0,
the time scale is in units of m/4h̄k2

0 , and the wave function
�1,2 is in units of

√
n0 with n0 the averaged BEC density,

respectively.

III. BAND-GAP STRUCTURE AND THE EXISTENCE
OF VECTOR GAP SOLITONS

This section is devoted to presenting the numerical re-
sults of the vector gap solitons of SO-coupled BEC loaded
in honeycomb optical lattices, with an emphasis on how the
intra- and interspin interaction would affect the formation of
localized modes. It starts by providing the band-gap structure
of the underlying linear periodic physical model. Then, the
structures of vector gap solitons both in the semifinite gap and
in the first band gap are produced numerically.
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A. Band-gap structure

In order to investigate the formation of vector gap soli-
tons, we first need to know the relevant band-gap structure
of SO-coupled BEC in honeycomb optical lattices. This is
achieved by taking the spinor wave function of Eq. (3) with
the following form:

�↑,↓(r, t ) = ψ↑,↓(r)e−iμt , (4)

where μ is a real chemical potential. Substituting Eq. (4) into
Eq. (3) leads to a set of stationary equations for the wave
functions ψσ (r):

μψ↑(r) = −
(

∂2

∂x2
+ ∂2

∂y2

)
ψ↑(r) + V (r)ψ↑(r)

+ g↑↑|ψ↑(r)|2ψ↑(r) + g↑↓|ψ↓(r)|2ψ↑(r)

+ iκ∂−ψ↓(r),

μψ↓(r) = −
(

∂2

∂x2
+ ∂2

∂y2

)
ψ↓(r) + V (r)ψ↓(r)

+ g↓↓|ψ↓(r)|2ψ↓(r) + g↓↑|ψ↑(r)|2ψ↓(r)

+ iκ∂+ψ↑(r). (5)

Since V (r) and ψ↑,↓(r) are all periodic functions, one can
apply Bloch’s theorem with the following form:

ψσ (r) = φσk(r)e−ik·r, (6)

where φσk is a periodic function and k is the Bloch wave
number or the so-called quasimomentum. In particular, from
Eq. (5) we obtain the following equation for each Bloch wave
state φσk:

μ(k)φ↑k(r) = − (∇ + ik)2φ↑k(r) + V φ↑k(r)

+ g↑↑|φ↑k(r)|2φ↑k(r) + g↑↓|φ↓k(r)|2φ↑k(r)

+ iκ∂−φ↓k(r),

μ(k)φ↓k(r) = − (∇ + ik)2φ↓k(r) + V φ↓k(r)

+ g↓↓|φ↓k(r)|2φ↓k(r) + g↓↑|φ↑k(r)|2φ↓k(r)

+ iκ∂+φ↑k(r). (7)

The set of eigenvalues μ(k) then forms Bloch bands.
Since gap solitons reside in the linear energy gaps between

the Bloch bands [29,30], it is important to first identify the po-
sitions of these gaps. To do this, we can discard the nonlinear
terms in Eq. (7), by using the Fourier collocation method [68]
to numerically diagonalize it and calculate the linear Bloch
bands.

The numerical results of the linear Bloch bands of SO-
coupled BECs in honeycomb optical lattices are depicted in
Fig. 1. Here, we only show the lowest ten Bloch bands as
a function of k. In the absence of SOC (κ = 0), the linear
eigenequations (7) degenerate into two decoupled equations,
and their forms are completely consistent. The linear Bloch
bands of the two degenerate eigenequations should be consis-
tent, which is confirmed in Fig. 1(a). We can clearly see the
existence of degenerate energy levels and Dirac points. Here,
we are very curious about the influence of SOC on the linear
Bloch bands. In the presence of SOC (i.e., κ = 1), we show
the linear Bloch bands in Fig. 1(b). We can clearly see that

FIG. 1. The linear Bloch band structure of SO-coupled BECs in
honeycomb optical lattices. Here, we just showed the axial side view
of the Bloch bands. The shaded areas correspond to the linear bands.
For comparison, we show (a) the absence of SOC (κ = 0) and (b) the
presence of SOC (i.e., κ = 1).

SOC has greatly changed the band structures. First, the de-
generacy of the originally completely coincident energy bands
is broken, and ten energy bands are prominently displayed.
Second, the original Dirac point structures are replaced by a
new, richer series of Dirac point structures. These are unique
to SOC. At the same time, we can clearly see that the four
lowest energy bands have no band gaps due to the degeneracy
at the Dirac point. Compared with the absence of SOC, SOC
has little effect on the number of band gaps. For the lowest ten
energy bands, a significant band gap is formed only between
the fourth and fifth energy bands.

Figure 2 shows the effect of lattice depth and SOC on
the band gap more clearly. The linear Bloch band gap as
a function of depth of the lattice V0 is shown in Fig. 2(a),
where we take SOC strength κ = 1 as an example. For the
semi-infinite band gap, its upper boundary increases with the
increase of lattice depth V0. For the first band gap, its upper
and lower boundaries increase with the increase of lattice
depth V0. The upper boundary increases faster than the lower

2 3 4 5 6 7 8

3

6

9

12

15

0.0 0.5 1.0 1.5 2.0

6

8

10

12

14

16

18

V0

Semi-infinite gap

Band gap

Bands

(a) =1.0

Semi-infinite gap

Band gap

Bands

(b) V0=6

FIG. 2. Linear Bloch spectrum (bands are shaded): (a) as a func-
tion of depth of the lattice V0 with SOC strength κ = 1 and (b) as
a function of SOC strength κ with the depth of the lattice V0 = 6.
The shaded areas correspond to the linear bands and the gray lines
correspond to the boundaries of the linear bands.
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FIG. 3. The vector gap solitons of SO-coupled BECs in honey-
comb optical lattices. [(a),(b)] The modulus of the wave functions
(|ψ↑| and |ψ↓|) for spin-up and spin-down states, respectively. Here,
we take attractive intraspin atomic interaction gσσ = −1 and repul-
sive interspin atomic interaction g↑↓ = 2 in the semifinite band with
μ = 5 as an example. The white solid lines in both panels represent
the shape of the schematic honeycomb optical lattice. Compared with
the spin-down case, we can see clearly that the spin-up gap solitons
have a wider waist and a smaller amplitude. Meanwhile, the two
components of the vector gap soliton show phase separations.

boundary, which causes the width of the first band gap to
widen with the increase of lattice depth V0. Figure 2(b) shows
the linear Bloch band gap as a function of SOC κ , where we
take V0 = 6 as an example. For the semi-infinite band gap, its
upper boundary decreases with the increase of SOC strength
κ . For the first band gap, both the upper and lower boundaries
decrease with the increase of SOC strength. The width of the
first band gap is more sensitive to the lattice depth than the
SOC strength.

A gap soliton is a soliton that resides in the linear energy
gaps between the Bloch bands. In this paper, we investigate
the existence and dynamic stability of gap solitons only in the
semifinite gap and first gap.

B. The existence of gap solitons

Gap solitons are spatially localized modes in a gap, which
results from the balance between the dispersion and the non-
linearity. For BECs loaded in optical lattices, the dispersion
and the nonlinearity originate from the hopping between lat-
tice sites and atomic interaction, respectively. We now proceed
to present the numerical results of the vector gap localized
modes, which can be constructed through solving Eq. (5) with
the initial input being a Gaussian wave packet of the same
form for the two spin states. Here, we are looking for gap
solitons using the Newton conjugate-gradient method [69],
which is one of the powerful numerical techniques to find the
solitary wave solutions of a nonlinear evolution equation.

Typical examples of the vector gap solitons, residing within
the semifinite band gap, of SO-coupled BECs in honeycomb
optical lattices are shown in Fig. 3, where we take attractive
intraspin atomic interaction gσσ = −1 and repulsive interspin
atomic interaction g↑↓ = 2 as an example. It is seen from the
figure that both the amplitude and the center position of the
density profiles are different for spin-up and spin-down states.
We note that in this case, the waist of the two-dimensional
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g↑↑=2, A↑

g↑↑=2, A↓

g↑↓=-3
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FIG. 4. The amplitudes of vector gap soliton Aσ=↑, ↓ vs the SOC
strength κ . Here, we focus on the semifinite gap with μ = 5 as an
example.

gap solitons with spin up is larger than that with spin down,
but the amplitude of the gap solitons with spin up is smaller
than that with spin down. The two components of the vector
gap soliton show phase separation; the center positions of the
spin-up and spin-down gap solitons deviate from the center
of the lattice site, respectively. The center of the spin-up gap
soliton approaches the corner of the triangular lattice, whereas
the center of the spin-down gap soliton approaches the foot of
the triangular lattice. In fact, the two components of vector gap
solitons always show phase separation regardless of whether
interspin or intraspin atomic interactions are dominant.

It is interesting to systematically study the effect of the
SOC on gap solitons supported by the honeycomb lattice. We
find that interestingly, in the regime of weak SOC strength,
the configurations of the gap solitons are similar to those in
the absence of SOC. In Fig. 4, we show the amplitudes of
vector gap soliton Aσ=↑, ↓ versus the SOC strength κ . Here,
we focus on the semifinite gap with μ = 5 as an example.
Figures 4(a) and 4(b) show the dependence of the amplitude
of vector gap solitons A with κ for deferent attractive intraspin
interaction gσσ = −1 and −2 with repulsive interspin interac-
tion g↑↓ = 0.2 and attractive interspin interaction g↑↓ = −3,
respectively. As the SOC strength κ increases, both A↑ and A↓
decrease. Considering that this paper focuses on the regime of
weak SOC strength, in the following text, we take κ = 1 and
focus on atomic interactions on the existence and stability of
vector gap solitons.

In order to better understand the competition of interspin
and intraspin atomic interactions on the existence of vector
gap solitons, we show that the amplitude of vector gap solitons
varies with the atomic interaction in Fig. 5. Here, we take the
semifinite gap with μ = 5 as an example. Figure 5(a) show
the dependence of amplitude of vector gap solitons A with
interspin interaction g↑↓ for different attractive intraspin inter-
actions gσσ = −1 and −2, from which one can see a sudden
transition for the existence of vector gap solitons. Specifically,
for attractive interspin interaction g↑↓ < 0, the amplitudes of
the two components of the vector gap soliton are exactly
the same, and they both increase with the weakening of the
attractive interspin interaction. For the repulsive interspin in-
teraction g↑↓ > 0, there is an obvious contrast between the
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FIG. 5. The existence of vector gap solitons of SO-coupled BECs
in honeycomb optical lattices. The amplitudes of the two components
of soliton Aσ=↑, ↓ vs interspin interaction g↑↓ for (a) different at-
tractive intraspin interaction gσσ and (b) different repulsive intraspin
interaction gσσ , respectively. Here, we focus on the semifinite gap
with μ = 5 as an example.

amplitudes of the two components of the vector gap soliton;
both of them increase with the enhancement of the repulsive
interspin interaction. When the repulsive interspin atomic in-
teraction is large enough, i.e., g↑↓ = 5 and 10 for gσσ = −1
and −2, respectively, the amplitude of both components of
the vector soliton suddenly becomes zero, and the vector gap
solitons are no longer formed. After that, as the repulsive
interspin atomic interaction g↑↓ continues to increase, the
vector solitons are no longer found.

Figure 5(b) shows the dependence of amplitudes of two
components of vector gap soliton A with interspin interaction
g↑↓ for different repulsive intraspin interactions gσσ = 1 and
2. It is seen from the figure that there is a sudden transition for
the existence of vector gap solitons. Specifically, for strong
attractive intraspin interaction, vector gap solitons always ex-
ist. In the regime of the existence of vector gap solitons, the
amplitudes of the two components are always the same. In
this case, the amplitudes of the two components of vector
gap solitons grow rapidly with the weakening of the attractive
interspin interaction g↑↓. When the attractive interspin inter-
action weakens to a critical value, i.e., g↑↓ = −1 and −2 for
gσσ = 1 and 2, respectively, its amplitude reaches the maxi-
mum. After that, as the attractive interspin atomic interaction
g↑↓ continues to decrease, the amplitude of the vector soliton
suddenly becomes zero, and the solitons are no longer formed.
At the same time, we noticed that when the interspin atomic
interaction g↑↓ changes from attractive to repulsive, the vector
gap solitons no longer exist regardless of the strength of the
repulsive interspin atomic interaction.

For now, we focus on the semifinite gap and first band gap,
within which the vector gap solitons may be localized due
to the interplay between the interspin and intraspin atomic
interaction. With an in-depth investigation, we numerically
seek the relationships between intraspin atomic interaction
gσσ and interspin atomic interaction g↑↓ on the existence of
vector gap solitons.

The existence of vector gap solitons in the semifinite band
gap with μ = 5 is shown in Fig. 6(a), which shows the obvious

FIG. 6. Phase diagram of the existence of vector gap solitons in
the parameter plane (gσσ , g↑↓): (a) for the semifinite band gap with
μ = 5 and (b) for the first band gap with μ = 10. The shaded region
represents the existence region of vector gap solitons. Shaded regions
with different colors represent distinct attractive and repulsive atomic
interactions. The marked points with different shapes and colors are
representative points in each regime, for which the study of nonlinear
dynamics presented below is conducted.

boundary for the existence of solitons in the parameter
plane of intraspin atomic interaction and interspin atomic
interaction (gσσ , g↑↓).

(i) For the regime in which both the intraspin and interspin
atomic interaction are attractive, i.e., gσσ < 0, and g↑↓ < 0,
vector gap solitons always exist.

(ii) For the regime in which both the intraspin and interspin
atomic interaction are repulsive, i.e., gσσ > 0, and g↑↓ > 0,
vector gap solitons do not exist.

(iii) For the regime in which the intraspin atomic inter-
action is attractive, while the interspin atomic interaction is
repulsive, i.e., gσσ < 0, and g↑↓ > 0, vector gap solitons only
exist when the attractive intraspin atomic interaction is weaker
than one-fifth of the repulsive interaction interspin atomic
interaction, i.e., |gσσ | > |g↑↓|/5.

(iv) For the regime in which the intraspin atomic inter-
action is repulsive, while the interspin atomic interaction is
attractive, i.e., gσσ > 0 and g↑↓ < 0, vector gap solitons only
exist when the attractive interspin atomic interaction g↑↓ is
stronger than the repulsive interaction intraspin atomic in-
teraction gσσ , i.e., |gσσ | < |g↑↓|. It can be seen that for the
semi-infinite gap to form a gap soliton, at least one of the
intraspin and interspin atomic interactions should be attrac-
tive, and the attractive interaction should be stronger than the
repulsive interaction.

Figure 6(b) shows the existence of vector gap solitons
in the first band gap with μ = 10. Also shown is the obvi-
ous boundary for the existence of solitons in the parameter
space of intraspin and interspin atomic interaction (gσσ , g↑↓).
Compared with the case of the semi-infinite gap, the region
where vector solitons exist in the first band gap is smaller,
and it is almost the opposite region of the semi-infinite one.
Specifically, we have the following.

(i) For the regime in which the intraspin atomic interaction
is attractive, i.e., gσσ < 0, vector gap solitons always do not
exist regardless of whether the interspin atomic interaction
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g↑↓ is repulsive or attractive. Vector gap solitons always do
not exist.

(ii) For the regime in which both the intraspin and interspin
atomic interaction are repulsive, i.e., gσσ > 0, and g↑↓ > 0,
vector gap solitons always exist.

(iii) For the regime in which the intraspin atomic inter-
action is repulsive, while the interspin atomic interaction is
attractive, i.e., gσσ > 0 and g↑↓ < 0, vector gap solitons only
exist when the repulsive intraspin atomic interaction gσσ is
stronger than the attractive interspin atomic interaction g↑↓,
i.e., |gσσ | > |g↑↓|. It can be seen that for the first band gap to
form gap solitons, either both the intraspin and the interspin
atomic interaction are repulsive, or the repulsive intraspin
atomic interaction is stronger than the attractive interspin
atomic interaction.

We can clearly see that the existence of vector gap solitons
of SO-coupled BECs in honeycomb optical lattices is highly
dependent on the properties of atomic interaction.

IV. NONLINEAR DYNAMICAL STABILITIES
OF VECTOR GAP SOLITONS

Stability of extended and localized modes in nonlinear
systems is a very important issue, since only dynamically
stable modes are likely to be generated and observed in ex-
periments. In this section, we examine the stability of the
vector gap modes by using the direct evolution dynamics, and
discuss their physical intension. To trigger potential dynamic
instabilities, a 1% Gaussian distributed noise is added to the
initial gap solitons. Then, we numerically propagate Eq. (3)
by the time-splitting Fourier spectral method. We respectively
discuss the nonlinear dynamic evolution of solitons in the
semi-infinite band gap and the first band gap in detail.

A. In the semifinite gap

For the semi-infinite band gap, in the parameter space
(gσσ , g↑↓), the gap soliton exists in three parameter regions
according to the atomic interaction properties: (i) in the sec-
ond quadrant with |g↑↓| < 5|gσσ |, (ii) in the third quadrant,
and (iii) in the fourth quadrant with |g↑↓| < |gσσ |. We discuss
the stability of vector gap solitons in these three regions re-
spectively.

1. Case (i): In the second quadrant with |g↑↓| < 5|gσσ|
In this parameter region, the intraspin atomic interaction is

attractive, while the interspin atomic interaction is repulsive,
i.e., gσσ < 0 and g↑↓ > 0. As might be expected, the stability
of the vector gap solitons is different for |g↑↓| < |gσσ | and
|gσσ | < |g↑↓| < 5|gσσ |.

In Fig. 7, we show the time evolution of vector gap soli-
tons in the semi-infinite gap in the second quadrant with
|gσσ | < |g↑↓| < 5|gσσ |. Here, we take gσσ = −1, g↑↓ = 2
[corresponding to the red upper triangle in Fig. 6(a)] as an ex-
ample. We can see that the spin-up and spin-down profiles of
the vector gap soliton are initially located in the same lattice.
The centers of spin-up and spin-down profiles deviate from
the center of the lattice in the opposite direction. In fact, the
stronger the interspin repulsive atomic interaction, the farther
the deviation (of course, when the interspin repulsive atomic
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FIG. 7. Time evolution of vector gap solitons in the semi-infinite
gap with μ = 5. Here, we focus on the second quadrant with
5|gσσ | > |g↑↓| > |gσσ |. We take gσσ = −1, g↑↓ = 2 [corresponding
to the red upper triangle in Fig. 6(a)] as an example. A small per-
turbation of 1% Gaussian distributed noise was added to the initial
gap solitons to trigger potential instabilities. (a, b) The initial density
profiles for spin-up and spin-down states, respectively. [(c),(d)] The
final (t = 100) density profiles for spin-up and spin-down states,
respectively. In this case, the spin-down state of the vector gap soliton
collapses and the spin-up state of the vector gap soliton is trapped and
raised. This represents spin polarization due to SOC.

interaction exceeds five times the intraspin attractive atomic
interaction, the vector gap solitons will not exist). To trig-
ger potential dynamic instabilities, a 1% Gaussian distributed
noise was added to the initial gap solitons. It can be seen that
the amplitude and waist of the two components of the vector
gap soliton are all changed. Specifically, the amplitude of the
spin-up profile of the vector gap soliton increases with time,
while the amplitude of the spin-down profile of the vector
gap soliton decreases with time. Meanwhile, the waist of the
spin-up profile becomes thinner with the evolution of time.
Clearly, in such a case, vector gap solitons are dynamically
unstable. In fact, this represents spin polarization due to SOC.

The time evolution of vector gap solitons in the semi-
infinite gap in the second quadrant with |g↑↓| < |gσσ | is
shown in Fig. 8. Here, we take gσσ = −1, g↑↓ = 0.5 [cor-
responding to the purple lower triangle in Fig. 6(a)] as an
example. We compare gap solitons in Fig. 8 with those in
Fig. 7; although the centers of the two components of the
vector gap soliton still deviate in the opposite direction, the
distance of deviation becomes smaller, which results from the
decrease of the repulsive atomic interactions. In particular,
with time evolution, distribution of the vector gap solitons is
exactly the same as that of the initial states. Clearly, in such a
case, vector gap solitons are dynamically stable.

From the above comprehensive analysis, we could draw
a conclusion that vector gap solitons in the semi-infinite gap
in the second quadrant with |g↑↓| < |gσσ | are dynamically
stable, whereas with |gσσ | < |g↑↓| < 5|gσσ | they are unstable.
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FIG. 8. Time evolution of vector gap solitons in the semi-infinite
gap with μ = 5. Here, we focus on the second quadrant with |gσσ | >

|g↑↓|. We take gσσ = −1, g↑↓ = 0.5 [corresponding to the purple
lower triangle in Fig. 6(a)] as an example. A 1% Gaussian dis-
tributed noise was added to the initial gap solitons to trigger potential
instabilities. [(a),(b)] The initial density profiles for spin-up and
spin-down states, respectively. [(c),(d)] The final (t = 100) density
profiles for spin-up and spin-down states, respectively. In this case,
both states of the vector gap soliton are stably trapped in the initial
lattice.

2. Case (ii): In the third quadrant

In this parameter region, both the intra- and interspin
atomic interaction are attractive, i.e., gσσ < 0 and g↑↓ < 0. In
order to study the nonlinear dynamical stabilities of vector gap
solitons more clearly, we pay attention to time dependence of
the amplitude and the total power of gap solitons. In order to
see this, we define the amplitude A and the total power P of
the gap solitons as

Aσ (t ) = max [|ψσ (t )|], Pσ (t ) =
∫

|ψσ (t )|2dxdy. (8)

In order to characterize the stability of solitons, we introduce
the following two sets of ratios:

�A,σ (t ) = |Aσ (t ) − Aσ (0)|
Aσ (0)

,

�P,σ (t ) = |Pσ (t ) − Pσ (0)|
Pσ (0)

. (9)

These two sets of quantities, respectively, represent the
changes of amplitude and power of solitons in the process of
dynamic evolution. Obviously, the closer they are to zero, the
more similar they are to the initial state, and the more stable
the soliton is. In contrast, the larger they are, the farther the
soliton is from the initial state.

The time dependences of ratios �A,σ and �P,σ in the
semi-infinite gap with μ = 5 for the third quadrant of the
parameter plane (gσσ , g↑↓) are shown in Fig. 9. Here, we
take gσσ = 1, g↑↓ = −3 [corresponding to the black square
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FIG. 9. The time dependence of ratio �A,σ and �P,σ in the semi-
infinite gap with μ = 5. (a) In the third quadrant with gσσ < 0 and
g↑↓ < 0. Here, we take gσσ = −1, g↑↓ = −3 [corresponding to the
black square in Fig. 6(a)] as an example. (b) In the fourth quadrant
with |gσσ | < |g↑↓|. We take gσσ = 1, g↑↓ = −3 [corresponding to
the blue circle in Fig. 6(a)] as an example. For both cases, a 1%
Gaussian distributed noise was added to the initial gap solitons to
trigger potential instabilities.

in Fig. 6(a)] as an example. To trigger potential dynamic
instabilities, we add a 1% Gaussian distributed noise to the
initial gap solitons. It can be seen that the ratios of all these
quantities for both the spin-up and spin-down gap solitons do
not exceed the amount of initial disturbance. Clearly, in such
a case, vector gap solitons are dynamically stable. In fact, we
randomly selected many vector gap solitons in this region and
observed their dynamic processes. We find that all of the gap
solitons in this region are dynamically stable.

3. Case (iii): In the fourth quadrant with |gσσ| < |g↑↓|
The existence of vector gap solitons in this region should

satisfy that the intraspin attractive atomic interaction is
stronger than the interspin repulsive atomic interaction, i.e.,
|gσσ | < |g↑↓|. Therefore, in this region, there is still competi-
tion between repulsive and attractive atomic interactions. The
amplitude, waist, and center of the two components of the
vector solitons are almost the same due to the stronger at-
tractive atomic interactions. We also use the time dependence
of ratio �A,σ and �P,σ to check the stability of vector gap
solitons in this regime. The results are shown in Fig. 9(b).
Here, we take gσσ = 1, g↑↓ = −3 [corresponding to the blue
circle in Fig. 6(a)] as an example. To trigger potential dynamic
instabilities, we add a 1% Gaussian distributed noise to the
initial state. We can clearly see that in the process of evolution,
for both the spin-up and spin-down gap solitons, these ratios
do not exceed the amount of initial disturbance. Actually, in
this region, we numerically tested the dynamic evolution of a
large number of vector gap solitons, and the results showed
that they are all stable.
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FIG. 10. Time evolution of vector gap solitons in the first gap
with μ = 10. Here, we show the evolution of the cross section at
y = 0 with time in detail. Here, we focus on the first quadrant in pa-
rameter space (gσσ , g↑↓), and take gσσ = 1, g↑↓ = 2 [corresponding
to the red upper triangle in Fig. 6(b)] as an example. A 1% Gaussian
distributed noise was added to the initial gap solitons to trigger
potential instabilities. (a, b) The evolution of the cross section of
density profiles for spin-up and spin-down states, respectively. In this
case, both components of the vector gap soliton remain trapped in the
initial state.

B. In the first gap

For the first band gap, in the parameter space (gσσ , g↑↓),
the gap soliton exists in two parameter regions according to
the atomic interaction properties: (i) in the first quadrant and
(ii) in the fourth quadrant with |gσσ | < |g↑↓|. In the following,
we check the stability of vector gap solitons in these two
regions, respectively.

1. Case (i): In the first quadrant

In this region, both the intraspin and the interspin atomic
interaction are repulsive, and the vector gap solitons always
exist in the first gap. The nonlinear dynamics for the vector
gap solitons with gσσ = 1, g↑↓ = 2 [corresponding to the red
upper triangle in Fig. 6(b)] are shown in Fig. 10, where a
1% Gaussian distributed noise was added to the initial gap
solitons to trigger potential instabilities. Here, we show the
evolution of the cross section at y = 0 with time in detail.
Figures 10(a) and 10(b) denote the evolution of the cross sec-
tion at y = 0 for spin-up and spin-down states, respectively.
One can clearly see that the amplitude, waist, and center of
the two components of the vector solitons are almost the
same during evolution. In Fig. 11(a), we also show the time
dependence of ratios �A,σ and �P,σ for vector gap solitons.
We can clearly see that these ratios never exceed the amount
of the initial disturbance. In this parameter region, we also
randomly selected a large number of vector gap solitons to
demonstrate their dynamics and found that they are all stable.

2. Case (ii): In the fourth quadrant with |g↑↓| < |gσσ|
Now, we focus on dynamic stability of vector gap solitons

in the fourth quadrant. The existence of vector gap solitons in
the fourth quadrant should satisfy that the repulsive intraspin
atomic interaction is stronger than the attractive interspin
atomic interaction, i.e., |g↑↓| < |gσσ |. The time dependences
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FIG. 11. The time dependence of ratio �A,σ and �P,σ for vector
gap solitons in the first gap with μ = 10. (a) In the first quadrant,
we take gσσ = 1, g↑↓ = 2 [corresponding to the red upper trian-
gle in Fig. 6(b)] as an example. (b) In the fourth quadrant with
|g↑↓| < |gσσ |. We take gσσ = 1, g↑↓ = −0.5 [corresponding to the
blue lower triangle in Fig. 6(b)] as an example. For both cases, a 1%
Gaussian distributed noise was added to the initial gap solitons to
trigger potential instabilities.

of ratios �A,σ and �P,σ for vector gap solitons with gσσ = 1,

g↑↓ = −0.5 [corresponding to the blue lower triangle in
Fig. 6(b)] are shown in Fig. 11(b). To trigger potential instabil-
ities, we add a 1% Gaussian distributed noise to the initial gap
solitons. One can clearly see that the amplitude and power of
the two components of the vector solitons are almost the same.
With the evolution of time, the ratios of all these quantities for
both the spin-up and spin-down gap solitons do not exceed the
amount of initial disturbance. Clearly, in such a case, vector
gap solitons are dynamically stable.

V. CONCLUSIONS

To summarize, we have investigated the formation and
dynamic instabilities of vector gap solitons of SO-coupled
BECs in honeycomb optical lattices. We focus on both the
interspin and intraspin atomic interactions on the existences
and nonlinear dynamics stability. It is worth emphasizing
that the two spin states of the vector gap soliton always
show phase separation regardless of whether interspin or in-
traspin atomic interactions are dominant. The main results for
both the semi-infinite gap and first gap are summarized in
Fig. 12.

In this paper, we investigate the existence and dynamic
stability of gap solitons only in the semifinite gap and first
gap. The existence of vector gap solitons of SO-coupled BECs
in honeycomb optical lattices is highly dependent on the
properties of atomic interaction. For the semi-infinite gap, as
shown in the left panel in Fig. 12, to form gap solitons, at
least one of the intraspin and interspin atomic interactions
should be attractive, and the attractive interaction should be
stronger than the repulsive interaction. For the first gap, as
shown in the right panel in Fig. 12, to form gap solitons,
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FIG. 12. Summary of the existences and nonlinear dynamics sta-
bility of vector gap solitons in the parameter plane (gσσ , g↑↓). The
left and right show the semi-infinite band gap and first band gap,
respectively. The shaded region represents the existence region of
vector gap solitons. Shaded regions with different colors represent
distinct regions for stable and unstable gap solitons.

either both the intraspin and the interspin atomic interaction
are repulsive, or the repulsive intraspin atomic interaction is
stronger than the attractive interspin atomic interaction. We
examine the stability of these vector gap modes by using
the direct evolution dynamics. We randomly select a large
number of vector gap solitons to demonstrate their dynam-
ics and find that the vector gaps in the first gap are all

stable, whereas there are stable and unstable regions in the
parameter space (gσσ , g↑↓), as shown in different colors in
Fig. 12.

Based on our simulations, we propose a scheme for exper-
imental observation of the gap solitons. In real experiments,
one can consider a mixture of BECs composed of the two
internal states of 87Rb [63], namely, |↑〉 ≡ |F = 1, mF = 0〉
and |↓〉 ≡ |F = 1, mF = −1〉. In real experiments, the system
contains about 1.8 × 105 atoms. The BECs with Rashba SOC
are loaded in a honeycomb optical lattice, which is gener-
ated experimentally by superposing three coplanar traveling
laser beams [65,66]. The strength of SOC can be precisely
controlled by optics means. The the intra- and interspin inter-
actions can be changed by modifying atomic collisions, which
are experimentally feasible due to the flexible and precise
control of the scattering lengths achievable by magnetically
tuning the Feshbach resonances [70]. Our paper extends the
studies of BECs in optical lattices. We hope that these types
of spatially localized condensate can potentially be observed
in further experiments.
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