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Xin Qiao, Xiao-Bo Zhang, Yue Jian, Yun-E Ma, Rui Gao, Ai-Xia Zhang, and Ju-Kui Xue *

College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China

(Received 6 March 2023; accepted 11 September 2023; published 21 September 2023)

The nonlinear Landau-Zener-Stückelberg-Majorana (LZSM) tunneling dynamics and interferometry of an
extended Bose-Hubbard flux ladder are studied. Based on the mean-field theory, the dispersion relation of the
system is given, and it is found that loop structures periodically appear in the band structure and the nonlinear
LZSM interference occurs naturally without Floquet engineering, which can be effectively modulated by atomic
interactions. The nonlinear energy bands and the unique chirality feature of the flux ladder system can be
identified through the dynamics of nonlinear Landau-Zener tunneling. Remarkably, the critical position of the
noise in the interference pattern can be employed to identify the loop structure in the energy band, establishing an
effective link between the nonlinear loop structure and LZSM interferometry. The position, intensity, symmetry,
and width of interference patterns strongly depend on the magnetic field, atomic interactions, rung-to-leg
coupling ratio, and energy bias, which provides an effective way to measure these parameters using the nonlinear
LZSM interferometry. This paper further expands the dynamics of flux ladder systems to complex interaction
regions and has potential applications in the precise measurement of related nonlinear systems.
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I. INTRODUCTION

For a quantum system with a time-dependent Hamiltonian,
it is usually difficult to derive a complete analytical expression
of the dynamics. One of the few analytically solved exam-
ples is the well-known Landau-Zener problem [1–4], which
serves as an idealized model applicable to various dynamic
processes in different contexts, including molecular colli-
sions [5], nanosystems [6,7], waveguide systems [8,9], and
quantum information processing [10,11]. The Landau-Zener-
Stückelberg-Majorana (LZSM) interference [12–15] has also
emerged as a powerful tool for precise measurements in
quantum dots, quasi-one-dimensional layered materials, su-
perconducting qubits, and Rydberg atoms [16–22]. Since
some nonlinear effects are unavoidable in actual physical
systems, the nonlinear Landau-Zener problem has drawn
extensive attention recently [23–28]. A comprehensive anal-
ysis of the nonlinear Landau-Zener tunneling reveals that
nonlinearity induces the loop structure of the energy band
structure and increases the tunneling rate in the adiabatic limit
[24,25,29,30]. Further investigations for nonlinear LZSM in-
terference have demonstrated that the symmetry, position,
width, and intensity of interference fringes strongly depend
on the nonlinear interaction [31]. The non-Hermitian effects
of the Landau-Zener transition and the LZSM interferometry
have also been studied [32–35]. However, the discussions in
previous works have neglected the relationship between this
particular loop structure and the nonlinear LZSM interference,
which is still an exciting and worthwhile question.

The two-leg ladder system [36–41] is an ideal model to
study the influence of orbital magnetic field effects and the
nonequilibrium dynamical behavior of bosons or fermions in
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the low-dimensional quantum system. This system has also
inspired significant research efforts on the quantum Hall effect
[42–44], quantum phase transition [45–53], and Hofstadter
Hamiltonian [54,55]. Moreover, the ladder system couples the
momentum with the magnetic field effect, where different legs
can be regarded as the pseudospin, offering an effective way
to realize spin-orbit coupling (SOC) [54,56]. The dispersion
relation of the system shows a similar two-level structure,
which makes it an ideal research platform for studying os-
cillation and tunneling dynamics. In the presence of a static
linear force along the legs, the chiral Bloch oscillation has
been observed, which can be used to distinguish quantum
phases in the ladder system [57,58]. The detailed discussion
on the LZSM interference of this ladder system has shown
that the interference phase is closely related to the gauge
field, providing a new method to measure artificial gauge
fields [59]. However, these studies on the dynamic process
of this model mainly focus on the flux ladder system with-
out considering the atomic interaction. The nonlinear effect
caused by the atomic interaction in this flux ladder system is
still a fascinating and challenging problem. Recently, through
microscopic atomic control and detection, the chirality in the
propagation dynamics of atoms induced by the atomic inter-
action in the two-leg ladder system has been observed in the
experiment [60]. By using internal spin states or other degrees
of freedom to implement the synthetic dimension [61–67],
the synthetic flux ladders [42,43,68–70] have been realized in
which the long-range interaction in the rung direction could
be considered. Therefore, studying the nonlinear LZSM tun-
neling and interference dynamics in the flux ladder system
with complex atomic interactions is a crucial requirement
for current experiments and may have significant applications
in quantum-mechanical circuits, superconducting qubits, and
precision measurements [59,71,72].
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Considering both on-site and long-range interactions in
the rung direction, nonlinear LZSM tunneling dynamics and
interference phenomena of the biased two-leg flux ladder
driven by an external gravitational field are studied. Using
mean-field theory, we derive the dispersion relation of the
extended Bose-Hubbard flux ladder system with a nonlinear
loop structure. The presence of this loop structure leads to
a nonlinear Landau-Zener tunneling process, which reveals
the nonlinear energy band characteristics and the unique
chirality of the flux ladder system. Because of the periodicity
of the energy band structure of the flux ladder system, the
nonlinear LZSM interference without Floquet engineering
can be easily realized [15,73]. Interestingly, the nonlinear
loop structure of the energy band is directly distinguished
by the noise of the interference pattern, which establishes a
direct link between the nonlinear loop structure and LZSM
interferometry. Moreover, the position, intensity, symmetry,
and width of the interference pattern are strongly dependent
on the magnetic flux, rung-to-leg coupling ratio, energy bias,
and effective interaction. This means that these parameters in
the flux ladder system can be measured by using nonlinear
LZSM interference. Therefore, this paper further extends the
study of the flux ladder system to the nonlinear region and
provides an effective method for accurate measurement of the
system parameters of nonlinear systems.

The paper is organized as follows. In Sec. II, we de-
scribe the extended Bose-Hubbard flux ladder model and
its nonlinear dispersion relation. The results for nonlinear
Landau-Zener tunneling dynamics of the flux ladder system
are reported in Sec. III. In Sec. IV, we investigate the nonlin-
ear LZSM interference of the ladder system in four different
limiting cases. Finally, the summary and outlook of our paper
are included in Sec. V.

II. MODEL

As realized in the experiment [38], by changing the fre-
quency of a pair of running-wave beams, a controlled energy
bias between the two legs of the ladder is introduced, which
is effectively analogized to the Zeeman field in SOC sys-
tems. When considering the on-site interaction and long-range
interaction in the rung direction, complex nonlinear effects
can be introduced into the flux ladder system. In solids, the
Landau-Zener tunneling effect is usually driven by an external
electric field, while in neutral cold atom systems, such exter-
nal field can be created by using gravity [74–76] or linearly
accelerating the lattice [77,78]. To investigate the nonlinear

FIG. 1. Schematic diagram of a biased interacting flux ladder
system in a gravitational field.

LZSM dynamics of the ladder system, we introduce a gravi-
tational field along the direction of the ladder legs. Then, the
Hamiltonian of the system can be written as

H = − J
∑

m

∑
σ=L,R

(ei φ

2 â†
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∑
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m,Râm,L + H.c.

+ 1

2
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∑
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(â†
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∑
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m,Râm,Lâm,R, (1)

where the operator âm,σ (â†
m,σ ) annihilates (creations) a par-

ticle at the site m in the left or right leg (σ = L or R). A
schematic diagram of this flux ladder with the external field
and complex interactions is given in Fig. 1. In the experiment
[38], the nearest-neighbor tunneling amplitude along the legs
is approximately J ≈ 150h Hz. The tunneling amplitude on
rung K can be controlled by modulating the strength of the
laser-assisted tunneling between the legs of the ladder. We use
parameter J as the unit of the energy, and one can obtain that
the rung-to-leg coupling ratio is K̃ = K/J . To study tunneling
dynamics, we only focus on the case where the lowest energy
band has a double well structure, i.e., 0 < K̃ < 1. The effec-
tive magnetic field 0 < φ < 2π can be tuned by changing the
wavelength of the running-wave beams or the angle between
them [60]. The strength of the on-site atomic interaction U
and the long-range atomic interaction in the rung direction V
depends on the properties of the atomic species and can be
controlled by the lattice modulation [53,79] or Feshbach reso-
nance technologies [80,81]. We consider the reasonable weak
interaction strength 0 < Ũ < 2 (Ũ = U/J) and 0 < Ṽ < 2
(Ṽ = V/J). ω⊥ is the controllable energy bias between two
legs, where 0 < ω̃⊥ < 2 (ω̃⊥ = ω⊥/J). ω‖ is the longitudinal
in-plane component of a gravitational field, which offers a
linear force to drive atoms moving along the energy band. The
force generated by gravity can be expressed as ω‖ = gM cos θ ,
where g is the gravitational acceleration, M is the atomic
mass, and θ is the angle between the lattice and the axis of
Earth’s gravity [82]. We set 0 < ω̃‖ < 1 (ω̃‖ = ω‖/J). The
value of g can be measured with high precision using the
Bloch oscillation of cold atoms in an optical lattice, providing
measurements at the micrometer scale with a sensitivity of
ppm [83–85].

We ignore thermal fluctuations with the mean-field ap-
proximation âm,σ � 〈âm,σ 〉 ≡ am,σ . By using the Heisenberg
equation of motion ih̄ dan,σ

dt = ∂H
∂a∗

n,σ
, the Gross-Pitaevskii equa-

tion of the system can be written as

iȧm,L = − (e−i φ

2 am+1,L + ei φ

2 am−1,L ) − K̃am,R + 1
2 ω̃⊥am,L

+ ω̃‖mam,L + Ũ |am,L|2am,L + Ṽ |am,R|2am,L,

iȧm,R = − (ei φ

2 am+1,R + e−i φ

2 am−1,R) − K̃am,L − 1
2 ω̃⊥am,R

+ ω̃‖mam,R + Ũ |am,R|2am,R + Ṽ |am,L|2am,R, (2)

where we use the natural unit h̄ = 1. When the longitudinal
gravitational field is not considered (ω̃‖ = 0), the system has
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FIG. 2. Dispersion relations of the biased interacting flux ladder system for the case (a1) without interaction Ũ = Ṽ = 0, (a2) with equal
on-site interaction and long-range interaction in the rung direction Ũ = Ṽ = 1.8, (b1–e1) with large long-range interaction in the rung direction
Ũ < Ṽ , and (b2–e2) with large on-site interaction Ũ > Ṽ . The other parameters are K̃ = 0.2 and φ = 0.5π .

plane-wave solutions am,σ = aσ (t )eikm, where k is the quasi-
momentum, which is rescaled as k → kd/π (d is the lattice
constant). Substituting it into Eq. (2), the dynamic equation in
the momentum space can be obtained:

iȧL = − 2 cos

(
k − φ

2

)
aL − K̃aR + 1

2
ω̃⊥aL

+ Ũ |aL|2aL + Ṽ |aR|2aL,

iȧR = − 2 cos

(
k + φ

2

)
aR − K̃aL − 1

2
ω̃⊥aR

+ Ũ |aR|2aR + Ṽ |aL|2aR. (3)

Setting aσ (t ) = ãσ e−iμ̃t , where ãσ is the time-independent
wave function and μ̃ is the chemical potential, which is
rescaled as μ̃ → μ/J , we have the corresponding stationary
state equation:

μ̃ãL = − 2 cos

(
k − φ

2

)
ãL − K̃ãR + 1

2
ω̃⊥ãL

+ Ũ |ãL|2ãL + Ṽ |ãR|2ãL,

μ̃ãR = − 2 cos

(
k + φ

2

)
ãR − K̃ãL − 1

2
ω̃⊥ãR

+ Ũ |ãR|2ãR + Ṽ |ãL|2ãR. (4)

According to Eq. (4) and the normalization condition |ãL|2 +
|ãR|2 = 1, we can obtain the nonlinear dispersion relation of
the system.

As shown in Fig. 2, the energy band of the biased in-
teracting flux ladder system consists of an upper band (red)
and a lower band (blue). When the strength of the on-site
interaction is equal to the long-range interaction in the rung
direction, i.e., the effective interaction is zero [Fig. 2(a2)],
the shape of the energy band is consistent with the linear
case without interaction [Fig. 2(a1)], but the corresponding
energy values are different, i.e., the energy band is just a
displacement upwards of the linear case. As the strength of the

effective interaction increases, the energy band structure of the
system becomes more complex, exhibiting a loop structure.
In order to describe this phenomenon analytically, we use
μ̃non = μ̃ + 2 cos k cos φ

2 + Ũ+Ṽ
2 (|ãL|2 + |ãR|2) and simplify

Eq. (4) to the standard nonlinear equation form

μ̃nonãL =
[
−2 sin k sin

φ

2
+ ω̃⊥

2
− Ũ − Ṽ

2
(|ãR|2 − |ãL|2)

]
ãL

− K̃ãR,

μ̃nonãR =
[

2 sin k sin
φ

2
− ω̃⊥

2
+ Ũ − Ṽ

2
(|ãR|2 − |ãL|2)

]
ãR

− K̃ãL. (5)

Similar to the classical two-level model [23,24,28], when
the nonlinear term Ũ−Ṽ

2 (|ãR|2 − |ãL|2) dominates over the
energy gap term K̃ , a loop structure appears in the energy
band. As shown in Figs. 2(b1) and 2(b2), when |Ũ − Ṽ | =
2K̃ , a cusp appears at the avoided crossing, located in the
upper (lower) energy band for attractive effective interac-
tions Ũ < Ṽ (repulsive effective interactions Ũ > Ṽ ). With
the increase of the strength of the effective interaction |Ũ −
Ṽ |, i.e., the nonlinear effect, a loop structure appears in
the energy band, and the size of the loop is positively as-
sociated with the strength of the effective interaction [see
Figs. 2(c1)–2(d2)]. Significantly, since the energy band of
the flux ladder system exhibits a periodic structure, the loop
structure will appear at k = nπ (n = 0,±1,±2 . . .). Because
the flux ladder system has both the essence of the SOC
system and periodic energy band structure, it provides an
ideal platform for investigating the LZSM interference phe-
nomenon without complex Floquet engineering. When the
strength of the effective interaction is large, the shapes of
loops are different with odd n and even n, respectively. Ac-
cording to Eq. (5), we can analytically calculate the edge of
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FIG. 3. (a1) Loop widths as the function of the rung-to-leg coupling ratio K̃ with different effective interaction strength. Corresponding
energy band structures for different rung-to-leg coupling ratios (a2) K̃ = 0.2, (a3) K̃ = 0.4, and (a4) K̃ = 0.6 with Ũ − Ṽ = −1.8 and φ =
0.5π . (b1) Loop widths as the function of the magnetic flux φ with different effective interaction strength. Corresponding energy band structures
for different fluxes (b2) φ = 0.3π , (b3) φ = π , and (b4) φ = 1.7π with Ũ − Ṽ = −1.8 and K̃ = 0.2.

the loop:

ke = ± arcsin

⎧⎪⎨
⎪⎩

K̃

2 sin φ

2

⎡
⎣(

Ũ − Ṽ

2K̃

) 2
3
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⎤
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3
2

⎫⎪⎬
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± arcsin

(
ω̃⊥

4 sin φ

2

)
+ nπ, (6)

where kc = ± arcsin( ω̃⊥
4 sin φ

2

) is the center of the loop, which is

nonzero when the energy bias between two legs is considered
[see Figs. 2(e1) and 2(e2)]. Then, the loop width 2|ke − kc| as
the function of the rung-to-leg coupling ratio K̃ and the mag-
netic flux φ are plotted in Figs. 3(a1) and 3(b1), respectively.
As shown in Figs. 3(a2)–3(a4), the loop width decreases and
the energy gap between two bands increases with the increas-
ing rung-to-leg coupling ratio. Interestingly, the structure of
the nonlinear dispersion relation changes dramatically with
different magnetic fluxes, and there is a minimum value of the
loop width when the magnetic flux φ = π [see Figs. 3(b1)–
3(b4)].

III. NONLINEAR LANDAU-ZENER
TUNNELING DYNAMICS

To investigate the nonlinear Landau-Zener tunneling dy-
namics of the biased interacting flux ladder system, we
introduce a gravitational field along the direction of the
leg. This field tilts the optical lattice and induces Bloch
oscillations, Landau-Zener tunneling, and LZSM interferom-
etry of the atoms. By setting the initial quasimomentum as
k = k0, the dynamics of the quasimomentum follows the
classical acceleration k(t ) = k0 + ω̃‖t . In analogy with a stan-
dard nonlinear two-level model, the dynamic equation in the

momentum space is given:

iȧL =
[

ω̃⊥ − 4 sin φ

2 sin(k0 + ω̃‖t )

2

− Ũ − Ṽ

2
(|aR|2 − |aL|2)

]
aL − K̃aR,

iȧR = −
[

ω̃⊥ − 4 sin φ

2 sin(k0 + ω̃‖t )

2

+ Ũ − Ṽ

2
(|aR|2 − |aL|2)

]
aR − K̃aL, (7)

where 4 sin φ

2 sin(k0 + ω̃‖t ) is the driving term generated
by the gravitational field, 4 sin φ

2 is the driving am-
plitude, ω̃‖ is the driving force, and k0 is the initial
momentum.

Figure 4 shows the nonlinear Landau-Zener tunneling dy-
namics of the system when the energy band exhibits the loop
structure. We use the fourth-order Runge-Kutta method [86],
which is a useful numerical integration algorithm for solv-
ing the ordinary differential equations, to solve Eq. (7) with
the time step th = 0.0005. Here, for the initial momentum
k0, the initial states aL(0) and aR(0) are determined by the
momentum and eigenstates corresponding to the points B±
or C± marked in Fig. 4, which are given by Eq. (4). The
loop structure appears in the lower energy band when the ef-
fective interaction is repulsive Ũ > Ṽ . The points B± [the blue
square in Fig. 4(a1)] and C± [the red dots in Fig. 4(a1)] are
set as initial states, and Figs. 4(b1) and 4(c1) describe the
corresponding nonlinear Landau-Zener tunneling with a weak
driving force ω̃‖ = 0.005, respectively. When the initial state
is in the upper band B+ (C+), there is no loop structure on
the energy band, so the atoms will move smoothly along the
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FIG. 4. Nonlinear Landau-Zener tunneling dynamics for differ-
ent dispersion relations of the biased interacting flux ladder system
(a1) Ũ = 0 < Ṽ = 1.8 and ω̃⊥ = 0, (a2) Ũ = 0 < Ṽ = 1.8 and
ω̃⊥ = 0.5, and (a3) Ũ = 1.8 > Ṽ = 0 and ω̃⊥ = 0. The second
(third) column shows the tunneling dynamics of the system starting
from B± (C±) points, where red and blue lines indicate the atoms
starting from the upper and lower bands, respectively. Dark (light)
color lines correspond to the population probability |aL(R)(t )|2 for the
left (right) leg momentum state. The other parameters are K̃ = 0.2,
ω̃‖ = 0.005 and φ = 0.5π .

upper band and gradually exchange their spin states, which
are the left and right momentum states in the ladder system.
The atoms arriving at the avoided crossing A0 (A1) will have
identical distributions on the left and right momentum states
[see Figs. 4(b1) and 4(c1)]. When the initial state is in the
lower band B− (C−), the atoms do not tunnel at A0 (A1)
due to the presence of the loop structure, and the nonlin-
ear Landau-Zener tunneling occurs until it reaches the loop
boundary. As shown by the blue curves in Figs. 4(b1) and
4(c1), the left and right momentum states hold onto the initial
distribution until the atoms reach the loop boundary, where
a significant exchange between the upper and lower energy
bands occurs, characterized by the high-frequency nonlinear
oscillation between the two momentum states. The distance
between the equal left and right momentum state distribution
and the nonlinear Landau-Zener tunneling, i.e., the distance
between the two vertical yellow lines in Figs. 4(b1) and 4(c1),
corresponds to half of the loop width. Comparing Figs. 4(b1)
and 4(c1) one finds that although the corresponding loop
structures have different shapes, the loop width does not de-
pend on the initial position of the atoms and the loop shape.
More interestingly, when atoms initially are in the first half
period of the energy band, they mainly occupy the left mo-
mentum state of the ladder system in the upper band while
mainly occupying the right momentum state of the ladder
system in the lower band. A reverse situation can be observed
during the second half period of the energy band. This dis-
tribution characteristic results in the spin-momentum locking
of the SOC effect and reflects the flux ladder system’s unique
chirality features.

The energy band structure of the system is no longer sym-
metric [see Fig. 4(a2)] when the energy bias between the
two legs of the ladder is considered. Positions of the equal

left and right momentum state distribution and the nonlinear
Landau-Zener tunneling are shifted. At the same time, their
distance, i.e., the distance between the two vertical yellow
lines in Figs. 4(b2) and 4(c2), is kept unchanged. The energy
bias between the two legs of the ladder only changes the loop
structure, which is compatible with the result given by Eq. (6).
As shown in Fig. 4(a3), the loop structure appears in the upper
energy band when the effective interaction is attractive Ũ <

Ṽ . Thus, the nonlinear Landau-Zener tunneling occurs when
the initial state is in the upper band [see red lines in Figs. 4(b3)
and 4(c3)], and the smooth exchange of momentum states
occurs when the initial state is in the lower band [see blue
lines in Figs. 4(b3) and 4(c3)]. Moreover, the width of the
loop and the distance between the two vertical yellow lines
decrease with decreasing the effective interaction strength.
Therefore, nonlinear Landau-Zener tunneling dynamics can
provide an efficient way to measure the loop structure of
the energy band in the experiment and makes it possible
to measure the magnitude of the system’s nonlinear effect
quantitatively.

In order to describe the nonlinear Landau-Zener tunnel-
ing more comprehensively, we investigate the variation of
the tunneling probability with different parameters when the
initial state is in the energy band with a loop structure. In the
nonadiabatic region near the avoided crossing An of the energy
band, t = tAn + τ with ω̃‖|τ | � 1, Eq. (7) can be written as

iȧL =
[
αt

2
− Ũ − Ṽ

2
(|aR|2 − |aL|2)

]
aL − K̃aR,

iȧR = −
[
αt

2
+ Ũ − Ṽ

2
(|aR|2 − |aL|2)

]
aR − K̃aL, (8)

where

α = 4 sin
φ

2
ω̃‖

√√√√1 −
(

ω̃⊥
4 sin φ

2

)2

. (9)

Then, the tunneling probability 
 can be estimated theoreti-
cally [23]. When |Ũ − Ṽ | � 2K̃ , the tunneling probability 


is found to be


 = 1 − |aR(L)|2−∞ = 1 − K̃2

∣∣∣∣
∫ +∞

−∞
dte− i

2 ᾱ(t−t0 )2

∣∣∣∣
2

= 1 − 2π K̃2

ᾱ
, (10)

with

ᾱ = α ± (Ũ − Ṽ )K̃2

√
π

ᾱ
. (11)

Here, for the repulsive effective interaction the atoms are
almost all concentrated in the left momentum state initially,
the tunneling probability is 1 − |aR|2−∞, and Eq. (11) takes
a positive sign. Conversely, when the effective interaction
is attractive, the situation is reversed. Then the above result
yields a closed equation for the 
:

1

1 − 

= 1

P
± Ũ − Ṽ√

2π K̃

√
1 − 
. (12)
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FIG. 5. Nonlinear Landau-Zener tunneling probability 
 as the
function of (a) the gravitational field ω̃‖, (b) rung-to-leg coupling
ratio K̃ , (c) magnetic flux φ, and (d) energy bias ω̃⊥ for different
effective interaction |Ũ − Ṽ |.

Here, we take the quantity

P = 1 − exp

(
−2π K̃2

α

)
, (13)

and then the result can be extended to a wide range of the
effective interaction strength. Equations (9)–(13) indicate that
φ, K̃ , |Ũ − Ṽ |, ω̃‖, and ω̃⊥ have coupled effects on the tun-
neling probability of the nonlinear Landau-Zener tunneling of
the ladder system.

We plot the tunneling probability 
 as the function of the
gravitational field ω̃‖, rung-to-leg coupling ratio K̃ , magnetic
flux φ, and energy bias ω̃⊥ in Fig. 5. Both the theoretical
results given by Eq. (12) and numerical simulations of Eq. (7)
are presented. In the ladder system, the gravitational field ω̃‖
plays a role as the driving force, thus the tunneling probability
increases with the increase of ω̃‖ [see Fig. 5(a)]. Note that
the presence of nonlinear interaction terms means that the
tunneling probability is not zero in the adiabatic limit ω̃‖ → 0.
As shown in Fig. 5(b), with the increase of the coupling ratio
K̃ , the energy gap between two bands increases, thus the
tunneling probability between two bands decreases, while the
increase of the effective interaction strength enlarges the size
of the loop structure, effectively facilitating Landau-Zener
tunneling in the ladder system. Interestingly, Fig. 5(c) reveals
that there is the maximum tunneling probability when the
magnetic flux φ = π , which seems to contradict the conclu-
sion that the large loop size accompanies the large tunneling
probability. This can be understood according to Eq. (9); the
magnetic flux can modulate the strength of the driving force
ω̃‖ with the form of sin φ

2 , which is the largest at φ = π .
Therefore, the magnetic field and the driving force have

coupled effects on the tunneling probability, providing a way
to manipulate the tunneling probability in the flux ladder sys-
tem. Figure 5(d) shows that the tunneling probability slightly
decreases as the energy bias increases.

IV. NONLINEAR LZSM INTERFEROMETRY

Due to the periodic structure of the dispersion relation of
the flux ladder system (see Figs. 2–4), the atoms can peri-
odically pass through the avoided crossing region under the
driving of the gravitational field, which will cause the LZSM
interference. This quantum interference phenomenon has at-
tracted considerable theoretical and experimental studies, with
a particular focus on accurate measurement. In the case of bi-
ased ladder systems considered here, the presence of complex
interactions and corresponding energy band structures leads
to evident nonlinear effects in this interference phenomenon.
Moreover, the left-right leg degree of freedom in this ladder
can be regarded as a pseudospin, which provides an efficient
path to implement one-dimensional SOC. Therefore, the flux
ladder system offers an ideal playground to realize the nonlin-
ear LZSM interference without complex Floquet engineering
on the spin-orbit band [73]. The dynamic equation in the
momentum space of the ladder system can be described by
Eq. (7). Subsequently, we will discuss nonlinear effects of
LZSM interference in the ladder system under four different
limiting cases.

A. Weak coupling limit

First, we consider the interference process of the biased
flux ladder system in the weak coupling limit (K̃ � ω̃‖). In
this case, the coupling between the two energy states of the
system is much smaller than the driving force, so the energy
levels at the cross points of the energy bands are almost de-
generate, and the tunneling between the two momentum states
is very weak and almost negligible, i.e., |aσ (t )|2 � |aσ (t0)|2.
For the initial state aL(t0) = 0, aR(t0) = 1, k0 = 0, we use the
variable transformation

aσ (t ) = a′
σ (t ) exp

{
±i

[
ω̃⊥
2

t + 2 · sin φ

2 cos ω̃‖t

ω̃‖

− (Ũ − Ṽ )(|aR(t0)|2 − |aL(t0)|2)

2
t

]}
. (14)

Then, Eq. (7) can be reduced to the linear form

iȧ′
L(t ) = −K̃eiθ (t )a′

R(t ),

iȧ′
R(t ) = −K̃e−iθ (t )a′

L(t ), (15)

where

θ (t ) = ω̃⊥t + 4 · sin φ

2 cos ω̃‖t

ω̃‖
− (Ũ − Ṽ )t (16)

is the relative phase between the two adiabatic states. For a
complete LZSM interference cycle, the accumulated relative
phase is approximately equal to

θd �
∫ tA0 + 2π

ω̃‖

tA0

θ (t )dt = 2π

ω̃‖
[ω̃⊥ − (Ũ − Ṽ )], (17)

where the avoided crossings occur at times tA0,A1 + 2nπ/ω̃‖,
ω̃‖tA0 = arcsin(ω̃⊥/4 sin φ

2 ), ω̃‖tA1 = π − ω̃‖tA0 . tA0,A1 is the
time of passing through A0, A1 of the energy band [see
Fig. 4(a1)].
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FIG. 6. Time evolutions of the population probability |aL (t )|2 for
the left leg momentum state in the weak coupling limit with (a1)
zero effective interaction |Ũ − Ṽ | = 0 and different energy biases
and (b1) zero energy bias ω̃⊥ = 0 and different effective interactions.
(a2) and (b2) show magnified views of boxed areas in (a1) and (b1),
respectively. The other parameter are φ = 0.5π , K̃/ω̃‖ = 0.1.

As shown in Fig. 6, when θd � 2nπ , that is, ω̃⊥ − (Ũ −
Ṽ ) = nω̃‖, a constructive interference pattern occurs (see red
and blue curves in Fig. 6). When θd � (2n + 1)π , that is,
ω̃⊥ − (Ũ − Ṽ ) = (n + 1

2 )ω̃‖, a destructive interference pat-
tern takes place (see yellow and green curves in Fig. 6). In
Figs. 6(a1) and 6(a2), where the effective interaction strength
|Ũ − Ṽ | = 0, the interference pattern of the system is deter-
mined by the energy bias. For the constructive interference,
the population probability |aL(t )|2 for the left leg momentum
state exhibits staged growth within a short time and periodic
behavior over a longer duration. For the destructive interfer-
ence, the population probability only shows small fluctuations
over time. When the energy bias ω̃⊥ = 0, the interference
pattern of the system is determined by the effective interaction
strength |Ũ − Ṽ | [see Figs. 6(b1) and 6(b2)]. In this case, the
oscillation period and amplitude of the population probability
|aL(t )|2 for the left leg momentum state are significantly re-
duced in the case of constructive interference. Interestingly,
the presence of nonlinear effects in the constructive inter-
ference leads to the amplitude of the population probability
depending on the effective interaction strength.

B. Strong coupling limit

Next, we consider the interference process of the biased
flux ladder system in the strong coupling limit (K̃ � ω̃‖). In
this case, the driving force is sufficiently small, and the system
approximates adiabatic evolution, so the tunneling between
the two energy bands becomes weak and almost negligible.
In the nonadiabatic region near the avoided crossing of the
energy band, where ω̃‖|τ | � 1, Eq. (7) can be linearized as
Eq. (8). The evolution results of these two equations are con-
sistent from t0 = tA0 − 0.02/ω̃‖ to t = tA0 + 0.02/ω̃‖. As the
magnetic flux φ → 0, Eq. (7) coincides with the double-well
model [87]. The system will have an obvious macroscopic
self-trapping phenomenon with a large repulsive interaction,

FIG. 7. In the strong coupling limit, LZSM interference patterns
on the (φ, K̃/ω̃‖) plane with (a1) (Ũ − Ṽ )/ω̃‖ = 4 and (b1) (Ũ −
Ṽ )/ω̃‖ = 12, respectively. (a2, a3, b2, b3) Corresponding population
probability |aL|2 for the left leg momentum state at different coupling
ratios K̃/ω̃‖. The other parameter is ω̃⊥/ω̃‖ = 2.

and there exists a critical value K̃c = (Ũ − Ṽ )/4 [88,89]. This
critical value will offset when the magnetic flux φ �= 0.

As shown in Fig. 7, interference patterns on the (φ, K̃/ω̃‖)
plane are displayed for the initial state aL(t0) = 0, aR(t0) = 1,
and k0 = 0, with the double-passage process from t0 = tA0 to
t = tA1 , i.e., the avoided crossing region is passed twice. The
interference pattern comprises bright and dark fringes with
the magnetic field and is symmetric with respect to φ = π .
In the case with (Ũ − Ṽ )/ω̃‖ = 4, there is a critical value
K̃c ≈ 1 at φ → 0 [see Fig. 7(a1)], which increases as φ
increases, maximizes when φ = π , and then decreases. In
Fig. 7(a2), the effective interaction energy is less than the
energy gap when K̃/ω̃‖ � 1, leading to the Josephson os-
cillations between the two momentum states. The population
probability |aL(t )|2 oscillates with the magnetic field except
for the case φ = π , where the amplitude of the oscillation
is 1. Since the interference pattern strongly depends on the
magnetic flux (for example, the zeroth-order fringe corre-
sponds to φ = π ), the order of the interference fringes can
identify the strength of the magnetic field in the ladder system
with complex interactions. The effective interaction energy
is larger than the energy gap when K̃/ω̃‖ < 1. As shown in
Fig. 7(a3), the amplitude of the population probability |aL(t )|2
is less than 0.1, indicating that the macroscopic self-trapping
phenomenon occurs, i.e., the atoms are mainly concentrated
on the right leg momentum state. Moreover, the amplitude of
this oscillation decreases with increasing the value of φ and
maximizes at φ = π , then decreases. Therefore, the amplitude
of this oscillation relies on the magnetic field, which offers
a way to measure the magnetic field accurately by using
the nonlinear LZSM interference (for example, the ampli-
tude is minimized at φ = π ). When the effective interaction
strength increases, the critical position for the emergence
of the macroscopic self-trapping phenomenon increases. In
Figs. 7(b1)–7(b3), there is a critical value K̃c ≈ 3 at φ → 0
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FIG. 8. In the strong coupling limit, LZSM interference patterns
on the (φ, K̃/ω̃‖) plane for the atoms are initially in (a1) the upper
and (a2) lower band, respectively. Corresponding energy band struc-
tures for different magnetic fluxes and coupling ratios with (b1, b2)
2K̃ > Ũ − Ṽ (no loop structure), (b3, b4) 2K̃ = Ũ − Ṽ (a cusp ap-
pears in the energy band), and (b5, b6) 2K̃ < Ũ − Ṽ (loop structure
appears). The other parameters are ω̃⊥/ω̃‖ = 2 and (Ũ − Ṽ )/ω̃‖ = 4.

when (Ũ − Ṽ )/ω̃‖ = 12. In this sense, the critical location in
the interference pattern where self-trapping occurs can pre-
cisely measure the effective interaction strength in the ladder
system. As shown in Figs. 7(a1) and 7(b1), the strength of the
effective interaction can be calculated using the critical value
K̃c = (Ũ − Ṽ )/4 where the self-trapping occurs. As discussed
above, the interference pattern in the strong coupling limit can
reveal the strength of the effective interaction of the ladder
system. However, the impact of the interesting loop structure
on the interference pattern is still not clear. To consider this
impact, we need to prepare the initial state as eigenstates of
the system. In Figs. 8(a1) and 8(a2), we show the interference
pattern on the (φ, K̃/ω̃‖) plane for the case when the atoms are
initially in the upper band and lower band eigenstates, respec-
tively. As depicted in Figs. 8(b1) and 8(b2), no loop structure
exists in the energy band, and both kinds of initial distributions

FIG. 9. In the weak driving limit, LZSM interference patterns on
the (K̃/ω̃‖, ω̃⊥/ω̃‖) plane with different effective interactions. The
colorbar represents the population probability |aL|2 for the left leg
momentum state. The other parameters are t0 = 0, t = 2π/ω̃‖ and
φ = 0.002π .

have an interference pattern when 2K̃ < Ũ − Ṽ [see upper
parts of Figs. 8(a1) and 8(a2)]. However, in Figs. 8(b3)–8(b6),
as the coupling ratio K̃ decreases, a loop structure appears
gradually in the upper band. Due to the existence of the loop
structure, there exist two kinds of eigenstates with degenerate
energy eigenvalues and different momentum state distribu-
tions at k = A0 in the upper band. The noise in the lower part
of Fig. 8(a1) is generated by the random initial distribution
of the two degenerated eigenstates at the intersection of the
loop and the corresponding energy band. The critical position
for the emergence of the noise in the interference pattern cor-
responds to the threshold when a cusp appears in the energy
band, i.e., K̃/ω̃‖ = 6. Therefore, the noise in the interference
pattern can be used to judge whether a loop structure exists in
the corresponding energy band. The critical position where the
noise occurs effectively corresponds to the appearance of
the cusp in the energy band structure.

C. Weak driving limit

The Jacobi-Anger relationship eix cos ωt = ∑∞
j=−∞ Jj

(x)(±i) je±i jωt can be applied to the weak driving limit
4 sin φ

2 � ω̃‖, where Jj (x) is the first kind jth-order Bessel
function with parameter x. Equation (7) can be greatly
simplified by using high-frequency approximation. Due to
the small contribution of the higher-order Bessel function, we
take only the zeroth-order term into account. Then, Eq. (7)
can be deduced to

iȧ′
L(t ) = −K̃J0

(
4 sin φ

2

ω̃‖

)
ei[ω̃⊥−(Ũ−Ṽ )]a′

R(t ),

iȧ′
R(t ) = −K̃J0

(
4 sin φ

2

ω̃‖

)
e−i[ω̃⊥−(Ũ−Ṽ )]a′

L(t ). (18)

Therefore, when K̃/ω̃‖ → 0, the peaks of the resonances of
the LZSM interference are located at ω̃⊥ − (Ũ − Ṽ ) = 0 in
the biased flux ladder system. As shown in Fig. 9, interfer-
ence patterns of the ladder system on the (K̃/ω̃‖, ω̃⊥/ω̃‖)
plane are displayed by numerical simulations of Eq. (7).
When considering the noninteracting ladder system (or the
system with the effective interaction |Ũ − Ṽ | = 0), interfer-
ence patterns exhibit axisymmetrically about ω̃⊥ = 0. For the
case where ω̃⊥ = 0, we observe that destructive interference
fringes always occur at 2K̃ = nω̃‖, which is a consequence of
multiphoton resonance. Since the energy gap between the
two energy levels in the flux ladder system is 2K̃ , resonance
occurs when the energy difference between the two energy
levels is equal to an integer multiple of the photon energy.
Instead, constructive interference fringes occur at the nonreso-
nant points 2K̃ = (n + 1

2 )ω̃‖ in the ladder system. As depicted
in Figs. 9(a2)–9(b3), interference patterns become asymmet-
ric about ω̃⊥ = 0 when the effective atomic interaction is
present in the ladder system, and this asymmetry is signif-
icantly enhanced as the strength of the effective interaction
increases. When K̃/ω̃‖ → 0, resonance peaks shift with the
offset |Ũ − Ṽ |. Comparing Figs. 9(a2) and 9(b2), we can see
that the resonance peak of the interference pattern shifts to the
right with the attraction effective interaction, and it shifts to
the left with the repulsion effective interaction. Therefore, the
type and intensity of the interaction in the ladder system can
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FIG. 10. In the weak driving limit, LZSM interference patterns
on the ((Ũ − Ṽ )/ω̃‖, ω̃⊥/ω̃‖) plane with (a1) K̃/ω̃‖ = 0.25 and (b1)
K̃/ω̃‖ = 1. The colorbar represents the population probability |aL|2
for the left leg momentum state. (a2–a4) Wave packets of the pop-
ulation probability of the left leg momentum state correspond to
(a1) at different effective interactions. (b2–b4) Wave packets of the
population probability of the left leg momentum state correspond
to (b1) at different effective interactions. The other parameters are
t0 = 0, t = 2π/ω̃‖, and φ = 0.002π .

be accurately measured from the interference pattern under
the weak driving limit.

To further discuss the effect of interaction strength on
the asymmetry of the interference pattern, we present the
interference pattern on the ((Ũ − Ṽ )/ω̃‖, ω̃⊥/ω̃‖) plane in
Fig. 10. When K̃/ω̃‖ = 0.25, which satisfies the constructive
interference condition at ω̃⊥ = 0, the center of the interfer-
ence pattern is a bright fringe [see Figs. 10(a1) and 10(a2)].
As the effective interaction strength increases, the peak of
the interference pattern shifts and its value decreases [see
Figs. 10(a3) and 10(a4)]. Interestingly, the opposite side of
the peak shift will have an obvious self-trapping phenomenon.
When K̃/ω̃‖ = 1, which satisfies the destructive interference
condition at ω̃⊥ = 0, the center of the interference pattern is
a dark fringe [see Figs. 10(b1) and 10(b2)]. Compared with
Fig. 10(a1), the area of interference in the biased ladder sys-
tem significantly increases for a larger coupling ratio K̃ , which
provides an effective way to accurately measure the coupling
ratio by utilizing the width of the interference pattern.

In order to investigate the macroscopic self-trapping
phenomenon in the biased flux ladder system, we plot the
interference pattern on the plane of the interaction and the
coupling ratio. As shown in Fig. 11(a), when K̃/ω̃‖ → 0
and the energy bias between the two legs is zero, the
interference peak is located at the effective interaction
strength (Ũ − Ṽ )/ω̃‖ = 0. Moreover, there is an obvious
critical line |Ũ − Ṽ |/K̃ = 4 in the figure. The amplitude of the
interference above the critical line is between 0 and 1, while
the amplitude of the interference decreases sharply below the
critical line, i.e., the ladder system exhibits the macroscopic

FIG. 11. In the weak driving limit, LZSM interference patterns
on the ((Ũ − Ṽ )/ω̃‖, K̃/ω̃‖) plane with different energy biases. The
colorbar represents the population probability |aL|2 for the left leg
momentum state. The other parameters are t0 = 0, t = 2π/ω̃‖, and
φ = 0.002π .

self-trapping, which is consistent with the discussion in
Sec. IV B. As shown in Fig. 11(b), when the energy bias
between the two legs is positive, the resonance peak shifts
towards the right. A distinct critical line appears on the right
side of the interference pattern, maintaining the same slope as
before but translating to the right by a distance equal to the en-
ergy bias. Interestingly, this macroscopic self-trapping critical
line no longer exists on the left side of the interference pattern,
and the amplitude of the interference gradually decreases with
decreasing K̃ . Therefore, the energy bias between the two legs
can be accurately measured by the translation distance of the
resonance peak. In Fig. 11(c), when the energy bias between
the two legs is negative, the resonance peak moves towards
the left, and the region where the macroscopic self-trapping
occurs is obviously on the left side of the interference pattern.
It is evident that the self-trapping induced by the interaction
primarily modifies the shape of the interference pattern in
the unbiased ladder system. The energy bias between the two
legs mainly affects the asymmetry of the interference pattern
when different interaction terms are dominant.

D. Strong driving limit

In the strong driving limit, the amplitude of the driving
field is much larger than the driving force and the energy
gap between the two adiabatic states is 2K̃ . Therefore, the
condition 4 sin φ

2 ω̃‖ � K̃2 is always met and Eq. (7) can be
simplified as

iȧ′
L(t ) = −K̃

∞∑
n=−∞

Jn

(
4 sin φ

2

ω̃‖

)
(−i)nei[ω̃⊥−(Ũ−Ṽ )−nω̃‖]a′

R(t ),
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FIG. 12. In the strong driving limit, LZSM interference patterns
on the (ω̃⊥/ω̃‖, K̃/ω̃‖) plane with different effective interactions. The
colorbar represents the time-averaged population probability |āL|2
for the left leg momentum state. The other parameters are t0 = 0,
t = 50π/ω̃‖, and φ = π .

iȧ′
R(t ) = −K̃

∞∑
n=−∞

Jn

(
4 sin φ

2

ω̃‖

)
(−i)ne−i[ω̃⊥−(Ũ−Ṽ )−nω̃‖]a′

L(t ).

(19)

At the limit of K̃/ω̃‖ → 0, the resonance condition is ω̃⊥ −
(Ũ − Ṽ ) − nω̃‖ = 0. We use the time-averaged occupation
probability of the left leg momentum state

¯|aL|2 = 1

t − t0

∫ t

t0

|aL(t ′)|2dt ′ (20)

to describe the LZSM interferometry of the biased ladder
system, where t0 = 0, t = 50π/ω̃‖. As shown in Figs. 12(a1)
and 12(b1), when considering the noninteracting ladder sys-
tem (or the system with the effective interaction |Ũ − Ṽ | =
0), we observe multiple interference peaks at K̃/ω̃‖ → 0,
and the interference peaks are located at ω̃⊥ = nω̃‖ − (Ũ −
Ṽ ),where n = −4,−3, . . . , 4, 5. As the rung-to-leg coupling
ratio increases, resonance peaks of the system are gradually
broadened. In Figs. 12(a2) and 12(a3), when the effective
interaction is repulsive, i.e., Ũ > Ṽ , the interference peaks of
the system are shifted to the right by a distance of |Ũ − Ṽ |.
Additionally, the structure of each interference peak is no
longer symmetric with respect to left and right, which is
mainly concentrated on the left side. With further increase
of the on-site interaction, the asymmetry of the interfer-
ence pattern is significantly enhanced. When the effective
interaction is attractive, i.e., Ũ < Ṽ , the interference pat-
terns are antisymmetric compared to the previous case, which
is mainly concentrated on the right side [see Figs. 12(b2)
and 12(b3)]. The interference peaks in LZSM interference
at the strong driving limit are very sharp, making it an
ideal playground for precise measurements of weak atomic
interactions.

To further show the influence of the interaction on the sym-
metry of the interference pattern of the system, we present the
interference pattern on the plane of the effective interaction
and the energy bias in Fig. 13. When t = 50π/ω̃‖, the first line

FIG. 13. In the strong driving limit, LZSM interference patterns
on the ((Ũ − Ṽ )/ω̃‖, ω̃⊥/ω̃‖) plane with different rung-to-leg cou-
pling ratios. The colorbar of (a1) and (b1) represents the population
probability |aL|2 for the left leg momentum state. The colorbar of (a2)
and (b2) represents the time-averaged population probability |āL|2
for the left leg momentum state. The other parameters are t0 = 0,
t = 50π/ω̃‖, and φ = π .

and the second line of Fig. 13 show the population probability
|aL(t )|2 and the time-averaged population probability |āL|2 for
the left leg momentum state, respectively. In Figs. 13(a1) and
13(b1), the interference pattern is a tilted ribbonlike structure
consisting of helical interference fringes. The range of the
interference pattern expands with the increasing of rung-to-
leg coupling ratio, and the strength of the interference is
inversely proportional to the magnitude of the energy bias.
The corresponding interference patterns of the time-averaged
population probability are shown in Figs. 13(a2) and 13(b2);
the helical interference fringes disappear, which indicates that
the helical interference fringes evenly appear on the plane
during the interference process. It is worth noting that the
intensity of the interference is still maintained, suggesting that
the intensity of the interference pattern is mainly determined
by the intensity of the energy bias.

V. SUMMARY AND DISCUSSION

In conclusion, we discuss the LZSM tunneling dy-
namics and its interference phenomenon of the extended
Bose-Hubbard flux ladder. Considering the on-site atomic
interaction and long-range interaction in the rung direction,
the nonlinear dispersion relation of the ladder system is solved
by means of the mean-field theory. The nonlinear energy
band characteristics and the unique chirality of the flux ladder
system are reflected in the nonlinear Landau-Zener tunneling
process. The tunneling probability depends on the strength
of the gravitational field, effective interaction, rung-to-leg
coupling ratio, and magnetic field. In addition, the period-
icity of the energy band structure of the flux ladder system
provides an ideal playground to realize the nonlinear LZSM
interference without Floquet engineering. Remarkably, we
find that the noise of the interference occurs when the en-
ergy band of the biased ladder system has the loop structure,
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which reveals an effective link between the nonlinear loop
structure and LZSM interferometry. Moreover, the resonance
conditions for the occurrence of nonlinear LZSM interference
in the extended Bose-Hubbard flux ladder are analytically
given in four extreme cases, and the corresponding interfer-
ence patterns are shown by the numerical simulations, which
verifies the theoretical predications. The interference pattern
strongly depends on the magnetic flux, rung-to-leg coupling
ratio, effective interaction, and energy bias. Therefore, the
unique properties of the interference pattern can be used to
accurately measure these parameters of the flux ladder system
in experiments. This paper will further extend the dynam-
ics research of the magnetic ladder system to the extended
Bose-Hubbard flux ladder system with complex interactions,
filling the research gap of nonlinear dynamic effects in
this system and also providing an efficient way for precise
measurements.

Note that the LZSM tunneling dynamics and interference
phenomenon considered in our paper are at zero temperature.
However, real experiment is always at finite temperature. Be-
cause of thermal fluctuations, the dynamical relaxation and
phase decoherence will occur as temperature T̃ (T̃ = T/J)
increases [90–92]. For a regime with large driving force
ω̃‖ � 4K̃2, it has been found that a thermal heat bath has

no influence on the Landau-Zener transitions, while for small
driving force ω̃‖ the LZ probability decreases with increasing
temperatures [90,91]. However, it is shown that [90], when
T̃ � 4K̃ , Landau-Zener transitions are in good agreement
with the case in zero temperatures. Therefore, the nonlinear
dynamical phenomena discussed in our paper can be clearly
observed under the above-mentioned temperature conditions,
which are achievable in current experiments [38].
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(2022).

[40] Y. He, R. Mao, H. Cai, J. X. Zhang, Y. Li, L. Yuan, S. Y. Zhu,
and D. W. Wang, Phys. Rev. Lett. 126, 103601 (2021).

[41] X. Yu and S. Flach, Phys. Rev. E 90, 032910 (2014).
[42] B. Stuhl, H. I. Lu, L. Aycock, D. Genkina, and I. Spielman,

Science 349, 1514 (2015).
[43] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J.

Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte et al.,
Science 349, 1510 (2015).

[44] M. Buser, U. Schollwöck, and F. Grusdt, Phys. Rev. A 105,
033303 (2022).

[45] A. Petrescu and K. Le Hur, Phys. Rev. Lett. 111, 150601
(2013).

[46] M. Piraud, F. Heidrich-Meisner, I. P. McCulloch, S. Greschner,
T. Vekua, and U. Schollwöeck, Phys. Rev. B 91, 140406(R)
(2015).

[47] E. Orignac, R. Citro, M. Di Dio, S. De Palo, and M.-L. Chiofalo,
New J. Phys. 18, 055017 (2016).
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