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Mesoscopic critical fluctuations
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We investigate the magnetic fluctuations in a mesoscopic critical region formed at the interface due to smooth
time-independent spatial variations of a control parameter around its critical value. In the proximity of the spatial
critical point, the order parameter fluctuations exhibit a mesoscopic nature, characterized by their significant
size compared to the lattice constant, while gradually decaying away from the critical region. To explain this
phenomenon, we present a minimal model that effectively captures this behavior and demonstrates its connection
to the integrable Painlevé-II equation governing the local order parameter. By leveraging the well-established
mathematical properties of this equation, we gain valuable insights into the nonlinear susceptibilities exhibited
within this region.
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I. INTRODUCTION

This article draws inspiration from experimental investi-
gations into local magnetization fluctuations within a thin
magnetic film exhibiting a spatially smooth variation in thick-
ness [1–6]. The initial introduction of this spatial gradient
was demonstrated in Ref. [1] to establish the presence of a
critical region. In this context, the thin section of the film ex-
hibited interactions favoring a phase characterized by in-plane
magnetization. In contrast, the thicker segment preferred an
antiferromagnetic out-of-plane order, as illustrated in Fig. 1.

Consistent with the expectations derived from the theory
of critical phenomena [7–9], the film region corresponding to
the critical thickness displayed pronounced dynamic magneti-
zation fluctuations, facilitating the identification of the spatial
boundary separating the two phases. Due to the smoothness
of the film thickness, the position of this boundary could be
changed continuously by varying externally controlled param-
eters, such as temperature and the external magnetic field.
This unique attribute was harnessed in Ref. [6], where the
noise power of frequency-integrated magnetization—directly
proportional to the linear magnetic susceptibility—was mea-
sured within a designated observation zone. In a varying
temperature, the critical point has passed through the obser-
vation spot and thus produced a peak of the integrated noise
power as a function of the temperature.

In contrast to the susceptibility near a phase transition
in a uniform system, this peak exhibited a finite amplitude.
Moreover, Ref. [6] unveiled that the fluctuations at critical
parameter values displayed pronounced non-Gaussian behav-
ior. These fluctuations generated a distinct and discernible
bispectrum pattern of the fluctuations, which rapidly dimin-
ished as the control parameter deviated from its critical point.
The intensified fluctuations in proximity to a critical point
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have been observed through spin noise spectroscopy in other
magnetic systems, such as spin ice [10].

Here, we argue that the standard theory of critical phenom-
ena cannot be straightforwardly applied in order to provide
a quantitative explanation for the fluctuations within the spa-
tial critical region. The reason is that when some parameter
undergoes spatial variation, the scenario deviates from that
of a uniform bulk sample. As the thickness in Ref. [1]
changes linearly along some axis x, the critical region within
a D-dimensional sample effectively reduces to a (D − 1)-
dimensional surface. Consequently, it becomes inappropriate
to anticipate phenomena such as the emergence of a divergent
correlation length along the x axis, for instance.

Conversely, certain aspects of the critical phenomena
theory are expected to retain their validity near the spa-
tial critical point. Consider, for instance, a scenario where
the film thickness undergoes significant variations over dis-
tances substantially exceeding the atomic lattice constant. In
this context, at the interface between the two phases, the
magnetization fluctuations are anticipated to exhibit sizes con-
siderably larger than the lattice constant. Consequently, it is
reasonable to infer that the universality and scaling hypothe-
ses, intrinsic to the critical phenomena theory, should persist
in some form to describe the experimental observations.

Therefore, when a critical interface is set by introducing
a weak spatial parameter gradient, the critical fluctuations
aligned with this gradient manifest an inherently mesoscopic
nature. These fluctuations neither resemble the microscopic
nature (decaying at the scale of the lattice constant) nor the
macroscopic type (exceeding the entire sample size). This
prompts the following inquiry: How can we effectively de-
scribe the physics in proximity to a critical point when a
control parameter changes slowly and continuously through-
out the critical point?

Optical magnetization noise spectroscopy has emerged as
an ideal experimental tool to investigate such fluctuations.
This is attributed to the fact that an optical probe beam effec-
tively encompasses a mesoscopic area of the sample, allowing
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FIG. 1. A phase transition induced by a gradient of the width of
a magnetic film. The critical point at x = xc separates two different
magnetic phases. A mesoscopic region near this point is formed,
which shows enhanced magnetic fluctuations, which are probed by
an optical beam with a comparable width.

it to selectively capture the fluctuations inherent to the critical
region while avoiding significant interference from the bulk
to the sample. This technique naturally leads to the following
inquiry: What can we learn about the parameters of the system
by observing the enhanced magnetization fluctuations near
a spatial critical point? Here, we hereby propose a minimal
model based on the Ginzburg-Landau effective free-energy
approach that contains the basic features of the problem.

II. GINZBURG-LANDAU FREE ENERGY

Usually, phase transitions in quasi-one-dimensional (1D)
systems can be understood with a free-energy functional [11]

L1D =
∫ L

−L
dx

[
D

2

(
dφ

dx

)2

+ r(x)

2
φ(x)2 + g

4
φ(x)4

]
. (1)

Here, φ(x) represents a coarse-grained average order pa-
rameter. In the case of the ferromagnet-paramagnet phase
transition, φ(x) is identified with the local magnetization mi =
〈Ŝz

i 〉 in the original magnetic system (where Si’s denotes the
spin degrees of freedom), D is the diffusion coefficient, and
g > 0 is the coupling responsible for nonlinearity associated
with the mutual interaction between the individual spins. In
the thermodynamic equilibrium, the ground state of the sys-
tem is dictated by the minimum of L1D. To make the phase
transition well defined, we assume a three-dimensional system
along the transverse direction within a mesoscopic region
of linear size much smaller than the quasi-1D length of the
system.

We will assume that the phenomenological parameter r is
x dependent. Without a diffusion term, the minimum of L1D

is achieved at

φ = 0, for r � 0, (2a)

φ = ±
√

r

g
, for r < 0. (2b)

However, disregarding the diffusion, the calculation of the
local susceptibility would give diverging predictions due to
the discontinuity of the solution (2a) and (2b) at the spatial
point with r = 0. Indeed, we will show that the properties of

dynamic fluctuations near this point depend on the diffusion
coefficient D essentially.

In order to capture this physics, we include the diffu-
sion term into consideration but use another simplification.
Namely, near the critical point with r = 0, we assume that
the control parameter is only linearly varied along x,

r(x) = θx, (3)

where we set the critical point at x = 0. The free-energy
functional in Eq. (1) then modifies as

L1D =
∫ L

−L
dx

[
D

2

(
dφ

dx

)2

+ θx

2
φ(x)2 + g

4
φ(x)4 − hφ(x)

]
,

(4)

where we added an external “magnetic field” h.
Far away from the critical point x = 0, we have two phases:

the phase-I for x > 0 with φ → 0 as x → +∞, and the phase-
II for x < 0 with φ(x) → ±√

θ |x|/g as x → −∞. In what
follows, we will assume the symmetry to be broken in phase-II
spontaneously so that

φ(x) →
√

θ |x|/g, x → −∞, (5a)

φ(x) → 0, x → +∞. (5b)

To find the equilibrium φ(x), we should minimize the new
functional in Eq. (4). This gives us an equation

−D
d2φ

dx2
+ θxφ(x) + gφ(x)3 = h. (6)

Note that by dividing this equation by D, we find that only the
combinations θ/D, g/D, and h/D matter. Then, by rescaling
space, x → λx, we get the same equation but with θ → θλ3

and g → gλ2. Choosing

λ = (D/θ )1/3, (7)

we get rid of the coefficient near −xφ(x). The coeffi-
cient g then becomes g → g/(Dθ2)1/3. Finally, by rescaling
φ → μφ, we can set the coefficient near φ3 to be equal to 2.
This is achieved for

μ =
√

2D

gλ2
=

√
2D1/6θ1/3

g1/2
. (8)

In terms of these scaled variables and parameters, the dif-
ferential Eq. (6) is modified with a rescaled average local
magnetization, u(x, α), satisfying

d2u(x, α)

dx2
= 2u(x, α)3 + xu(x, α) − α, (9)

where

α = h
λ2

Dμ
= h

√
g

θ
√

2D
. (10)

Then, the solution of the original Eq. (6) is given by

φ(x|h) = μu[x/λ, α(h)]. (11)

Note that this reduction predicts the characteristic scales for
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the magnetic field

h0 = θ
√

2D√
g

, α = h/h0, (12)

and also the length λ in Eq. (7), as well as the magnetization μ

in Eq. (8). All these scales depend on the diffusion coefficient
D and the slope θ . Hence, they must be related to the observ-
able physics of the magnetic fluctuations within the length λ

near the critical point.

III. SOLUTION OF THE PAINLEVÉ EQUATION

Equation (9) is known as the Painlevé-II (PII) nonlin-
ear differential equation. The fact that this equation can be

obtained by minimizing a Ginzburg-Landau functional is well
known [12–14]. However, here our interest is more specific.

Namely, spin noise spectroscopy generally measures the
noise power spectra, whose integrals over frequency return
linear and nonlinear susceptibilities of a mesoscopic probed
region. The solution of Painlevé-II is generally considered
as independent special function because many of its prop-
erties are known analytically. In particular, very recently,
it was shown that the integrals of the Painlevé-II solutions
could be written analytically in terms of standard special
functions [15]. A real solution of Eq. (9) that would be
consistent with the conditions Eqs. (5a) and (5b) is unique
and known as the Hastings-McLeod solution [16]. Its asymp-
totic behavior as x → ±∞ and α ∈ (−1/2, 1/2) is also well
known [17]:

u(x; α)x→+∞ = B(α; x) + cos(πα)[Ai(x) + O(x−3/4)], (13a)

u(x; α)x→−∞ =
√

−x/2

(
1 + α√

2|x|3/2
− 1 + 6α2

8|x|3 + O(1/|x|9/2)

)
+ [exponentially small terms], (13b)

B(α; x) = α

x

∞∑
n=0

an

x3n
, a0 = 1, an+1 = (3n + 1)(3n + 2)an − 2α2

n∑
k,l,m=0

akal am. (13c)

At this stage, we note that the asymptotic behavior depends
on two types of terms, i.e., the terms that decay as a power law
and the exponentially suppressed terms.

Examination of the leading-order power-law decay terms
shows that it is not related to the intrinsic to x = 0 physics.
Namely, the leading asymptotic as x → −∞ in Eq. (13b)
corresponds to the φ → √|x| behavior, which is expected
from Eq. (5a). For x → +∞, the term B(α; x) becomes zero
at α = 0, i.e., it describes a diamagnetic response in the
nonmagnetic phase. Its appearance is expected because, for
large x and small φ(x), we can disregard the diffusion and
nonlinear contributions so that the energy density becomes
E (x) ∼ θxφ(x)2 − hφ(x), which is minimized at φ ∼ h/(θx),
and which reproduces the leading asymptotic in Eq. (13c) if
we use it in the solution in Eq. (11).

The other terms are decaying exponentially. They play an
important role for α = 0, i.e., in the absence of the external
magnetic field [see Eq. (10)]. The limit x → +∞ is then
dominated by the Airy function in Eq. (5a), which leads to
the asymptotic

u(x; α = 0)x→+∞ ∼ x−1/4

2
√

3π
e− 2

3 |x|3/2
. (14)

Returning to the nonrescaled variables, we find

φ(x; h = 0)x→+∞ ∼ μ(x/l )−1/4

2
√

3π
e− 2

3 (|x|/λ)3/2
. (15)

Thus, we find that the magnetization does not drop to zero
instantly in phase-I but rather persists up to the distance l =
(D/θ )1/3 from the critical point with a characteristic ampli-
tude μ, and only then decays faster than exponentially with
growing x. This means that the behavior near the critical point
is dominated by the proximity effect, in which extension and

amplitude are influenced by both the diffusion D and the ramp
of the transition θ . Hence, already at the level of the asymp-
totic analysis, we find that the behavior of the magnetization
contains the terms that are strongly localized near the critical
point and therefore can be attributed only to the physics in its
vicinity.

IV. LINEAR AND NONLINEAR SUSCEPTIBILITIES
OF A MESOSCOPIC CRITICAL REGION

A. Linear susceptibility far from critical point

Spin noise spectroscopy is the method that allows studies
of the local spin susceptibilities, which are averaged over a
mesoscopic region in space [18]. This technique can generally
resolve the full frequency dependence of magnetization time
correlators. However, the ground state configuration of the
magnetic system, obtained by minimizing L1D as in Eq. (6),
contains information only about the static characteristics, such
as the local linear and the nonlinear susceptibilities:

χ (1)
x =

(
∂φ(x)

∂h

)
h=0

, χ (2)
x = 1

2

(
∂2φ(x)

∂h2

)
h=0

, · · · , (16)

and which are obtained experimentally by calculating the
spectral volumes of the measured correlators.

Due to the finite size of the optical beam width (L > 1 µm),
the measured magnetization is averaged over the length
L > λ. If we are far from the point x = 0, the order parameter
changes slowly with x. So, asymptotically we find the local
susceptibility [from Eqs. (13a) and (13b)],

χ (1)
x ∝ 1

θx
, x → +∞, (17a)

χ (1)
x ∝ 1

2θx
, x → −∞, (17b)
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which is a typical λ-like power-law behavior, near a criti-
cal point. However, this behavior is not related to a specific
physics near the critical point. Moreover, it shows that the
linear local susceptibility is likely not a good characteris-
tic to explore these physics because the integrated over the
macroscopic region susceptibility diverges with the growing
width of the probe beam. Indeed, let the probe beam cut the
susceptibility from the region x ∈ (−c, s), where c and s are
much larger than λ. Then, the integrated susceptibility

χ
(1)
total =

∫ s

−c
χ (1)

x dx (18)

behaves as

χ
(1)
total ∼ χ0 + 1

θ

(
ln c

2
+ ln s

)
, (19)

where χ0 is some constant that depends on the intermediate
profile of χ (1)

x . This expression is dominated by the logarith-
mic tails with the probe-dependent cutoff. We will show that
the constant part of such an integrated susceptibility is not
very valuable either.

B. Excess magnetization and linear susceptibility

Let us define the net magnetization in the observation
region

M = limc,s→∞
∫ s

−c
φ(x)dx. (20)

Using Eq. (11) we can rewrite

M = μλ

∫ s′

−c′
u[x, α(h)]dx, (21)

where c′ = c/λ, s′ = s/λ. The integrated susceptibilities are
then defined as

χ
(n)
total = 1

n!

(
∂nM

∂hn

)
h=0

= 1

n!

μλ

hn
0

(
∂nM
∂αn

)
α=0

, (22)

where

M = limc′,s′→∞
∫ s′

−c′
u(x, α) dx. (23)

According to Ref. [15], this integral is known:

M =
√

2c′3/2

3
+ α

2
ln c′ + α ln s′ + 1

2
ln(2π )

− ln 	(α + 1/2) − α ln 2

2
+ O(1/s′3/2, 1/c′3/2). (24)

Setting α = 0 in Eq. (24), and using that μλ = √
2D/g, we

find the net magnetization

M =
√

2D

g

(√
2c′3/2

3
+ ln 2

2

)
. (25)

The term ∼c′3/2 is expected from the diffusionless limit. In-
deed, using that c′ = c/λ, and λ3/2 ∼ √

D, we find that this

term does not depend on the diffusion coefficient. The contri-
bution

δM =
√

D

2g
ln 2 (26)

is, however, a correction due to the proximity effects near
the critical point. Interestingly, this “excess magnetization”
correction does not depend on the slope θ , which is our first
prediction for the property of the critical region.

Potentially, δM can be measured optically by scanning the
dependence of the average Kerr rotation on the area of the
probe beam and fitting the result to a power law with an offset.
However, on the background of the dominating trivial ∼c′3/2

contribution, this would be hard. Hence, let us look now at the
linear susceptibility. Using that μλ/h0 = 1/θ , we find

χ
(1)
total = 1

θ

[
1

2
ln c′ + ln s′ +

(
γe + 3 ln 2

2

)]
, (27)

where γe ≈ 0.577 is the Euler-Mascheroni constant. This
expression shows that the integrated linear susceptibility of
the critical region is quite uninformative. In addition to the
logarithmic cutoff-dependent terms, it has a subdominant con-
tribution that depends only on the gradient of the control
parameter, θ .

Still, this susceptibility is a valuable pointer to the critical
point, as it reaches the maximum when this point is placed
inside the integration interval (−c, s). However, as a small
warning to experiments, we note that within our model, the
factor 1/2 in (27) leads to a mismatch of the critical point from
the center of this interval. For example, if the width of the
interval is L, then s = L − c, and the maximum of the linear
susceptibility is found at c = L/3 rather than L/2.

C. Nonlinear susceptibilities

The behavior that is intrinsic only to the critical region is
found in all higher-order susceptibilities. Thus

χ
(2)
total = −π2μλ

4h0
= − π2√g

4θ2
√

2D
, (28a)

χ
(3)
total = 7ζ (3)μλ

3h3
0

= 7ζ (3)g
6θ3D

, (28b)

where ζ (3) ≈ 1.20 is a special value of the Riemann zeta
function. First, we note the absence of the cutoff-dependent
contributions to χ

(2)
total and χ

(3)
total. This means that they are

dominated by the physics near the critical point. Indeed, far
away from the critical point, the magnetic fluctuations are
essentially Gaussian because they are dominated by numerous
uncorrelated microscopic events. Near the critical point, the
fluctuations are not only enhanced, but they also become
highly non-Gaussian. Therefore, the nonlinear susceptibil-
ities acquire finite contributions precisely near the critical
region, in agreement with the experimental observation in
Ref. [6].

In addition, we note the singular dependence of the nonlin-
ear susceptibilities on the diffusion coefficient D. Due to the
critical slowing down, the fluctuations at the critical point have
a formally infinite lifetime, which would lead to diverging
bispectra near the frequency ω1,2 = 0 point. However, the
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diffusion introduces a new characteristic lifetime that smears
this divergence and makes the integrated susceptibility finite.
Such behavior is consistent with the appearance of D in the
denominators of (28a) and (28b).

V. DISCUSSION

Our theoretical investigations substantiate the experimental
observation concerning the increasing prominence of non-
Gaussian fluctuations within the mesoscopic critical region.
We have introduced a minimal model that effectively show-
cases this phenomenon and offers the ability to characterize it
quantitatively.

We have demonstrated that the nonlinear susceptibili-
ties contain valuable insights into the intrinsic parameters
of the interacting spins within the critical region. Furthermore,
we predict a remarkably universal trend in the behavior of the
integrated linear susceptibility and the excess magnetization
within the mesoscopic critical region. Our theory uncovers a
power-law correlation between the measurable susceptibilities
and the gradient of the control parameter θ . Collectively,
these observations suggest the potential universality of such
fluctuations across diverse systems.

Drawing from our findings, we put forth the conjecture that
the existence of long-range correlations likely gives rise to
effective field theories that can describe these critical regions.
These theories might encompass a few important universal-
ity classes, akin to the framework in conventional critical
phenomena theory. Owing to the chiral symmetry breaking in-
duced by a gradient of the parameter, these theories might also
manifest exotic topologically protected excitations. Impor-
tantly, these insights could translate into practical applications
for experimental investigations of such regions. For instance,
these regions can be dynamically manipulated within samples
by modulating externally controlled parameters such as tem-
perature and external fields. This dynamic manipulation might
be harnessed for the adiabatic transport of novel quasiparticles
or for the strategic generation of substantial, localized mag-
netic fluctuations.
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