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Self-adaptation of networks of nonidentical pulse-coupled excitatory and inhibitory oscillators
in the presence of distance-related delays to achieve frequency synchronization
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We show that a network of nonidentical nodes, with excitable dynamics, pulse-coupled, with coupling
delays depending on the Euclidean distance between nodes, is able to adapt the topology of its connections to
obtain spike frequency synchronization. The adapted network exhibits remarkable properties: sparse, anticluster,
necessary presence of a minimum of inhibitory nodes, predominance of connections from inhibitory nodes over
those from excitatory nodes, and finally spontaneous spatial structuring of the inhibitory projections: the furthest
are the most intense. In a second step, we discuss the possible implications of our findings to neural systems.
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I. INTRODUCTION

The properties and dynamics of a set of interacting elemen-
tary constituents is a very old subject of study in Physics. The
elementary constituents are often identical, the connections
at short distance, the geometry of low dimensionality and
often homogeneous in such a way that the complete problem
presents many symmetries and conserved quantities which
greatly facilitate its study. None of this persists when one is
interested in sets of biological cells, scientific collaborators,
computing grids, water, electricity, travelers distribution net-
works, internet, or the spread of epidemics or opinions [1-3].
These networks are indeed made up of very inhomogeneous
elements, with wide distribution of degrees of connectivity,
often without any characteristic length of interaction. In ad-
dition to their ubiquity, these networks are also adaptive,
characterized by their own dynamics of the weights of intern-
ode connections.

Influenced by Kuramoto’s pioneering work in 1974, much
of the literature has focused on the paradigmatic problem of
synchronizing a network of coupled nonidentical oscillators.
The existence of phase transition [4—6], of organization in
modular structures, of clusters and chimera states has then
been reported [7,8]. In particular, it has been shown that
networks were able to self-organize to obtain global syn-
chronization at a lower cost than that obtained by all-to-all
homogeneously connected networks. Self-organization thus
makes it possible to extract a better collective advantage from
the specificities of each individuality [9-14].

However, the vast majority of this work concerns networks
of phase oscillators (as opposed to excitable oscillators) cou-
pled by a smooth, regular function of the phase difference
(as opposed to pulse-coupled), and this despite the possible
great importance of the latter type of network for understand-
ing neural systems. This is because phase synchronization of
excitable pulse-coupled oscillators in the presence of delays
proportional to their distance is a geometric frustration prob-
lem not admitting a solution in general. The basic idea is as
follows: for nodes A and B to train each other to spike in
phase, the delay t4p between them must be an exact multiple
of their interspike interval (ISI). Similarly, for B and C to
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spike in phase, tpc must be a multiple of ISI. But, unless
you consider a very particular geometry (such as the one used
in Refs. [15-18] where nodes are arranged on a circle and
distances are measured along this circle), t4¢ is in general
not a whole number of times ISI and therefore the spike of
A participates in desynchronizing C. Along this argument,
the pulse aspect of the coupling, i.e., the existence of an
interaction only during a very short time interval compared
to ISI, is fundamental. Indeed, the further the coupling is
from a Dirac distribution, the less the proportionality relation
between delay and ISI is constraining (see Appendix C).

Since phase synchronization is highly unlikely, what other
forms of self-organization can be expected? Detailed numeri-
cal simulation of neural network models report the existence
of frequency synchronization regimes: Ref. [19] simulates
the activity of 10° neurons and 8.5 x 10° synaptic contacts
randomly distributed on the surface of a sphere of radius
8 mm with submillisecond time resolution. The neurons in-
teract via both local and long-distance connections. The ratio
of excitatory to inhibitory neurons is 4/1. Neurons, both
excitatory and inhibitory, are not identical and the parame-
ters that describe their dynamics in the absence of coupling
are randomly distributed around a mean value. Short-term
depression and facilitation are taken into account through
Markram’s [20] phenomenological description of short-term
synaptic plasticity. Long-term synaptic plasticity is taken into
account through spike-timing dependent plasticity [21]. The
main result of this numerical experiment is the observation
of spontaneous self-organization of neurons into groups and
repeatedly generated patterns of activity with millisecond
precision of spike timing (in agreement with experimental
observations [22]).

Networks of excitable pulse-coupled oscillators with de-
lays proportional to distance can therefore be frequency
synchronized. The tricky part is that these frequency-
synchronized structures were obtained when we weren’t really
looking for them, since only biological mechanisms known
to play a role in learning were involved in the network’s
adaptation dynamics. As a result, the network frequency syn-
chronization could appear as a secondary effect of learning,
possibly even fortuitous, but not as the main objective of the
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network dynamics. Experimental observations do not resolve
the ambiguity, as they focus mainly on proving the role of
connections in network synchronization [23,24], with little
evidence of the relationship between synchronization and
learning.

Here we are not going to remove this ambiguity either,
but simply bring a new element of reflection by approach-
ing the problem from the opposite side: instead of starting
from biological learning mechanisms and observing that they
lead to a certain structural organization of networks and to
synchronization, we are going to impose frequency synchro-
nization (i.e., frequency synchronization is the stated goal and
we treat it as an optimization problem) and report on the
way the network self-organizes to achieve this. Our faraway
hope is that subsequent comparisons between the theoretical
organizations (for the purpose of learning and for the purpose
of synchronization) and the effective organization of certain
neural systems may help to resolve the ambiguity.

To our purpose, we use a greedy algorithm where each
node modifies the weight of its incoming connections to best
adjust its ISI to an external and common set point ISI,. Our
mains results are:

(1) the frequency synchronization requires the mandatory
presence of a minimum percentage of inhibitory nodes among
excitatory ones.

(2) the nodes that spike at the same time and constitute
repeatedly generated patterns of activity actually form anti-
clusters. This means that almost all of the connection weights
are associated with interpattern links, while the mass of intra-
pattern connections is almost vanishing.

(3) During the adaptation process, the statistics of the
connection weights converge to a log-normal distribution. The
weight of outgoing connections from inhibitory nodes is sig-
nificantly larger than would be expected if the weights were
randomly distributed among the nodes. Those from the in-
hibitory nodes are on the contrary significantly less numerous.
Moreover, we observe the spontaneous occurrence of a spatial
structuring where the weight of the outgoing connections is
greater and deviates all the more from the random distribution
as the distance between the nodes is greater.

The study plan is as follows: First, the excitable dynamics
model used will be described and the synchronization algo-
rithm and its consequences on the network dynamics will
be presented. The convergence of the algorithm will then
be checked numerically. In a second step we present our
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results: (i) necessity of a minimum percentage of inhibitors,
(ii) occurrence of death amplitude in the presence of a high
percentage of inhibitors, (iii) the formation of anticlusters, and
(iv) spatial distribution of the weights of the connections as a
function of the distances and the excitatory-inhibitory nature
of the connections. Finally, as the ingredients of our model
have been chosen sparingly (excitability, distance-dependent
delays, pulse-coupled, weighted summation of neighbor in-
fluence, excitatory or inhibitory projection, and the quest for
frequency synchronization), the possible implications of our
general results to genuine neural networks will be considered.
In particular, we will discuss how our results are articulated
with the Izhikevich’s polychronization conjecture [25].

II. THE MODEL

A. Neuronal dynamics

To model a network of N pulse-coupled excitable oscilla-
tors, we use a point process framework [26]. The benefits of
such a choice are multiple:

(1) The intrinsically probabilistic nature of the dynamics.
We obtain a Poisson’s distribution of interspikes interval for
an isolated neuron without any effort.

(2) The perfect control of the dynamics of a neuron. The
temporal evolution of an isolated neuron requires the integra-
tion of neither a dynamic system nor the computation of a
nonlinear mapping but just corresponds to a shift in the state
space.

(3) And above all a remarkable efficiency and speed of
execution. The algorithm does not converge all the time, and
even when it does, it can take several tens of millions of
integration steps, hence the need to go fast.

The drawbacks are the consequence of the advantages:
the dynamics of an isolated neuron is highly schematized,
especially compared to the diversity of possible behaviors and
to the precise modeling that could be done [27].

The state of neuron i at time t (f € N) is described by the
variable S;(¢) which takes discrete values in [-T", T*]. T*
and T;" are integer values representing, respectively, the spike
and the refractory durations. The neurons are not identical
because they can differ by the duration of their refractory
period T;”. The dynamics of S; is composed by an alternation
of a deterministic and a stochastic part. The deterministic part
starts at time ¢* whenever S;(t*) = T* and continues with
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Note that during this deterministic sequence, S; jumps from +1 to —1 without passing through 0. This is because we reserve
S; = 0 to describe the rest state, the one reached after the refractory period. The stochastic part starts at time ™' whenever
S;(#*') = 0 and is involved in the determination of the next state S; (1" + 1)
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where

where pgy € [0, 1] and a > 0 are constant parameters, D; =
£1 depending on whether j is excitatory or inhibitory, W;; >
0 is the strength of the connection from j to i, and ;; is their
propagation delay proportional to their Euclidean distance.
The role of the function R is to guarantee that p; is a prob-
ability, that is a positive number in [0,1]. The pulse-coupled
character of the dynamics is modeled by the function H which
takes nonzero values only when the neighbors spike at the
right time.

When the neuron chains spikes without discontinuity, its
dynamics is periodic and the interspike interval (ISI) reaches
its minimum value A = T° + T;” 4 1. In our simulations, we
use po = 0.001 such that the average ISI in absence of cou-
pling (a = 0) is about 10? time steps.

B. Network geometry

In line with our objectives, the network is free to adapt as
it wishes since it is all to all connected and that the weights of
the connections W;; can evolve without constraints between
[0, +00]. However, the spatial positions of the nodes and
consequently the propagation delays are determined once and
for all at the beginning of the optimization process. In what
follows, we discuss this initial distribution of positions that
we want to be both random but with a well-defined smaller
distance between neighbors [28]. Note that the distances be-
tween nodes correspond to the usual Euclidean distances in
three-dimensional space (see Appendix B).

We proceed as follows: In a first step, N neurons are ran-
domly distributed on the surface of a sphere of radius R = 1.
The interneuron distances vary between 0 and 2R = 2.0 and
their initial distribution is shown in Appendix B, Fig. 13.

In a second step the spatial distribution of the nodes onto
the surface is regularized to homogenize their surface den-
sity. This adjustment is achieved by subjecting the node i
to repulsive Y ; 1/rij interactions. The repulsive forces are
applied until the quality factor of the min;(r;;) distribution
is equal to 30 [28]. In the end, the nodes form an almost
hexagonal network [with mesh dpex > (min;(7;;))], with many
penta-hepta topological defects (Appendix B, Fig. 14).

As the simulation is time discretized, all the delays t;; are
expressed as integer unit of cdt the distance traveled by the
information during a unit of time:

rij]
a =[],
Y cdt

where [] stands for the integer value. An important param-
eter is then the number of time steps necessary to transmit
the information from one node to its nearest neighbor. This
number is equal to Tnin = dhex/cdt. The maximum distance
being 2R = 2, the state of all the neurons must be stored in
memory over a duration of 2Ty, /dhex time steps. Therefore,
for an economical management of the memory it is better to

“4)

1 if n>0

0 otherwise’

3)

use a small value of 7., (in most of our simulations we used
Tmin = 3, Appendix C for how to select parameters).

III. ALGORITHM

There are no strict and rigorous rules leading to the choice
of the algorithm used. Rather, it is the result of a set of
general considerations, analogies and heuristic arguments that
we present below. Ultimately, the main rationale is that it
effectively leads to synchronized solutions.

(1) We have deliberately chosen not to use a central con-
trol capable of accepting or rejecting a solution based on
a global computation. The reason is that this kind of ap-
proach quickly becomes impractical with increasing N. On
the contrary, we opted for a local, scalable and parallelizable
approach.

(2) Following H. A. Simons’ ideas in his paper “Architec-
ture of the complexity” [29], the nodes of the network were
imposed to be unable to perform complicated mathematical
computations (such as, for example, gradient computations
or predictions). We just expect each oscillator to be able to
estimate its ISI and to compare it with the set point ISI.

(3) We assume that the incoming weight adjustment is not
done systematically at each time step but only when the node
has just spiked.

(4) A node that has just tested a new local weight configu-
ration but which ultimately does not adopt it, cannot force the
rest of the network to return to its initial state configuration.
This would require too much effort in terms of storage and
transport of information. The node that did the test must
continue on its way. Optimization must be done on the fly.

(5) The modification of the incoming connections of node
A has a direct effect on its spike frequency. On the contrary,
the effect of modifying its outgoing connections is obviously
more indirect: When node A acts on the incoming connections
of its neighbors, then their spike frequencies are modified and
may act in return on the spike frequency of A. Both approaches
are possible but we will limit ourselves in the algorithm to the
most efficient one, i.e., the modification of incoming connec-
tions only

(6) We have chosen not to impose any a priori structure
on the connection network. Each node is connected with all
the others but the weights of the connections evolves without
constraint, can vanish or, on the contrary, grow indefinitely.
This is a very expensive choice in terms of computing time but
which is absolutely necessary to let the network freely choose
its own topology.

If, at time 7, node i does not spike, then its incoming
connections do not change. Now if it spikes at time ¢, then this
node starts its remodelling activity by estimating the elapsed
time interval ISI between its last two spikes. Let j be another
node of the network (j # 7) connected to i through W;;. If the
last spike of j took place at a time different from ¢ — 7;;, then
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FIG. 1. Imposed time evolution of « (left axis, in black) and
G, = vazl (ISIL; — ISIsp)2 (right axis, in red) along the optimization
process. The network consists in 300 nodes: for 7, = 38 there are 88
excitatory and 16 inhibitory nodes, for 7, = 39, 96, and 10 and for
T, = 40,71, and 19. T; = 3 and a = 4. The ISI set point is set at 45.

i does not perceive any synaptic potential from j. It is then
useless for itself to maintain the incoming connection W;; and

Wit + 1) = Wi;(t)(1 — D), (&)

where b is a small positif real. On the contrary, if j spiked at
t — 7;j, then its weight contribution is changed accordingly to

Wit + 1) = max(0, W;;(t) + a&D;(ISI — ISIs)),  (6)

where & € [0, 1] is a random uniformly distributed variable
and o > 0 stands for the modification amplitude. Interpre-
tation of Eq. (6) is straightforward: if i detects that its ISI
is higher than the set point (i.e., (ISI —ISI,) > 0), then the
incoming connections associated with inhibitory nodes (D; =
—1) will be decreased while those associated with excitatory
nodes (D; = +1) will be increased. As a result, W;; and the
probability for i to spike are increased. Conversely, when
ISI < ISIgp, the same dynamics Eq. (6) leads to a decrease in
the spike probability. Note that more sophisticated expressions
can be considered for the weight change, but Eq. (6) can
be understood as the unique linearization in the neighbor-
hood of ISI 2 IS, of any mechanism imposing frequency
synchronization.

It is important to realize that the algorithm is of the greedy
type. Although the evolution of W;; [Eq. (6)] imposes without
any doubt that the ISI of node i will get closer to the set
point, the simultaneous global convergence of all the nodes
is absolutely not guaranteed: The convergence of a node can
be done at the expense of another one.

Figure 1 represents a typical time evolution of the global
deviation G, = Zf\,: LS — ISISp)2 along the optimization
process. While « is gradually increased by steps of 0.1, we
observe a decrease of Gy to zero indicating that the system
does evolve globally towards a frequency synchronization.
However, this convergence is far from being uniform and takes
rather the aspect of an avalanche dynamic where the local
optimization of a node can provoke a cascade of events at
the network level. Finally, when the global synchronization
is reached, the network dynamics stops and the network does
not evolve anymore.

600+

4900 4950 5000 5050 5100 5150
Time

FIG. 2. Raster plot of the network activity. The configuration is
[[38,[136,531,[39,[157,5311,[40,[170,31]]] and involved 600 nodes.
T, =3, po = 0.001, b = 0.01, a = 4, and ISI,, = 46. The figure cor-
responds to the spatiotemporal dynamics after convergence of the
optimization process.

Randomness is present in the dynamics through p;(t)
[Eq. (1)] and & [Eq. (6)] and the initial geometrical distribution
of the nodes. To investigate these effects, we perform two
types of numerical experiments. All the simulations have in
common the same parameter values (a, cdt, T;, and ISI set
point), the same initial W;; values and they share the same
distribution of refractory periods and [number of excitatory
nodes, number of inhibitory nodes]: for 7, = 38, [80,20], for
T, = 39, [79,21], and for T, = 40 [81, 19] (we introduce the
notation [[38,[80,20]1,[39,[79,21]],[40,[81,19]]] to designate
such a configuration). However, the two groups differ by their
initial distribution of the position of the nodes. The simula-
tions of the first group (20 simulations) use a strictly identical
geometrical distribution such that the origin of randomness
is limited to p;(t) and £. We observe that the convergence
toward a frequency synchronization regime is achieved for
o > o, where o, varies from one experiment to another with
o, € [0.8, 1.2]. Averaging over the 20 experiments, we found
(ae) = 1.0 £ 0.1. Each of the simulations of the second group
(10 simulations) uses its own, randomly generated, geomet-
rical configuration. We found o, € [0.90, 1.60] with («.) =
1.1 £ 0.2. Thus, we can see that (i) the two types of measures
are consistent with each other, and (ii) the random distribution
of node positions is an important source of fluctuations.
Therefore, in what follows, each optimization process will be
associated with a random draw of the position of the nodes.

IV. RESULTS

A. Spatiotemporal dynamics at convergence

At convergence, the spatiotemporal dynamics is character-
ized by the periodic succession of node patterns D = P,
Py...Pg1, where IS, is the imposed interspike interval set
point (Fig. 2). A pattern is constituted by the set of all
nodes that spike at the same time. As the number of nodes
varies from one pattern to another, the global firing rate oscil-
lates periodically in time with the period ISIg, (Fig. 3). The
patterns in the sequence D are 2 by 2 disjoint and their gather-
ing constitutes the total set of nodes of the network. Therefore
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FIG. 3. Time evolution of the global firing rate associated with
the raster plot in Fig. 2.

they form a partition of the set of nodes. Figures 4 and 5 show
typical temporal evolutions of the dynamics in the space of
the patterns. On the vertical axis, the zero corresponds to any
pattern that is not in the list D = P, P»...Ps),,. Figure 4 is the
regular and periodic dynamics obtained after convergence of
the optimization process. Figure 5 is obtained by freezing the
dynamics of the network corresponding to Fig. 4 (i.e., W;; are
constant) and by increasing the background noise (p, = 0.04).
The global dynamics is found to be intermittent with phases
of locking on the periodic solution at convergence, inter-
spersed by episodes of more or less long stall with a complex
dynamics.

B. Mandatory presence of inhibitory nodes and amplitude death

Numerous studies [23,24,30] have highlighted the fun-
damental role of inhibitory connections in the organization
of neuronal systems either for the control of the excitatory
network or for the fine tuning of the spike timings. This mech-
anism is so general that, accordingly to Ref. [23], “Synaptic
inhibition itself can be synchronized by way of interactions
within networks of inhibitory and excitatory neurons.” It is
therefore expected that our model also proves that frequency

N w >
o o o
n L n

Pattern Number

[y
o
!

O J ' J . S i J : J : & . J
4900 4950 5000 5050 5100 5150
Time
FIG. 4. Time evolution of the spatiotemporal dynamics in the
space of the patterns. On the vertical axis, the numbers 1 to 46

stand for the patterns P, Py...Pg, observed at the convergence of
the optimization process in Figs. 2 and 3.
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FIG. 5. Same as Fig. 4 but now py = 0.04 such that the dynamics
is strongly disrupted. As before, the numbers 1 to 46 on the vertical
axis stand for the patterns D = Py, P,...Ps,,, but now 0 is associated
with any patterns that is not in the list D. Pay attention to the
difference in the horizontal scales: The one in Fig. 4 spans only a
few ISIq;,, while here it corresponds to more than 200.

synchronization is only possible in the presence of a minimum
number of inhibitory nodes.

Each node being associated with a specific refractory pe-
riod 7,, we should normally characterize a given network
by its statistical distribution of 7. Nevertheless, for the sake
of simplicity, we have concretely limited ourselves to three
distinct values (typically 7, € [38, 40]). Tests with up to five
values have been performed to check that this limitation was
not relevant. The spike duration 7; being the same for all
nodes, the set point for the interval between two spikes IS,
cannot be less than Api, = T, + 75 + 1 because our model
[Eq. (1)] does not contain any mechanism capable of reducing
the refractory period. However, it seems possible to impose
an ISI, greater than Ay, =T, + T + 1 because one ex-
pects the inhibitory neurons to cooperate to prohibit the spike
over a duration longer than 7, . Typically we impose either
ISy, = Amax + 1 or ISIy; = Apax + 2. Control simulations
with ISIy, = Apax + 5 have been successfully performed.
However, for even larger values, numerical convergence prob-
lems have been encountered.

We have conducted no less than 300 numerical experiments
(Fig. 6). For each simulation, the initial position of the nodes
is randomly generated. Then for each node, its value of 7,
is chosen randomly and uniformly between the three values
38, 39, and 40. Finally the excitatory or inhibitory action of
the node is randomly drawn: with a probability f, the node is
inhibitory, with a probability 1 — f, itis excitatory. f, changes
with the experiments inside [0.05, 0.95]. For each simulation,
« is increased in steps of 0.1 until a critical value «, is reached
for which a frequency synchronization regime is established.
Value of « higher than 6.0 have not been investigated. Red
points in Fig. 6 represents the set of (f,, a.) points. When
several a, are associated to the same value of fg, it is the
highest value of «, that counts, the one that ensures the con-
vergence towards the frequency synchronization whatever the
initial geometry of the nodes and the optimization path taken.
For f, >~ 0, the plot suggests a divergence of a. associated
with the impossibility of a global frequency synchronization
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FIG. 6. The network consists of 300 nodes whose initial posi-
tions are randomly chosen on a sphere. The refractory period of
each node is randomly chosen among the three values 38, 39, and
40 and its inhibitory/excitatory character is determined by drawing
with a probability f, (fraction of inhibitors). The ISI set point is 45.
The red points (left axis, solid discs) stand for (f;, o). The black
ones (hollow diamonds) correspond to (f, figearh ), Where ngeam is the
number of nodes that have ceased to spike under the pressure of the
inhibitory nodes along the optimization process.

in the absence of inhibitory nodes. For f, >~ 1, we observe the
spontaneous death of a certain number 74e, Of nodes during
the optimization process. At a given moment, under the action
of their inhibitory connections, these nodes were unable to
spike. And since a node that does not spike cannot change
its incoming connections, the situation persists as long as the
neighborhood action goes on.

C. Anticlusters structuring

For two nodes A and B to train each other to spike in
phase, the delay t4p between them must be an exact multiple
of the set point ISIy,. Consequently, we expect and observe
two very distinct operating regimes depending on whether the
maximum delay between two nodes of the network (2/cdt) is
less or greater than ISIp.

We introduce

ZPMED ZiePM,jePMVViJ'
ZP,leD ZPH/#eD ZiePM,jePMWij’

which, for a given configuration {W}, stands for the ratio
between the total weight of the internal connections to each
pattern P, and the total weight of the connections between
two distinct patterns P, and P, .,. We compute R({Weyg})
where {W.,} is the configuration network at the convergence
of the optimization process. We compare the previous result
with the distribution of R({W;anq}) where {W;,nq} are derived
from {Wye} by randomly redistributing its weights among the
nodes of the network.

We first consider the situation where 2/cdt < ISI, that
corresponds to a “small” network where all nodes are within
one interspike interval of each other. This regime correspond
to the vast majority of our investigations because it is the most
interesting and surprising situation. Figure 7 is a histogram
of the values of R({W;..q}) obtained after 10000 draws of

R({(W}) = 7

0.025 0.030

R

= 0.015 0.020

FIG. 7. Histogram of R({W;.q}) defined in Eq. (7). We made
10000 random draws and the histogram has 100 bins. The network
consists of 300 nodes whose initial positions are randomly chosen
on a sphere. The refractory period of each node is randomly chosen
among the 3 values 38, 39, and 40 and the fraction of inhibitors f, =
0.15. The ISI set point is 45 while the delay between two diametri-
cally opposed nodes is 2/cdt = 33 < ISI;,. We find (R({Wpand})) =
0.022 £ 0.0025 which implies that R({W,¢}) at convergence deviates
from the mean value by more than 9.4 standard deviations.

the random configuration {W;,nq}. While (R({Wyana})) =~ 0.022
with a standard deviation of 0.0025, the measured value at
convergence is R({W¢ye}) = 1.9 1077, significantly smaller. It
thus deviates from the random distribution by more than 9
standard deviations, which rules out any coincidence: there-
fore the patterns P, € D are characterized by a very strong
anticluster structuring.

In the case of a network with 2/cdt = 100 > ISI,, the sit-
uation is completely changed. In such a “large” network, each
node can be linked to several distinct nodes shifted by exactly
one ISIg,. Then R({W,yg}) is no longer almost zero, but on
the contrary is measured to be almost one standard deviation
higher than (R({W;anq})) (not shown). The anticluster struc-
ture is in competition with the connections between nodes
belonging to the same pattern and is clearly less predominant.
Figure 8 shows the connection weights repartition W;; versus
the delay 7;; when both i and j belongs to the same given
pattern P, (randomly chosen in the D sequence). We clearly
observe that only internal connections with a delay equal to
ISIg;, ot 2 IS, are not vanishing.

D. Network sparseness

The Gini coefficient is a real number, between O and 1,
that measures the rate of inequality of the distribution of a
variable. It was originally developed in economics to measure
the income inequality of a country’s population. Applied to
the case of connection weights, a null value of this coeffi-
cient would correspond to the homogeneous distribution of
the mass, i.e., to the case where all W;; are equal. On the
contrary, a coefficient equal to 1 would mean that all the
weights are zero, except for one and only one. For values of
f¢ =2 0.2 and the number N between 100 to 600 of nodes, we
find a staggering value of 0.95, indicating that the optimized
networks are particularly sparse with a very large majority
of connections reduced to zero coexisting with a very few
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FIG. 8. The plot shows the set of points (z;;, W;;) where i and
J belong to the same pattern P, € D. The networks has 600 nodes,
T, = 3,a = 4, and pg = 0.001. Their refractory periods are not iden-
tical and vary between 38 and 40. The ISI set point is fixed at 46
and 2/cdt = 100. The fraction of inhibitory nodes is 20%. The first
maximum is located at 46 (= ISI,) and the second at 92.

number of very massive connections. Figure 9 shows a typical
histogram of the connexion weights W;; in log-log scales.

E. Predominance of projections from inhibitory nodes

Here we focus on the global masses of the network con-
nections according to the excitatory or inhibitory nature of the
nodes of departure and arrival. We introduce

Pir({W)) = > Wy ®)
{i € [1, N]|D; = +1}
{j € [1.NIID; = £1}

where Py ({W}) (respectively, Py_({W})) stands for the total
mass of the excitatory <— excitatory connections (respectively,
excitatory < inhibitory) for the network configuration {W}.
We define in the same way the other masses P_ and P__ and
we introduce the xy notation to designate any of the sign pairs
++, +—, —+, and ——.

The numerical values of the above quantities at the conver-
gence of the optimization process do not have any meaning in
themselves. Neither do their ratios since they depend on f,.
So we will proceed as for the demonstration of the anticluster
structure in paragraph IV C, by comparing Py, ({Wevg}) with
the distribution of Py, ({Wrana}) where {Wyynq} are derived from
{Wevg) by randomly redistributing its weights among the nodes
of the network. The results are displayed in Table I. Since they
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FIG. 9. Histogram with 200 bins of the weights of the con-
nections W;; in log-log scales. We integrated the results obtained
for five distinct networks with f, = 0.2 at convergence of the op-
timization process. The turquoise circles correspond to networks
with 300 nodes while the red diamonds are associated with network
with 600 nodes. Continuous lines are quadratic fits compatible with
log-normal distributions.

differ from the mean values by several standard deviations,
they are highly significant from a statistical point of view.
They clearly shows a very net deficit in the mass of the con-
nections from excitatory nodes, to the benefit of a substantial
excess in the mass of the connections from inhibitory nodes.

F. Spatial distribution of the connexion weights

The question that interests us here is to know if there is a
relationship between the propagation delay 7;; between any 2
nodes 7 and j of the network and the weights W;; (possibly
W;;) of their connections. For that purpose, we introduce the
following definitions:

Mys({W),7) = Yo Wt -, 9

{i € [1,N]|D; = +1}
{j €[1.N]|Dj = %1}

where §(n) = 1 if n = 0 and cancels out for any other integer
value. For the configuration {W}, M, ({W}, t) [respectively,
M _({W}, 7)] is the sum of the masses of all the connections
from an excitatory node to an excitatory one (respectively,
inhibitory to excitatory) and separated by a propagation delay
7. By analogy, we define in the same way M_, and M__.
We then proceed in the same way as for proving the anti-
cluster feature of the optimized network or for proving the

TABLE 1. Same configuration as in Fig. 2. P, are defined in Eq. (8). The rightmost column shows the difference between the measurements
at convergence and the mean value in units of standard deviation. Undoubtedly, a large part of the mass has been allocated to the outgoing
connections from the inhibitory nodes at the expense of the outgoing connections from the excitatory ones.

Xy Poy({(Weye D) (Pey({Wrana})) standard deviation o -

++ 557485 623876 3690 —18.0
—+ 141147 159531 2792 —6.6
+- 224183 159530 2782 23.2
—— 60525 40403 1516 133
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FIG. 10. The first row stands for the plot of M, ({W}, t) versus
t while the second one with M__({W}, t) versus t. The columns
correspond to the repetition of the measurement for 3 networks
with 600 nodes, 7; = 3, a = 4, and py, = 0.001 but distinct random
initial positions of the nodes. The refractory periods are not identical
and vary between 38 and 40. The ISI set point is fixed at 46. The
fraction of inhibitory nodes is 20%. Vertical axis are in arbitrary
units, as the absolute value is irrelevant. Red points correspond to
the converged optimized network while the numerous blue lines are
associated with the random distribution of the weights among the
network connections. The light, medium, and dark blue lines are,
respectively, associated with mean value 1, +2, and +3 standard
deviations.

predominance of the inhibitory projections. We first compute
M,y ({Weye}, T) where {Wg} is the configuration network at
the convergence of the optimization process and then we com-
pare the result with My, ({Wiang}, ) where {Wyng} are derived
from {Wy¢} by randomly redistributing its weights among the
nodes of the network. The results are displayed in Figs. 10-12.
For Figs. 10 and 11, the three columns correspond to the triple
repetition of the numerical experiment by changing only the
initial position of the nodes on the sphere. The red circles
stand for the case of the optimized network M, ({Weye}, T)
while the numerous blue lines (light, medium, and dark) are

FIG. 11. Same regime of parameters as in Fig. 10, but now the
first row deals with M, _ versus t while the second one with M__
Versus T.

FIG. 12. Same regime of parameters as in the first column of
Figs. 11 and 12. Black straight lines are linear regression fits. O,
as defined in Eq. (10), measures the deviation of M,,({We}, 7)
from the mean value (M,,({Wianq}, 7)) in units of standard devia-
tion. Hence, on Fig. 10(al) [respectively, Fig. 10(b1)], the fact that
M, ({Weye}, T) [respectively, M_, ({Wy,}, T)] stays almost all the
time in the blue crosses zone corresponds on the present top left
plot (respectively, top right), to values of |Q, . | (respectively, |Q_.|)
mostly smaller than 3. The situation is very different for O__ and
especially for Q,_, where not only do the measurements deviate
from the mean value by more than 3 standard deviations, but where
there is also a clear upward trend materialized by the black solid
line.

associated with 10000 random draw repetitions and the re-
spective position of the confidence intervals at 1, £2, and
=43 standard deviations. Some figures give the impression that
the optimized values are compatible with a random configura-
tion of the connection masses. Others, on the contrary, seem
to indicate that they clearly deviate from it. To clarify the
situation, we introduce

M—+({chg}a T) - (M—-‘r({vvrand}a f))
VM (Weana)s ©72) — (M (Weana), 7))2

(10)

— =

which stands for the deviation from the mean value measured
in units of standard deviation (also Q. ,, @, ,and Q__) and
plot it versus t (Fig. 12). The analysis of the figures leads to
the following remarks:

(1) For a given value of the delay, the values of M, or
M_ . associated with outgoing connections from excitatory
nodes, do not deviate significantly (more than 3 standard
deviations) from the mean value of the random distributions.

(2) Nevertheless, if for a given delay, the values of M,
were only due to chance, then from one delay to another we
should observe an alternation of values larger and smaller
than the average. The fact that a large majority of the values
are below the mean value is statistically significant and is
corroborated by the global Py, measurements.

(3) For outgoing connections from inhibitory nodes, we
clearly observe that not only are M4 _ significantly above the
random value, but also that this deviation increases with delay.
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The further the inhibitory connection projects, the higher its
weight.

V. DISCUSSION

A. Reminder of our results

We have just shown that a network of nonidentical nodes,
with excitable dynamics, pulse-coupled, with coupling delays
depending on the Euclidean distance between nodes, was
able to adapt the topology of its connections to obtain spike
frequency synchronization. The adapted network has the fol-
lowing remarkable properties:

(1) The spatiotemporal dynamics is organized in a peri-
odic succession of patterns. A pattern is constituted by the set
of nodes that spiked at the same time. The set of patterns forms
a partition of the network. There are very few connections
between nodes of the same pattern and the vast majority of
connections concern nodes belonging to distinct patterns. This
results in an anticluster structure.

(2) The network is very sparse.

(3) Inhibitory nodes play a fundamental role in frequency
synchronization. Not only because frequency synchronization
requires the presence of a minimum number of inhibitory
nodes, but also because the total mass of outgoing connections
from the inhibitory nodes is very significantly larger than if the
connections were established randomly.

(4) We observe the spontaneous occurrence of a spatial
organization of inhibitory nodes: The further the inhibitory
connection projects, the higher its weight.

B. Comparison with neural networks

First, the need for a minimum percentage of inhibitory
nodes is a result in total agreement with experimental observa-
tions [23,24]. Perhaps even more remarkable is that, as in our
study, inhibitory neurons are mostly identified experimentally
as playing a critical functional role not in the process of infor-
mation storage, but in the temporal regulation of networks.

Second our observation of the organization of spatiotem-
poral dynamics into a periodic succession of patterns made up
of nodes spiking together is strongly reminiscent of the spon-
taneous self-organization of neurons reported in numerical
simulation [19] or in experimental observations [22], except
that no mention is made of an anticluster structure in these
publications. However, as the nodes of these structures spike
at the same time and are not spatially homogenously distant,
there is no reason for the brain to maintain such connections
that are in fact useless. This prediction could be tested exper-
imentally.

Unsurprisingly, the patterns differ in size and persistence
from Refs. [19,22]. Indeed, whereas in our study nothing is in-
tended to limit the quest for synchronization, there exist many
biological mechanisms that could control the synchronization
effort. For example, one can increase the duration of synap-
tic interaction to relax the geometric frustration character of
the phase synchronization, introduce mechanisms to adapt the
spike frequency of an isolated neuron, or simply modify
the propagation times of potentials by taking into account
the myelic sheaths.

C. About the Polychronization conjecture

Noting that the propagation delay between any individual
pair of neurons is precise and reproducible with a submil-
lisecond precision [31,32] and arguing that obtaining and
maintaining such precision can only be understood if the
spike-timing is of the highest importance for the brain, Izhike-
vich introduces the term Polychronization [25] to qualify such
spiking activity and suggests that the periodic succession of
patterns could play a crucial role in the information stor-
age process. The idea is that the same neuron could belong
to several distinct patterns, themselves belonging to differ-
ent sequences of patterns. Depending on initial conditions
and external stimuli, a specific sequence of patterns could
then be selected. As there are many more possible patterns
and sequences than neurons, the storage capacities would be
gigantic.

We are not able to test this conjecture directly. Clearly,
for an imposed ISI, our algorithm can converge on several
possible network configurations. But once the configuration
has been achieved, putting in action a new optimization
process to force the frequency synchronization with an
other ISI" # ISI systematically erases the first configuration.
Nevertheless, we can imagine several ways of getting around
this problem. As the optimized network is extremely sparse,
a first approach would be to freeze the small number of
connections with a highest weights once and for all. Learning
a new optimized configuration would then involve only those
connections that have not been frozen. A second possible
approach is the progressive construction of a network of
optimized networks. We would proceed as follows: Consider
a first network () optimized to oscillate with ISI;. Let
P, be a pattern of the periodic succession. We then add to
P, a set of new nodes (not in A7) to form a new network
(N2). We then run our optimization algorithm to force N, to
oscillate with ISI,, the optimization algorithm not affecting
connections internal to A but acting only on connections
internal to N> and on those between P, and N,. As the
nodes inside P; are not connected to each other (thanks to the
anticluster structure), any ISI, value can be imposed on them
since there are no internal propagation delays to satisfy. After
convergence, the A, network presents a dynamic consisting
of the repetition with a ISI, period of a sequence of patterns
forming a partition of Aj. It is possible to force P; to be
one of the elements of this partition so that its nodes form
a single pattern of two distinct sequences of the Nj + N>
network, associated, respectively, with ISI; and ISI,. The two
sequences are simultaneously compatible when ISI; and ISI,
are multiples of each other. Otherwise, it is conceivable that a
stimulus acting on the nodes of P; will select one or the other
sequence according to the frequency of the external forcing.
The process can be repeated ad infinitum to create a network
of networks. Works in these directions are in progress.

APPENDIX A: NONEXHAUSTIVE LIST
OF RELATED WORKS

Pioneering work [33] deals with a network of identical
integrate-and-fire pulse-coupled and excitatory units. The
delay is not related to the distance between nodes but to
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a maximum time beyond which the action of node j on
node i is forgotten (i.e., reduces to zero). Two topologies are
studied: a fully connected network and a two-dimensional
regular mesh with local coupling. The dynamics converges
to a frequency synchronized solution, where all nodes have
the same ISI without spiking in unison. In Ref. [34], delays
are now clearly associated with the time required for the
action potential to propagate along the axon of each neuron.
Identical excitatory neurons with an exponentially decreasing
coupling with distance, give rise to waves (which implies
a global synchronization in frequency but not in phase).
Reference [35] investigated the effect of time delays on a
set of two-dimensional identical excitatory oscillators. The
oscillators are regularly distributed on a square grid and the
interactions between oscillators A and B are delayed by an
amount proportional to the distance r g between them. The
weights of the connections first decrease as 1/r4p, then vanish
for rap > ro. The oscillators are not pulse-coupled. It is found
that distance-dependent time delays induce various patterns
including traveling rolls, square-like and rhombus-like
patterns, spirals, and targets. Reference [36] considered the
effects of distributed delays on amplitude death. Oscillators,
whose amplitude must be described to eventually cancel
it, are of Ginzburg-Landau type. They are identical and
their dynamics are not excitable. Here the delays are not
distance-dependant but are chosen randomly accordingly to
a given probability distribution. It is showed that even a small
spread in the delay distribution can greatly enlarge the set of
parameters for which amplitude death occurs. The idea of the
statistical distribution of delay was then taken up: to study a
standard field model of neural excitatory and inhibitory pop-
ulations [37,38], to investigate the coherent activity patterns
in inhibitory, synaptically coupled, bursting Hindmarsh-Rose
neurons [39], to demonstrate the widespread occurrence of
dynamically maintained spike timing sequences in recurrent
networks of pulse-coupled spiking neurons with large time
delays [40].

Reference [41] studies the Rulkov mapping in the pres-
ence of a delay proportional to the interneuron distance and
of a coupling strength proportional to the difference of the
fast variables (coupling known as electrical as opposed to
synaptic coupling known as pulse-coupling). The neurons are
not identical, the dynamics of an isolated neuron is chaotic
and the network organization allows a continuous modulation
between a scale-free network with dominating long-range
connections and a homogeneous network with mostly adja-
cent neurons connected. A time-averaged Kuramoto’s order
parameter (R) is measured. It is found that the most phase
synchronized response (R =~ 0.4) is obtained for the interme-
diate regime where long as well as short-range connections
constitute the neural architecture.

APPENDIX B: NETWORK GEOMETRY

The position of each node i on the sphere of ra-
dius unit is given by its cartesian coordinates x;,y; and
z with x? +y? 472 = 1. The distance r;; between two
nodes used to calculate the delay in information propagation
is r;; = /(i —x;)* + (i — ¥;)? + (z — z;)*. Figures 13-15

0.2 0.6 1.0 1.6 2.0
distance

FIG. 13. Histogram of the interneurons distances before adjust-
ment with 300 bins (vanishing distances are not taken into account).
The network has 300 nodes randomly distributed on a sphere of unit
radius.

illustrate the properties of the random network of nodes after
adjustment.

APPENDIX C: GEOMETRIC FRUSTRATION

To be able to make comparisons, we first consider the
classical Kuramoto’s problem:

1 .
30 = w; + ﬁ; Wijsin(6i(r) — 0;(t — 7;;))

i€[l,N] (ChH

Looking for a phase synchronization regime 6;(¢) = Q2 leads
to

1 .
Q=+ NZ W;sin(QT;)). (C2)
J

If we consider the N above equations [Eq. (C2)] as equa-
tions with unknown W;;, then the ratio between the number
of variables and the number of equations is { = N*/N = N.

S
o
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L

(6.}
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FIG. 14. Histogram of the interneurons distances after adjust-
ment. The first peak (the farthest to the left) in the distribution is
associated with min;(r;;), i.e., the mesh of the hexagonal network.
The ratio between the height of this peak and its width at half height
defines the quality factor.
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FIG. 15. Numerical investigation of the relationship between the
average distance between a node and its nearest neighbor (dpex) and

the number N of nodes on the surface of the sphere. The blue straight
line is the best power law fit dpex =~ 341N,

This high value indicates that network configurations {W;;}
with possible phase synchronization regimes are very com-
mon. Numerical simulations confirm this prediction (not
shown).

The pulse-coupled regime between the nodes of a network
is characterized by the ratio & between the spike duration
and the interspike time interval (ISI) between two consecutive
spikes. Our model which is discrete time is moreover charac-
terized by the time interval dr between two time steps. This
parameter does not appear explicitly, but implicitly through
cdt which is the distance traveled by the information during dt
[Eq. (4)]. cdt is then compared to dpex to form a dimensionless
number (see Appendix B, Fig. 15).

In our model, the probability for a neuron i at rest (S; = 0)
to spike is

Pi(t):aZDjVVin[Sj([_Tij)]v (C3)
j

where §;(¢) is the state of neuron j at time 7, 7;; is the distance
induced delay between j and i, W;; is the strength of the
connection from j to i and D; = &1 depending on whether
Jj is excitatory or inhibitory. H(s) = 1 if and only if s > 0 and
vanishes otherwise. The minimal interspike interval (ISI) is
then
A=T"+T" +1. (4
We are looking for a phase synchronization regime with ISI =
T > A.We assume that all nodes spike at time ¢ = 0 such that
Si(0)=T° Vi. (€5
Then the deterministic dynamics leads to S;(A — 1) = 0. The
transition S;(A — 1) = 0 — S;(A) = O requires that P;(A —
1) < 0. The next transitions require P;(A) < 0, P(A+ 1) <
0..P(T —2) <0, and P(T — 1) > 1. This correspond to a
total of T — A + 1 inequalities associated with node i.

From Fig. 13 we roughly estimate that the density of
nodes per unit of length located at a distance r from a given

node is
N —1
2

The first inequality P;(A — 1) < 0 involves only the nodes
J that are at a delay t;; € [A — T*, A] from node i. These
nodes are >~ p((A — T*)cdt)T cdt in number. For the next
inequality the nodes involved are at delay 7;; € [(A+1—
T, A+ 1)] fromnode i and are >~ p((A + 1 — T*)cdt)T cdt
in number. As p(r) is increasing with r, the number of vari-
ables is larger for the second inequality than for the first. It will
be also the case for the other following inequalities. Therefore
the ratio number of variables/number of inequalities that we
will retain is the smallest one

N -1
2
To finish our estimation, we have to express the dependence

of cdt in N. Numerical investigations (Appendix B, Fig. 15)
suggest that dpex ~ 3.41/\/N such that

p(r) >~ T. (C6)

{~ [(A — T*)T*Jedt?. (C7)

dt 3.41 C8)
cdt ~
Tmin\/ﬁ
and
(A —THT*
{58 (C9)
Tmin

for large N. The above expression leads to important re-
marks:

(1) ¢ does not depend on N. This is fundamentally dif-
ferent from the Kuramoto’case for which the probability of
finding a network configuration that supports a synchroniza-
tion regime increases linearly with N.

(2) the limit 7° negligible in front of T is obtained by
making 7° tend towards 0 while maintaining constant 7', A
and Ty,. In this limit ¢ is vanishing, which means that it is
highly unlikely to accidentally run into a network configu-
ration that can support a phase synchronization regime. This
justifies our claim that the phase synchronization of a set of
excitable, pulse-coupled oscillators with distance-dependent
delay is a geometric frustration problem.

(3) In our numerical simulations we have indeed noticed
that the network configuration search program struggled and
sometimes failed to complete its task when T* was too small
in front of A. The values of 7° that we have selected are
therefore a compromise between values high enough for the
algorithm to work and low enough for the network configura-
tions to be influenced by geometric frustration.

(4) The temporal evolution of our model is discretized in
time and is calculated only every dt. By scale change dt —>
%, T,T*, A, and 1y, are, respectively, transformed into AT,
AT, AA, and ATy, but ¢ is constant. Therefore our results
should not be impacted by the discrete aspect of the temporal
evolution.

Finally, it is interesting to note that, in the case where
delays are not distance-dependent but chosen at random ac-
cording to a distribution of characteristic width o [37-40],
then each of the T — A + 1 inequalities P(A —1) <0,
P(A) <0..P(T —2)< 0and P(T —1) > 1 involve =~ N§
unknown weights W;;. The ratio between the number of

034211-11



L. GIL

PHYSICAL REVIEW E 108, 034211 (2023)

variables and the number of inequalities is then
Ii/o

—_—, C10
T-A+1 (C10)

{~N

i.e., proportional to N. The situation is then much less restric-
tive than in the previous case and explain the observations
reported in the literature.
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