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Order-chaos transition in correlation diagrams and quantization of period orbits

F. J. Arranz ,1,* J. Montes ,1,2,† and F. Borondo 2,‡

1Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
2Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

(Received 24 May 2023; accepted 3 August 2023; published 20 September 2023)

Eigenlevel correlation diagrams has proven to be a very useful tool to understand eigenstate characteristics of
classically chaotic systems. In particular, we showed in a previous publication [Phys. Rev. Lett. 80, 944 (1998)]
how to unveil the scarring mechanism, a cornerstone in the theory of quantum chaos, using the Planck constant
as the correlation parameter. By increasing the Planck constant, we induced a transition from order to chaos,
in which scarred wave functions appeared as the interaction of pairs of eigenstates in broad avoided crossings,
forming a well-defined frontier in the correlation diagram. In this paper, we demonstrate that this frontier can
be obtained by means of the semiclassical quantization of the involved scarring periodic orbits. Additionally,
in order to calculate the Maslov index of each scarring periodic orbit, which is necessary for the semiclassical
quantization procedure, we introduce a straightforward method based on Lagrangian descriptors. We illustrate
the theory using the vibrational eigenstates of the LiCN molecular system.
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I. INTRODUCTION

A cornerstones in the development of quantum chaos is
level statistics [1], i.e., the statistics of the spacing between
adjacent energy levels in the spectrum of a Hamiltonian op-
erator, which is mathematically based on the random matrix
theory [2]. In this framework, two extreme cases can be con-
sidered: (i) integrable systems where, as was shown by Berry
and Tabor [3], the statistics of the energy spacing follows a
exponential distribution derived from a Poisson distribution
of the eigenenergies, and (ii) classically fully chaotic systems
(K-systems) where, as was conjectured by Bohigas, Gian-
noni, and Schmit [4] and proved in a semiclassical context
by Müller et al. [5], the statistics of the energy spacing fol-
lows the distribution of the Gaussian orthogonal ensemble
(GOE) of the random matrix theory. In the first case, since
the distribution of levels corresponds to a Poisson process,
there are no interaction between energy levels, such that small
spacing is highly likely. While, in the second case, the GOE
distribution implies certain level repulsion, such that small
spacing is highly unlikely.

However, in most cases, physical systems are not fully
chaotic (K-systems), but systems with mixed dynamics, i.e.,
systems where chaotic regions and islands of regularity co-
exist in classical phase space. This case is an intermediate
one where it can typically be found an order region, with
a Poisson-like statistics, and a mixed chaos region, with an
in-between Poisson-GOE statistics that can be described by
means of a Weibull distribution, as was proposed by Brody
[6] (therefore known as the Brody distribution in this context),
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which smoothly interpolates between both extreme cases. In
the mixed chaos region, there are states with very little or no
interaction, which are related to classical islands of stability,
and also states with level repulsion, which are related to clas-
sical chaotic regions. Molecular systems, in particular, mostly
belong to this intermediate case.

Moreover, notice that by taking the Planck constant as a
varying parameter, thus obtaining a correlation diagram of
eigenenergies versus Planck constant, it can be used as an
ideal tool to implement a kind of microscope that focuses with
varying resolution on the classical regular structures existing
in the phase space of systems with mixed chaos. In this way, it
has been shown in the literature [7–10] for different molecular
systems, including HCN, LiCN, KCN, and HO2, the existence
of a singular series of broad avoided crossings (ACs) in the
correlation diagram of eigenenergies versus Planck constant,
which constitutes the frontier that separates the order and
mixed chaos regions. Namely, below this series of ACs (the
order region), no level repulsion is found, while above the se-
ries of ACs (the mixed chaos region), extensive level repulsion
is found, as well as some states with very little interaction
related to classical islands of stability. Then, based on the
level statistics results, this series of ACs can be considered the
frontier between order and chaos. Interestingly, the eigenstates
involved in this frontier are scarred states, i.e., states where
the extremes (maxima and minima) of their wave functions
are distributed along an isolated unstable periodic orbit (PO),
a phenomenon first studied by Heller [11] in the Bunimovich
stadium billiard. Notice that, as energy increases, the eigen-
states of the frontier are the first scarred states to appear, such
that this case adds some insight into the scar formation in
molecular systems.

In a previous work [12], we studied the correspondence
between classical and quantum resonances in the order region
of the correlation diagram of the LiCN molecular system,
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leading to a semiclassical theory for this correspondence. In
the present work, we further study the frontier of scars quan-
titatively in the correlation diagram of the LiCN molecular
system, addressing the semiclassical quantization of the scar-
ring POs involved in this frontier of scars, which will lead to
obtaining a semiclassical frontier between order and chaos.

The semiclassical quantization of POs was addressed by
Gutzwiller [13] in the seminal work where his celebrated
trace formula was first obtained. The quantization condi-
tion obtained for the classical action depends on the number
of conjugate points of the PO over one period, an integer
value also known as Maslov index. Therefore, in order to
achieve the semiclassical quantization of a PO, it is neces-
sary to compute its Maslov index, but a rigorous calculation
using any of the different methods described in the literature
is mathematical complicated. In the present work, as an ad-
ditional result, we will introduce a straightforward method
for the calculation of the Maslov index of a PO, based on
Lagrangian descriptors [14,15]. Lagrangian descriptors have
been shown to be a fruitful tool to study the complex invariant
structures existing in the phase space of nonlinear systems. In
recent years, these mathematical objects have been applied to
a multitude of cases, including the LiCN molecular system
[16,17]. We now introduce this application of Lagrangian
descriptors, while a detailed research will be presented in a
further work.

The organization of the paper is as follows. Section II is
devoted to the description of the Hamiltonian model used to
represent the LiCN molecular system (Sec. II A), as well as
to the description of the calculations to obtain the classical
POs and a suitable Poincaré surface of section (Sec. II B), the
quantum eigenenergies and eigenstates of the corresponding
Hamiltonian operator (Sec. II C), and also the Lagrangian
descriptors used to obtain the Maslov index (Sec. II D).
Section III is devoted to the joint presentation and discussion
of the obtained results. In Sec. III A the obtained values of the
parameters determining the frontier of scars are listed, where
certain linear correlation is found. Also, as a representative
example, one of the cases in the frontier of scars is illustrated
and discussed through the depiction of the scarred wave func-
tions and the three scarring POs involved. In Sec. III B the
semiclassical quantization of the three scarring POs is carried
out. First, the Maslov index of each PO must be obtained
(Sec. III B 1), which is trivially obtained by counting the
number of turning points in two of the three POs, while this
nonrigorous method fails in the third PO. Hence, a straightfor-
ward method based on Lagrangian descriptors is introduced
and used for the third PO. Then, the quantization is performed
(Sec. III B 2), such that, taking advantage of the linear corre-
lation found in Sec. III A, a continuous semiclassical frontier
between order and chaos is obtained. Last, the paper is sum-
marized and the conclusions reached are presented in Sec. IV.

II. SYSTEM DESCRIPTION AND CALCULATIONS

A. Hamiltonian model

The system studied in this work corresponds to the vibra-
tional dynamics of the most abundant isotopic combination
of the lithium isocyanide molecule 7Li 12C 14N. Regarding

the Hamiltonian model used, some remarks are in order. On
the one hand, the rotational motion is not considered, i.e., the
model will account for the purely vibrational motion of the
molecule. On the other hand, since the C-N bond is much
stronger than the interactions with the Li atom, an adiabatic
decoupling of the corresponding degree of freedom is feasible,
such that the C-N bond length can be fixed at its equilibrium
value, i.e., the model will describe the relative motion of the
Li atom and the CN group. These simplifications lead to a
chemically realistic model of the LiCN molecule with only
two degrees of freedom, which is suitable for our purposes.

Considering the above simplifications, the Li-CN molec-
ular system will be modeled by means of the Hamiltonian
function

H = P2
R

2μ1
+ P2

θ

2

(
1

μ1R2
+ 1

μ2r2
eq

)
+ V (R, θ ), (1)

where μ1 = mLi(mC + mN)/(mLi + mC + mN) and μ2 =
mCmN/(mC + mN) are reduced masses (mLi, mC, and mN be-
ing the corresponding atomic masses), req = 2.19 a.u. is the
fixed N-C equilibrium length, R is the length between the
CN group center of mass and the Li atom, and θ is the angle
formed by the corresponding req and R directions (i.e., N → C
and C

N → Li, respectively). Thus, e.g., θ = 0 corresponds to
the linear configuration Li-CN, and θ = π rad to the linear
configuration CN-Li. Last, PR and Pθ are the conjugate mo-
menta corresponding to R and θ coordinates, respectively,
and V (R, θ ) is the potential energy function describing the
interatomic interaction.

The potential energy function V (R, θ ) is taken from the
literature [18]. It presents two minima: a relative minimum
at (R, θ ) = (4.79, 0) (a.u., π rad) with V = 2281 cm−1, cor-
responding to the Li-CN isomer, and an absolute minimum
at (R, θ ) = (4.35, 1) (a.u., π rad) with V = 0, corresponding
to the most stable CN-Li isomer. Both minima are separated
by a saddle at (R, θ ) = (4.22, 0.29) (a.u., π rad) with V =
3455 cm−1. These three characteristic points can be connected
by the minimum energy path (MEP), i.e., the path connecting
all characteristic points along which the variation of energy is
minimal. Notice that, accordingly to the physics of the Li-CN
molecular system, the potential energy function V (R, θ ) is
periodic in the angular coordinate θ , with period 2π rad,
and has a symmetry line at each value θ = kπ rad (k =
0,±1,±2, . . .). Finally, it is worth noting that the well around
the absolute minimum (CN-Li isomer) is very anharmonic
and, consequently, the transition from regular classical motion
to chaos in this system [19,20] takes place for energies around
1700 cm−1, well below the isomerization barrier energy of
3455 cm−1.

B. Classical trajectories

Classical trajectories will be calculated by numerically in-
tegrating the canonical equations of motion corresponding to
the Hamiltonian function in Eq. (1), where standard numerical
methods will be used for the integration.

The scarring POs involved in the frontier of scars will
be obtained by means of the systematic method described in
Ref. [20], which is based on the propagation of the symmetry
line at θ = π rad.
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Moreover, in order to get an graphical representation of
the trajectories in phase space, which shows the different
regular and chaotic regions, a suitable Poincaré surface of
section (PSS) will be defined. For this purpose, the following
canonical transformation will be applied:

ρ = R − Req(θ ), Pρ = PR,

ϑ = θ, Pϑ = Pθ + PR
dReq(θ )

dθ
, (2)

where Req(θ ) is a series expansion in θ coordinate that fits
the MEP. Thus, for a given energy E , the PSS along the MEP
will be defined in (ϑ, Pϑ ) coordinates by taking ρ = 0 and
choosing an arbitrary branch (the negative one in our case)
in the second degree equation for Pρ that arises from the
Hamiltonian conservation condition H (ρ, ϑ, Pρ, Pϑ ) = E .

C. Eigenenergies and eigenstates

In order to calculate the eigenenergies and eigenstates of
the Hamiltonian operator corresponding to the Hamiltonian
function in Eq. (1), the discrete variable representation-
distributed Gaussian basis (DVR-DGB) method proposed by
Bačić and Light [21] will be used. As shown by these authors,
the DVR-DGB method provides good accuracy for highly
excited vibrational states, performing very well for the Li-CN
molecular system, which was used as test system in their
paper.

It is relevant to note here that, as a consequence of the
separation of variables procedure for obtaining the vibrational
Hamiltonian operator from the total Hamiltonian operator (see
Ref. [21] and references therein), the angular coordinate is
defined in the range θ ∈ [0, π ] rad, within which consecutive
quantum numbers n2 = 0, 1, 2, . . . can be assigned, where n2

represents excitation in the θ coordinate. However, in order to
implement a suitable correspondence with classical mechan-
ics, the range of the angular coordinate will be extended to
θ ∈ [0, 2π ] rad by applying the symmetry line θ = π rad,
such that only even quantum numbers n2 = 0, 2, 4, . . . can be
assigned. Due to this approach, the symmetry line θ = π rad
plays a singular role in the procedure of semiclassical quan-
tization, as discussed in Sec. III B 1. Notice that, however, no
restrictions apply to the quantum numbers corresponding to
the radial coordinate, since in this case consecutive quantum
numbers n1 = 0, 1, 2, . . ., can be assigned, where n1 repre-
sents excitation in the R coordinate.

Moreover, it has been shown in the literature [7,8] that by
expanding the range of h̄ values in the calculations, thus ob-
taining a correlation diagram of eigenenergies versus Planck
constant, a conspicuous series of quantum resonances formed
by broad ACs is observed, which constitutes the frontier that
separates the regions of order and chaos in the Li-CN molec-
ular system. In this paper we will calculate the position od
this quantum frontier, where scarring phenomena first appear,
demonstrating that it can be obtained by semiclassical quanti-
zation of the corresponding scarring POs.

In this way, the DVR-DGB method will be used at values
h̄ = {0.01, 0.02, . . . , 3.00} a.u., obtaining the 130 low-lying
eigenstates for each value of h̄ with eigenenergies converged
to within 1 cm−1. It is worth noting that, in order to maintain
accuracy, the number of rays (the fixed values of θ coordinate

taken in DVR-DGB method) must be increased as h̄ decreases.
Thus, a final basis set of 414–418 ray eigenvectors lying in 45
rays will be used in the range h̄ ∈ [1.01, 3.00] a.u., a basis
set of 820–841 ray eigenvectors lying in 90 rays in the range
h̄ ∈ [0.31, 1.00] a.u., and a basis set of 1480–1710 ray eigen-
vectors lying in 180 rays in the range h̄ ∈ [0.01, 0.30] a.u.

D. Lagrangian descriptors

In our method, Lagrangian descriptors will be used to
compute the POs Maslov index, which are necessary for their
semiclassical quantization. Lagrangian descriptors have been
shown to be a very powerful tool to unveil the intricate in-
variant structures of the phase space of chaotic dynamical
systems. Note that different definitions for the Lagrangian de-
scriptors can be used, each of them leading to slightly different
results [14,15]. In our case, we will use the definition that has
been shown to be suitable for the Li-CN molecular system, in
particular in Refs. [16,17].

For a system with N dimensions, the Lagrangian descrip-
tors M are defined as follows:

M±(z0; α, τ ) = ±
2N∑

k=1

∫ ±τ

0
|żk (t )|α dt, (3)

where z = (z1, . . . , z2N ) is the vector formed by the N position
variables and their corresponding N conjugate momenta, such
that, Lagrangian descriptors are a function depending on the
initial condition z0 = (z10 , . . . , z2N0 ), at time t = 0, and two
fixed parameters, the exponent α ∈ (0, 1] and the integration
time τ ∈ (0,+∞). Note that, in the case of an unstable PO,
backward M− and forward M+ forms in Eq. (3) will permit
to obtain the unstable and stable invariant manifolds, respec-
tively. The overall Lagrangian descriptors M, as commonly
used in the literature, are given by the sum of both forms,
namely M = M− + M+.

For the Li-CN molecular system, we have N = 2 and
z = (R, θ, PR, Pθ ). Additionally, we will take the value α = 1
for the exponent, which corresponds to the integration of
the so-called taxicab norm [22] of the Hamiltonian flow
ż(t ) in Eq. (3), and the value τ = 486 fs for the integration
time, which is large enough compared with the inverse
of the stability exponent of the PO under study (namely,
|λ−1| = 87.50 fs) as prescribed in Ref. [17]. In any case,
note that the choice of these values is heuristic, and then it is
necessary to probe with different guesses until obtaining the
clearest picture of the invariant manifolds.

In order to calculate the Maslov index of a PO, different
initial conditions z0 = (R0, θ0, PR0 , Pθ0 ) will be taken along
the PO in configuration space, exploring the energetically
accessible momentum space at each position, as described in
the discussion of the results in Sec. III B 1.

III. RESULTS AND DISCUSSION

A. Quantum results

Although an extensive correlation diagram within the
ranges given in Sec. II C for h̄ and the corresponding
eigenenergies has been calculated, we will mainly focus on
the region where the quantum transition from order to chaos
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TABLE I. Values of the parameters determining the series of
avoided crossings that constitutes the frontier of scars separating the
regions of order and chaos in the correlation diagram of eigenener-
gies versus Planck constant. For each avoided crossing, the quantum
number n, the Planck constant value h̄n, the lower E−

n and upper E+
n

eigenenergy values, and their corresponding state numbers, N−
n and

N+
n , are listed.

n h̄n (a.u.) E−
n (cm−1) N−

n E+
n (cm−1) N+

n

12 2.430 3601 10 3694 11
14 1.930 3205 11 3274 13
16 1.600 2944 13 3000 14
18 1.370 2766 16 2814 17
20 1.200 2638 18 2680 19
22 1.062 2526 21 2564 22
24 0.955 2443 24 2479 25
26 0.867 2374 27 2407 29
28 0.794 2318 31 2348 32
30 0.733 2272 35 2301 36
32 0.684 2242 39 2270 40

occurs, i.e., the frontier of scars. The whole correlation di-
agram is not shown here, but it is reported in the previous
article [12]. Instead, a magnification centered on the frontier
of scars, with the semiclassical results superimposed, will be
shown in Fig. 7.

The values of the parameters determining the position of
the series of ACs that constitutes the frontier of scars are
listed in Table I. The center point of each AC, given by the
corresponding value of the Planck constant h̄n, is defined as
the value of h̄ at which the coupling 〈ψi|∂/∂ h̄|ψ j〉 between
the two eigenstates |ψi〉 and |ψ j〉 involved in the AC reaches
its maximum. It is worth noting that the mixing between both
states is completely determined by the coupling 〈ψi|∂/∂ h̄|ψ j〉
[7,8]. Accordingly, the lower E−

n and upper E+
n eigenenergy

values in Table I correspond to the energy of the two eigen-
states involved in the AC at Planck constant h̄n. Also, the
corresponding state numbers N−

n and N+
n are listed, where

N = 1 stands for the ground state. Observe that, due to the
existence of ACs where the interaction of the involved states is
ostensibly small, this giving rise to very sharp ACs nonobserv-
able by naked-eye inspection in the eigenenergies correlation
diagram, the state numbers N−

n and N+
n are not consecutive in

all cases. Notice that the well known noncrossing rule ensures
that, in this system, all eigenstates undergo ACs.

All parameters in Table I are labeled by the quantum
number n associated with each AC, which is obtained from
the nodal pattern of the corresponding scarred wave function.
Namely, the quantum number n is calculated by counting the
number of times that the graph of the scarring PO crosses
a nodal line of the scarred wave function. Note that, due to
the extended range of the angular coordinate θ ∈ [0, 2π ] rad
mentioned above in Sec. II C, all values of n are even num-
bers. The quantum number n represents excitation neither
in the R coordinate nor in the θ coordinate, but in the co-
ordinate defined along the corresponding scarring PO. As
was shown in Ref. [23], this quantum number of scarred
states is related to the different bands appearing in the ap-
propriate low-resolution spectrum, such that each band in the
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FIG. 1. Scarred wave functions corresponding to the upper
(a) and lower (b) states involved in the avoided crossing with quan-
tum number n = 16. The scarring periodic orbits, depicted in thick
line, have been superimposed on the wave functions. The energy
contour corresponding to each eigenenergy has also been included,
depicted in thin line.

spectrum is associated with the corresponding scarred state
and its quantum number. Moreover, the low-resolution spec-
trum of the Li-CN molecular system, related to the scarred
states involved in the frontier of scars, was studied in
Ref. [24]. As a representative example, the case of the AC cor-
responding to the quantum number n = 16 is shown in Fig. 1,
where the scarred wave functions are depicted with their scar-
ring POs superimposed on them. Observe that, characterizing
the scarring phenomenon, the extremes (maxima and minima)
of the wave functions are distributed along the corresponding
POs, such that counting the number of times that the graph
of a PO crosses a nodal line of the scarred wave function,
the quantum number n = 16 is obtained. Strictly speaking,
the scarring POs must be isolated unstable POs, otherwise
we would have a localization phenomenon rather than a scar-
ring phenomenon. In order to show the isolated and unstable
character of the involved POs, we have depicted in Fig. 2 a
composite PSS for the middle energy at the AC with quantum
number n = 16, where the periodic points corresponding to
the involved POs have also been superimposed as open circles.
As can be observed, in all cases each periodic point (at the
center of its open circle mark) is immersed in the chaotic
region, evidencing the isolated and unstable character of the
corresponding PO. Additionally, the stability of the involved
POs throughout the series of ACs have been determined by
the calculation of the trace of the monodromy matrix.

For the n = 16 case shown in Fig. 2, all of the three POs
are unstable and isolated; however, this is not the case for all
instances in the series of the ACs. For the lower state, only
one PO is involved (hereafter referred to as PO-C), which
is unstable and isolated throughout the series. For the upper
state, two POs are involved, one more and one less extended in
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−40

−20
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FIG. 2. Composite Poincaré surface of section, defined along
the minimum energy path, for energy E = 2972 cm−1, which cor-
responds to the middle energy at the avoided crossing with quantum
number n = 16. The periodic orbits referred to in the text as PO-A,
PO-B, and PO-C are marked with red (dark), cyan (light), and blue
(darkest) open circles (©), respectively. Gray region represents the
energetically forbidden region.

the θ -coordinate [approximately, θ ∈ [0.4, 1.6] π rad and θ ∈
[0.5, 1.5] π rad, respectively, in the case shown in Fig. 1(a)].
The less extended one (hereafter referred to as PO-B) is
unstable and isolated throughout the series, while the more
extended one (hereafter referred to as PO-A) is unstable and
isolated for the ACs where n = 12, 14, 16, 18, 20, but it is
stable for the ACs where n = 22, 24, 26, 28, 30, 32. These
facts will be taken into account again in Sec. III B 2, where the
semiclassical quantization is discussed. In any case, through-
out the series of ACs, there exists at least one isolated unstable
PO scarring the corresponding eigenstate. Additional details
about the characteristics of the POs in connection with the
onset of chaos of the LiCN molecular system can be obtained
in Ref. [20].

Moreover, it is interesting to note that the values of the
Planck constant h̄n, i.e., those where the ACs are centered,
have a high linear correlation with the quantized nh̄n, as
quantitatively indicated by the Pearson correlation coefficient
r = 0.99986. This linear correlation is shown graphically in
Fig. 3, where the least-squares fitting of a straight line to the
data points is also depicted. The fitted straight line

nh̄n = a + b h̄n (4)

has intercept a = 18.92 ± 0.03 a.u. and slope b = 4.20 ±
0.02, with a mean-squared error of 0.00166 (a.u.)2. This re-
sult will be used below in Sec. III B 2 in order to define a
continuous curve, derived from semiclassical quantization,
determining the frontier between order and chaos.

h  (a.u.)−n

nh
  
(a

.u
.)

−
n

0 0.5 1 1.5 2 2.5 3
10

15

20

25

30

35

40

FIG. 3. Linear correlation in the frontier of scars. Shown is the
quantization nh̄n versus h̄n, n and h̄n being the quantum numbers and
the Planck constant values, respectively, given in Table I. The least-
squares fitting of a straight line to the data points is also depicted.

B. Semiclassical results

The semiclassical quantization of an unstable PO, as ob-
tained by Gutzwiller in the derivation of his trace formula
[13], is given by

S = h̄
(

n + μ

4

)
, (5)

where S is the classical action over one period of the orbit,1h̄
is the Planck constant, n is the quantum number, and μ is the
Maslov index of the PO. This index is an invariant of the PO,
which counts the number of conjugate points over one period
of the orbit. Then, in order to accomplish the quantization
of the POs involved in the frontier of scars, it is previously
required the calculation of their Maslov indices.

1. Maslov index

As pointed out in Sec. II C, the original range of the angular
coordinate in the Li-CN molecular system is θ ∈ [0, π ] rad,
such that, due to the symmetry of the system, the line θ =
π rad behaves as a hard-wall potential, i.e., at θ = π rad the
incident angle of a classical trajectory is equal to the reflected
angle. The prescription of the semiclassical quantization when
there is a hard-wall is to add a value of 2 to the Maslov
index, accounting for the phase loss in the semiclassical prop-
agation of the wave along the classical trajectory. When the
range of the angular coordinate is extended to θ ∈ [0, 2π ] rad
by applying the symmetry line θ = π rad, the prescription
of adding a value of 2 to the Maslov index remains. Ob-
serve that this prescription is consistent with the fact that,
in the extended range θ ∈ [0, 2π ] rad, all eigenfunctions are
symmetric (with respect to the line θ = π rad), otherwise
antisymmetric eigenfunctions, with odd quantum numbers,
should also exist. Accordingly, a value of 2 must be added
to the Maslov indices of the POs calculated in the extended
range θ ∈ [0, 2π ] rad.

A rigorous calculation of the Maslov index can be
implemented by means of different techniques, from the long-

1Notice that the factor (1/2π ) have been included in the definition
of the action; otherwise, the original Planck constant h should be
used instead of the reduced Planck constant h̄.
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established method of Eckhardt and Wintgen [25], based on
the winding number of the invariant manifolds of the PO,
to the most recent method of Vergel et al. [26], based on
the number of zeros of the Jacobi field of the geodesic line
corrersponding to the PO in the geometrodynamic approach.
In all cases a rigorous calculation requires a demanding math-
ematical work.

Moreover, in some cases the Maslov index of a PO can be
obtained by means of an easy method, as is the counting of the
number of turning points in each degree of freedom over one
period of the orbit. Thus, for example, if we take Ref. [26],
where Maslov indices are calculated in the framework of the
geometrodynamic approach, and we focus on the unstable
POs of the two-dimensional system represented in Fig. 9 of
this reference, then the counting of the number of turning
points in the four cases represented in panels (b)–(e), which
correspond to POs with more and less complex graphs, gives
the correct Maslov indices (listed in Table II of Ref. [26]).
However, the counting of the number of turning points in the
two cases represented in panels (a) and (f), which correspond
to POs with extremely simple graphs (oblique and horizontal
straight lines, respectively), gives wrong Maslov indices. The
case in panel (a), the oblique straight line graph, is rather
trivial. The correct Maslov index is 2 and the counting of the
number of turning points is 4 (2 in each degree of freedom),
but a coordinate rotation leading from oblique to either hori-
zontal or vertical straight line yields a counting of 2 turning
points. On the contrary, the case in panel (f), the horizontal
straight line graph, is amazing. Indeed, as in the previous
case, we would expect a Maslov index of 2; however, the
correct Maslov index is 16. This case exemplify the complex
behavior that the Maslov index can sometimes exhibit, such
that easy methods as the counting of the number of turning
points should only be used when the obtained results can be
tested. Returning to the Li-CN molecular system, the graph
of the three scarring POs involved in the frontier of scars
have been depicted separately in Fig. 4, where their turning
points in each degree of freedom are highlighted. Observe
that by following each path over one period, i.e., going and
coming back to the initial point, the number of turning points
is the same in the three cases. The number of turning points
in the radial coordinate R, i.e., the points where its conjugate
momentum takes the value PR = 0 changing the sign, is 16.
Also, the number of turning points in the angular coordinate
θ , i.e., the points where its conjugate momentum takes the
value Pθ = 0 changing the sign, is 2. Then, accounting the
value 2 due to the hard-wall line at θ = π rad, the Maslov
index obtained by counting the number of turning points in
each degree of freedom is μ = 16 + 2 + 2 = 20. As we will
see in Sec. III B 2, the semiclassical energies obtained from
the quantization with the Maslov index μ = 20 are consistent
with the eigenenergies obtained from the quantum calcula-
tions for both PO-A and PO-B, i.e., those associated with the
scarred wave functions corresponding to the upper states in
the series of ACs. However, the results are inconsistent for
PO-C, i.e., that one associated with the scarred wave functions
of the lower states in the series of ACs, suggesting that the
Maslov index μ = 20 is not correct in this case.

In order to obtain the Maslov index for PO-C, we
will introduce a method based on the rigorous (and
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FIG. 4. Turning points of the scarring periodic orbits associated
with the scarred wave functions corresponding to the upper [(a) and
(b)] and lower (c) states involved in the series of ACs that constitutes
the frontier of scars. These periodic orbits are referred to in the text
as PO-A (a), PO-B (b), and PO-C (c). The turning points in the radial
coordinate R are marked with dots (•) while the turning points in the
angular coordinate θ are marked with open circles (©). The graph of
each periodic orbit, the minimum energy path, and the corresponding
energy contour are represented by thick magenta, medium blue, and
thin black lines, respectively.

mathematically demanding) technique of Eckhardt and Wint-
gen [25], but we simplify it through the use of Lagrangian
descriptors. Eckhardt and Wintgen showed that the Maslov
index of an unstable PO is given by the number of half-turns
around the PO of the associated invariant manifolds over one
period. When this calculation is implemented in configuration
space, rather than in phase space, the existence of simulta-
neous turning points (i.e., points of the trajectory where all
momentum values vanish at the same time value) must be
taken into account. This is the case when the path of the PO in
configuration space is self-retracing. Due to the singularities
that appear at the simultaneous turning points in configura-
tion space, the calculation fails at these points. The solution,
however, is straightforward: The value 1 must be added to the
number of half-turns for each simultaneous turning point. In
any case, the calculation of the number of half-turns is math-
ematically demanding. Our method calculates the number of
half-turns of the invariant manifolds by means of a suitable
graphical representation of the (easy to calculate) Lagrangian
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FIG. 5. Color scale representation of the forward form M+(Q, P) of the Lagrangian descriptors calculated along the unstable periodic orbit
in Fig. 4(c), referred to in the text as PO-C, over one period. Colorless white area represents energetically inaccessible region. The crossings
of the stable invariant manifold with the line P = 0 are marked with white open circles (©).

descriptors along the PO. Lagrangian descriptors have been
shown to be a straightforward tool to depict the invariant
manifolds of isolated POs embedded in the chaotic region of
nonlinear systems, in particular also in the Li-CN molecular
system [16,17]. In these works, the Lagrangian descriptors
were calculated in a typical PSS representation. In our case,
and for the sake of computing Maslov indices from them, a
little different surface of section will be used. Thus, for a given
total energy, we will consider a surface of section along the PO
in configuration space, parametrizing the position coordinates
(R, θ ) by means of the normalized length of the path, Q, such
that Q = 0 corresponds to the left simultaneous turning point,
Q = 0.5 corresponds to the right simultaneous turning point,
and Q = 1 again corresponds to the left simultaneous turning
point. Moreover, at each position Q in configuration space, all
energetically accessible momentum values will be explored,
parametrizing the momentum coordinates (PR, Pθ ) by means
of the form

P = (φ − φPO)‖P‖φ, (6)

where ‖P‖φ and φ ∈ [φPO − π, φPO + π ] rad are the mod-
ulus and angle, respectively, of the vector P = (PR, Pθ ) in
momentum space, φPO being the angle of the momentum
corresponding to the PO for each given position Q. Observe
that, as follows from the form of the Hamiltonian function
in Eq. (1), the curve of the energetically accessible values in
momentum space (for a given position Q) is a ellipse rather
than a circle. Consequently, the modulus ‖P‖φ depends on the
angle φ, hence the notation used. In this way, for a given PO,
the initial condition z0 = (R0, θ0, PR0 , Pθ0 ) of the Lagrangian
descriptors M±(z0) will be given by the parameterized po-
sition coordinates (R0, θ0) = (R, θ )Q and the parameterized
momentum coordinates (PR0 , Pθ0 ) = (PR, Pθ )Q,P, such that the
initial condition z0, as well as the Lagrangian descriptors
M±(z0), will be a function of (Q, P). Finally, in order to
avoid a double counting of the number of half-turns around
the PO of the associated invariant manifolds, only one of the
two (either the stable or the unstable) invariant manifolds will
be obtained by taken either forward M+(Q, P) or backward
M−(Q, P) form.

The forward form M+(Q, P) calculated for PO-C is de-
picted in Fig. 5. On the one hand, throughout the range of
Q we can observe a horizontal line for P = 0, which corre-
sponds exactly to the PO path. In fact, this line is the locus
were stable and unstable invariant surfaces intersect at the
origin of the tangent space of the PO. Consequently, this
horizontal line should evidently appear in the Lagrangian
descriptors. On the other hand, we can observe a series of
apparently different lines crossing the line P = 0, which
are approximately straight in the neighborhood of the cross-
ings while they stretch and twist as recede from these ones.
These crossing lines correspond to the two branches of the
stable invariant manifold, hence they are not different lines
but a single line which is given by the intersection of the
stable invariant manifold and our surface of section defined
above. The aforementioned stretching and twisting, resulting
from the nonlinear character of the Li-CN molecular system,
hinder the visualization of this geometric object as a single
line. Note that, since the value P = 0 corresponds to the mo-
mentum of the PO, at each crossing point the corresponding
branch of the invariant manifold coincides with the PO, i.e., it
determines a turn of the branch around the PO. Therefore, by
counting the successive crossing points we are counting the
alternating turns of each branch, namely, we are counting the
number of half-turns of the invariant manifold around the PO.

In this way, the correct Maslov index for PO-C would be
obtained as follows. The number of half-turns of the invariant
manifold around the PO over one period, calculated by count-
ing the number of crossings of the invariant manifold with
the line P = 0 in Fig. 5, is 18. The number of simultaneous
turning points of the PO in the configuration space, which are
clearly represented in Fig. 5 as the two singularities at Q =
0, 1 and Q = 0.5, is 2. Last, the hard-wall line at θ = π rad
adds the value 2. Eventually, the Maslov index of the third PO
will be μ = 18 + 2 + 2 = 22.

2. Quantization

In order to quantize the three scarring POs involved in the
frontier of scars, the quantization condition in Eq. (5) has
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been applied, taking in each case the corresponding Maslov
index calculated above and calculating the classical action S
as follows:

S = 1

2π

∮
PO

P · dQ

= 1

2π

∫ T

0

(
PRṘ + Pθ θ̇

)
dt

= 1

2π

(
1

μ1

∫ T

0
P2

R dt + 1

μ1

∫ T

0

P2
θ

R2
dt + 1

μ2r2
eq

∫ T

0
P2

θ dt

)
,

(7)

where the Hamiltonian function of the system [Eq. (1)] and
the canonical equations of Hamilton have been used. Note
that the integration is performed over the period T of the
corresponding PO. Also note that the obtained action depends
on the energy of the PO, such that, by integrating in Eq. (7)
for different energy values, the graph of the function S(E ) is
obtained. This graph, in the dimensionless form S(E )/h̄ (with
h̄ = 1 a.u.), is depicted in Fig. 6 for the three POs, namely
PO-A, PO-B, and PO-C. By taking the values of the Planck
constant h̄n corresponding to each AC with quantum number
n (values given in Table I), the dimensionless action S(E )/h̄n

for each AC, also depicted in Fig. 6, is obtained. Thus, the
quantization condition in Eq. (5) can be written in the form

S(En)

h̄n
=

(
n + μ

4

)
, (8)

where En is the quantized energy corresponding to the AC
with quantum number n. In Fig. 6, the left-hand side in Eq. (8)
is represented by the blue (dark) lines, while the right-hand
side corresponds to the horizontal gray lines, where the value
μ = 20 has been taken in Figs. 6(a) and 6(b) [cases PO-A
and PO-B, respectively], and the value μ = 22 in Fig. 6(c)
[case PO-C]. The quantized energies obtained from Eq. (8)
are superimposed on the correlation diagram of eigenenergies
versus Planck constant in Fig. 7, where the series of broad
ACs that constitutes the frontier of scars has been marked
with open circles. Notice that, from right to left in the fig-
ure, the quantum number n increases from n = 12 to n = 32
across the series, as indicated in Table I where all parame-
ters determining the series are listed. As was mentioned in
Sec. III A, the figure shows how the state numbers N−

n and
N+

n are not consecutive in cases n = 14 and n = 26, due to the
existence of sharp ACs. Notice also that the frontier of scars
actually separates the region of order (below the frontier),
characterized by sharp ACs, and the region of chaos (above
the frontier), characterized by overlapping ACs that lead to
level repulsion property. However, since the Li-CN molecular
system exhibits mixed chaos, such that it can be observed the
existence of stability islands embedded in the classical chaotic
sea, then it can also be observed the existence of sharp ACs
embedded in the quantum level repulsion sea.

Moreover, observe that the semiclassical results are in
good agreement with quantum results, demonstrating that the
frontier of scars can be obtained by means of the semiclas-
sical quantization of the corresponding scarring POs. More
specifically, it can be observed a good agreement throughout
the series of ACs for cases PO-A and PO-C, while a rough
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FIG. 6. Quantization of the scarring periodic orbits associated
with the scarred wave functions corresponding to the upper [(a) and
(b)] and lower (c) states involved in the series of avoided crossings
that constitutes the frontier of scars. These periodic orbits are referred
to in the text as PO-A (a), PO-B (b), and PO-C (c). The classical
action S(E ) obtained from Eq. (7), in the dimensionless form S(E )/h̄
(with h̄ = 1 a.u.), is depicted in cyan (light) line. The dimensionless
classical action for each avoided crossing S(E )/h̄n (with h̄n values
given in Table I), is depicted in blue (dark) line. Horizontal gray
lines represent the quantization condition in Eq. (5) for the indicated
quantum number n. The points where the quantization condition is
satisfied for each avoided crossing are marked with dots (•). The
open circle (©) marks the representative case with quantum number
n = 16 discussed in Sec. III A. The axis in (a) and (b) are the same
as in the big panel (c).

agreement is observed at the beginning of the series (n =
12), which progressively becomes a good agreement as n in-
creases, for the case PO-B. It is interesting to note that, as was
mentioned in Sec. III A, PO-A is unstable for quantum num-
bers n = 12, 14, 16, 18, 20, which are the quantum numbers
for which the agreement for PO-B is not good enough, while
it is stable for quantum numbers n = 22, 24, 26, 28, 30, 32,
which are the quantum numbers for which the agreement is
good enough. In other words, it seems that, when quantum
number increases from n = 20 to n = 22, PO-B replaces PO-
A in the role of isolated unstable PO required for scarring
phenomena.

Finally, we will take advantage of the linear relationship in
Eq. (4) to obtain a semiclassical continuous expression for the
frontier between order and chaos. Notice that from Eq. (4) we
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FIG. 7. Magnification of the correlation diagram of eigenenergies versus Planck constant centered on the quantum frontier of scars [marked
with red open circles (©)], that separates the regions of order and chaos. The circled circle symbol (�) marks the representative case with
quantum number n = 16 discussed in Sec. III A. On grounds of graphical clarity, energy is divided by Planck constant. The energies obtained
from the semiclassical quantization of the three periodic orbits in Fig. 4 (a) PO-A, (b) PO-B, and (c) PO-C are marked with red (dark), cyan
(light), and blue (darkest) dots (•), respectively. The semiclassical frontier between order and chaos is depicted in thick gray line.

can write

h̄n = S∞
(n − n0)

, (9)

where S∞ = 18.92 ± 0.03 a.u. and n0 = 4.20 ± 0.02 are the
intercept a and slope b, respectively, in Eq. (4). The phys-
ical meaning of parameter n0 in Eq. (9) is clear: Since
limn→n0 h̄n = +∞, it is the lower limit of the open interval
defining the domain, i.e., n ∈ (n0,+∞) | n ∈ 2N. In other
words, the quantum number n could take any even value
strictly greater than n0. Moreover, the physical meaning of
parameter S∞ is obtained by inserting Eq. (9) into the quanti-
zation condition in Eq. (8), namely

Sn = h̄n

(
n + μ

4

)

= S∞
(n + μ/4)

(n − n0)
, (10)

where it is fulfilled that limn→∞ Sn = S∞. Then, the parameter
S∞ is the asymptotic value of the action in the semiclassical
limit n → ∞ (i.e., h̄n → 0). Notice that Eq. (9) accurately
retrieves the values of the Planck constant h̄n for the corre-
sponding quantum number n at each AC listed in Table I,
such that by applying the quantization condition, which is
represented in Fig. 6, the quantized energies En depicted in
Fig. 7 are also accurately obtained. Therefore, if in this pro-
cess we consider a continuous rather than discrete domain
for the “quantum” number n ∈ (n0,+∞) when applying the
“quantization” condition, then an also continuous rather than
discrete set for the energies will be obtained. This continuous
set of energies constitutes the semiclassical frontier between
order and chaos, which is depicted superimposed on the cor-
relation diagram in Fig. 7 for the case PO-C.

It is worth noting that the linear correlation shown in Fig. 3
and the corresponding fitted straight line given in Eq. (4)

should be an approximation, i.e., the behavior of nh̄n versus
h̄n is nearly but not strictly linear. In particular, as the position
of the point with highest quantum number (n = 32) in Fig. 3
seems to indicate, the series could deviate from the linear
behavior as n increases (i.e., h̄n decreases). Consequently, the
relationships in Eqs. (9) and (10), both derived from Eq. (4),
will also be approximate. However, we think that their quali-
tative behavior, namely, monotonically decreasing functions
(considering a continuous domain) with vertical asymptote
at n = n0 and horizontal asymptote at h̄ = 0 or S = S∞ in
each case, is the correct one. The value n0 ≈ 4 obtained from
the fitting implies that the minimum value for the quantum
number is n = 6, since it must be an even integer strictly
greater than n0. However, the AC with the lowest possible
quantum number, since there are not lower states leading to an
AC, corresponds to n = 8 (see the previous article [12]), hence
the vertical asymptote could be at n = 6 (due to the deviation
from the linear behavior) rather than at n = 4. Moreover,
the value S∞ ≈ 19 a.u. obtained from the fitting corresponds
to an energy around E ≈ 1700 cm−1 in the classical action
function S(E ) for PO-C. Note that, as was pointed out in
Sec. II A, this energy value also corresponds to the classical
transition from order to chaos in the Li-CN molecular system.
However, if we assume the deviation from the linear behavior
suggested by the point corresponding to n = 32 in Fig. 3,
then the horizontal asymptote should be at a value greater
than the fitted parameter, such that there would be no direct
relation to the threshold energy of transition to classical chaos.
As a conjecture connected with the scarring phenomena, per-
haps the horizontal asymptote could be at S ≈ 22 a.u., which
corresponds to the energy E = 1958 cm−1 at which PO-C
bifurcates becoming an isolated unstable PO. In any case,
the question of the semiclassical limit h̄n → 0 of the series
of ACs that constitutes the frontier of scars remains an open
question.
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IV. SUMMARY AND CONCLUSIONS

We have studied the frontier of scars, previously estab-
lished in the literature [7,8], that separates the regions of
order and chaos in the correlation diagram of eigenenergies
versus Planck constant of the Li-CN molecular system, with
the purpose of demonstrating that it can be obtained through
the semiclassical quantization of the involved scarring POs. It
should be remarked that, as shown by previous work of our
group, this method is like a microscope in the phase space,
where by changing the magnification power by decreasing the
value of h̄, many relevant features of the vibrational states of
the system.

Three scarring POs, referred to as PO-A, PO-B, and PO-C,
are involved in the frontier of scars, which is constituted by
a series of broad ACs. The first two (PO-A and PO-B) are
associated with the upper eigenstates in the series of ACs,
while the third (PO-C) is associated with the lower eigen-
states. Moreover, within the whole energy range, the last two
(PO-C and PO-B) are isolated unstable POs, while the first
one (PO-A) changes from isolated unstable to stable PO as
quantum number increases (i.e., energy and Planck constant
decrease) throughout the series. When these POs are quan-
tized, yielding the corresponding semiclassical energies, the
cases PO-A and PO-C give throughout the series a good agree-
ment with the energies of the upper and lower eigenstates,
respectively. However, the case PO-B evolves, as quantum
number increases in the series, from a energy value close to
the energy of the lower eigenstate, until a energy value close
to the energy of the upper eigenstate. Indeed, the energies of
both eigenstates corresponding to each AC in the series can be
obtained through the semiclassical quantization of an isolated
unstable PO, namely, case PO-C for the lower eigenstate and
cases PO-B or PO-A (depending on the quantum number) for
the upper eigenstate. And this is the main result of our work.

Additionally, we have found an approximate linear corre-
lation in the frontier of scars that relates quantum number
and Planck constant value at which each AC takes place.
Extending the discrete domain of the quantum number in

this relationship to a continuous domain, and applying the
“quantization” condition, we have obtained the continu-
ous semiclassical frontier between order and chaos, which
matches the quantum frontier at (positive even) integer
quantum numbers. Moreover, although the relationship is ap-
proximate, we can assume that the qualitative behavior of
the quantized action derived from it is correct. Namely, as
quantum number increases, the quantized action monotoni-
cally decreases from a vertical asymptote towards a horizontal
asymptote. Assuming a positive deviation from the linear
behavior as quantum number increases, we have conjectured
values n = 6 and S ≈ 22 a.u. for the vertical and horizontal
asymtote, respectively (rather than values n0 = 4 and S∞ ≈
19 a.u. obtained from the linear fitting), which are related to
the first possible AC in the frontier of scars observed in the
correlation diagram and the bifurcation where PO-C becomes
an isolated unstable PO.

On the other hand, in order to calculate the nontrivial
Maslov index of case PO-C, which is necessary for the semi-
classical quantization, we have introduced a straightforward
method based on Lagrangian descriptors [14]; this is the
second relevant contribution of this paper. Notice that, in
the cases PO-B and PO-A, the Maslov index was trivially
obtained by counting the number of turning points in each
degree of freedom. Eckhardt and Wintgen [25] proved that
the Maslov index of a PO can be obtained by calculating the
winding number of the invariant manifolds over one period,
albeit the direct calculation of this parameter is mathematical
demanding. However, we have shown how this winding num-
ber can be obtained by means of the easily calculation and
depiction of the Lagrangian descriptors on a suitable surface
of section along the corresponding PO.
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