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Information propagated by longitudinal pulses near a van der Waals phase transition
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Longitudinal pulses that propagate in a medium near a van der Waals phase transition have a sigmoidal
dependence on the strength of the stimulus arising from the phase structure. This response resembles the
all-or-nothing property of action potentials, which raises the question if an acoustic system near a phase transition
can be suitable for material-based neuromorphic computation. Herein, we investigate how information about the
stimulus is stored within these pulses. We find that (1) the pulse propagates in parallel both digital and analog
information about the stimulus amplitude; (2) the pulse encodes the type of stimulus, for instance, mechanical or
thermal; and (3) a collision between two pulses stores information about both stimuli and may be used as a fading
memory. Our results unravel a rich encoding of information in a phenomenon that is both common in a plethora
of materials and mimics neuronal signaling. In addition, we show that these pulses carry more information than
is typically considered by models of neural computation. Therefore, this phenomenon is an excellent candidate
for in materio computation.
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I. INTRODUCTION

Longitudinal waves propagate through a medium by means
of local compression and rarefaction, where mechanical
forces are exerted on adjacent regions and transfer elastic
and kinetic energy. This is a universal phenomenon, emerg-
ing from the conservation of momentum in practically any
material [1]. In the small amplitude limit, the conservation
and constitutive equations simplify into the linear wave equa-
tion, which indeed captures many properties of longitudinal
waves in water and air. For example, small amplitude longi-
tudinal waves are produced at a broad range of amplitudes
and frequencies, their local changes in density and pressure
are linearly proportional to one another, and the waves pass
through each other without being disturbed. Other phenom-
ena, such as shock waves, solitons, and rogue waves, are not
described by the linear wave equation and require a more
detailed description of the medium [2].

In this paper, we investigate the characteristics of nonlinear
longitudinal waves that cause a reversible phase transition
in the medium. The simplest hydrodynamic description in-
cludes the van der Waals (vdW) equation of state that accounts
for the volume occupied by the particles of the medium and
their short-range interparticle attraction forces. These charac-
teristics are sufficient to generate a steep transition in density.
A vdW-like phase diagram is common in a plethora of soft
materials, including the liquid-vapor transition in fluids com-
posed of a single species such as water and nitrogen [3], order-
disorder transition in lipid membranes [4], volume transition
in polymer gels [5], and metamaterial with microstructure
instabilities [6]. Therefore, the study of longitudinal waves
near a phase transition is relevant for many different systems.
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Longitudinal pulses that reversibly cross a vdW-like phase
transition share many similar properties with action poten-
tials, electric signals that propagate along the lipid membrane
of excitable living cells [7]. Both types of pulses have a
sigmoidal response to stimulation strength, they annihilate
upon collision, and the two phenomena have a resembling
characteristic shape [8–11]. In addition, the structure of the
governing hydrodynamic equations is analogous to the gen-
eralized FitzHugh-Nagumo model [12]. Although the pulse
duration and propagation velocity differ between materials,
an additional resemblance to action potentials exists in lipid
interfaces near the order-disorder transition, where both the
time and velocity scales are the same as those of action
potentials, respectively, ∼10−3 to 1 s and ∼10−1 to 102 m/s
[9,13]. Moreover, in charged lipid membranes, an associated
variation in electric potential copropagates with the longitu-
dinal pulse with a scale of ∼1–100 mV, like action potentials
[13–15].

Intense research on action potentials led to the success-
ful development of biologically inspired computing schemes,
such as artificial neural network models, capable of solving
complex tasks that benefit from adaptivity and learning from
examples [16,17]. Therefore, the close resemblance between
action potentials and longitudinal pulses near a phase transi-
tion suggests that the latter might be harnessed for computing
schemes inspired by neuronal signaling. Exploiting the prop-
erties of a medium to perform neural algorithms offers many
potential advantages over classical von Neumann computing,
such as parallelism, reduced energy consumption, and en-
hanced computational performance [18–20].

Indeed, unconventional wave-based computation has pre-
viously been explored in waves that either superimpose or
annihilate upon collision, offering computational algorithms
at different levels of sophistication [21–29]. However, in those
works, the propagating waves are described using a single
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variable. For small amplitude longitudinal waves, these com-
putational schemes can be sufficient because the oscillatory
variations of the density and pressure are linearly proportional
to one another. However, at the nonlinear limit, the variations
of these observables are no longer proportional, and the in-
formation about the stimulus is cast into a high-dimensional
space of observables [13]. This property makes an acoustic
system extremely suitable for material-based neuromorphic
computing [22].

An important step in the attempt to harness longitudinal
waves to perform neuroinspired computation, which is the
goal of this paper, is to understand how information about
the stimulus is stored in the pulse. Here, we demonstrate
that, compared with standard neural models, more informa-
tion about the stimulus is stored in longitudinal pulses: (1)
The multidimensionality of the pulse contains more than an
all-or-nothing and includes both digital and analog informa-
tion about the stimulus amplitude. (2) The pulse contains
information about the type of stimulus, for instance, if it was
stimulated mechanically or by locally increasing the temper-
ature. (3) Collision sites are longlasting (∼5 times the pulse
duration) and may be used as locations for short-term mem-
ory. Our results emphasize the richness of the phenomenon;
consequently, such a system is an excellent candidate for
material-based computing that mimics and potentially even
surpasses neural network dynamics.

II. MODEL DESCRIPTION

To explore the information stored in longitudinal pulses
that reversibly cross a phase transition, we investigate a hy-
drodynamic model that includes the simplest form of phase
transition: the vdW fluid model [11,12,30]. The compressible
fluid model couples five variables of the system: specific
volume, pressure, temperature, energy, and velocity fields,
respectively, w, p, θ, E , and v, using three conservation laws
and two constitutive relations. The fluid density is inversely
proportional to the specific volume ρ = w−1. For simplicity,
we vary only one spatial dimension of the medium and study
plane-wave solutions. In the Lagrangian frame of reference
and in dimensionless units designated using the tilde nota-
tion, the conservation of mass, momentum, and energy, are,
respectively [11,12],

∂t̃ w̃ = ∂X̃ ṽ,

∂t̃ ṽ = ∂X̃ τ̃ ,

∂t̃ Ẽ = ∂X̃ (τ̃ ṽ) + ∂X̃ (C̃∂X̃ ṽ∂X̃ w̃) + k̃∂2
X̃ θ̃ . (1)

Here, τ̃ is the dimensionless stress in the fluid:

τ̃ = −p̃ + ∂X ṽ − C̃∂2
X w̃, (2)

and X̃ is the dimensionless spatial coordinate in the La-
grangian frame of reference. The spatial coordinate X̃ (in the
Lagrange frame) is related to the x axis (in the Euler frame)
by the cumulative mass of fluid particles [31]:

x̃ =
∫

w̃dX̃ . (3)

The proper time and length scales used to determine the
dimensionless equations are

T = ζ

pc
, L = ζ

√
wc

pc
, (4)

with ζ the dilatational viscosity, and (wc, pc, θc) are the
critical specific volume, critical pressure, and critical temper-
ature of the phase transition, respectively. More details about
the dimensionless parameters, variables, and equations are
provided in the supplemental material of Ref. [11].

The two vdW constitutive relations are

p̃ = 8θ̃

3w̃ − 1
− 3

w̃2
,

Ẽ = ṽ2

2
+ c̃v θ̃ − 3

w̃
+ C̃

2
(∂X w̃)2. (5)

The dimensionless model Eqs. (1) and (5) depend on three
dimensionless parameters: specific heat capacity, thermal con-
ductivity, and capillarity coefficient:

c̃v = cvθc

pcwc
, k̃ = kθc

pcwcζ
, C̃ = C

ζ 2
, (6)

with cv the heat capacity at constant volume, k the coeffi-
cient of thermal conductivity, and C the capillarity coefficient.
The system of Eqs. (1) and (5) is numerically solved using
the Dedalus open-source code [32], which is based on a
pseudospectral method. The model is solved using periodic
boundary conditions and with homogeneous initial conditions
(w0, p0, θ0) in the disordered phase.

Pulses are stimulated by injecting a localized current
(around X̃0) with an amplitude Astim for a brief time (t̃0).
We focus on solitary pulses stimulated by locally increasing
either the pressure or temperature for a brief duration. The
dimensionless pressure stimulus is obtained by adding the
following term into the density-pressure-temperature consti-
tutive relation:

p̃stim�(t̃0 − t̃ )exp

[
− (X̃ − X̃0)

2

2λ2

]
. (7)

A localized temperature stimulus is obtained by adding
the following term into the energy-temperature constitutive
relation:

c̃v θ̃stim�(t̃0 − t̃ )exp

[
− (X − X0)2

2λ2

]
. (8)

Here, � is the Heaviside function and λ the width of the
stimulus.

III. RESULTS

A. Information about the stimulus strength

Multiple properties of longitudinal pulses near a vdW
phase transition were previously analyzed, including their
characteristic shape and trajectory in phase space, and these
details are given elsewhere [11]. Here, we examine the de-
pendence of the peak density, pressure, and temperature of
the pulse as the amplitude of the stimulus is increased. To
stimulate a longitudinal pulse, we apply a local stress into
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FIG. 1. Amplitude of (a) density, (b) pressure, and (c) temperature aspects of a solitary wave as a function of local mechanical stimulation
strength, as calculated at a distance x

L = 1.2 from the stimulation point. Dashed line in (a) represents the maximum density allowed by
the exclusion of volume. Parameter values are (c̃v , k̃, C̃) = (600, 100, 1), additional initial conditions are (w̃0, ṽ0, θ̃0 ) = (1.5, 0, 0.93), and
stimulation parameters are (X0, t̃0, λ) = (0, 0.1, 0.0625). Numerical calculation was conducted using 4096 grid points over an x domain
[−3π /2, 3π /2] and dt̃ = 3 × 10−4.

the system by setting Astim = pstim and adding Eq. (7) into
the upper Eq. (5). Small-amplitude longitudinal waves cause
a parallel incremental variation of the density, pressure, and
temperature relative to their equilibrium values. By setting
the equilibrium state close to the phase transition region in
the low-density phase, the response of the three observables
is significantly affected by the phase transition. At small
amplitude of stimulation pstim

pc
< 50, the response is almost

linear, as shown in Fig. 1(a), the inset of Fig. 1(b), and
Fig. 1(c). Increasing the amplitude of stimulation to larger
values, 50 <

pstim

pc
< 120 in Fig. 1, brings the system into the

phase transition region. At this range of stimulation ampli-
tude, a substantial increase in the amplitude of the density
aspect is obtained because the system is softer in this region.
At even stronger stimuli, 120 <

pstim

pc
, the state reaches the

high-density phase. Because of the exclusion of volume, the
amplitude of the density aspect saturates at ρ

ρc
= 3, while

the pressure and temperature aspects do not, as shown in
Figs. 1(a)–1(c), respectively.

Figure 1 demonstrates that the response of the density
aspect to stimulus strength has a sigmoidal shape near the
phase transition, as was previously shown [11]. In contrast,
the response of the pressure and temperature is nonsaturating
and resembles a smooth rectified linear unit (sReLU) function.
Hence, longitudinal pulses near the phase transition carry both
digitallike (sigmoidal) and analog (sReLU) information about
the stimulus strength in different observables. Depending on
the medium, additional observables that copropagate with the
pulse can be considered. For example, in lipid membranes,
variations in additional observables that propagate with the
pulse include the charge density of the medium, transmem-
branal electric potential, and concentration of nearby ions
[13]. Although not shown here explicitly, we find that the
concentration of charged ions near the membrane, pH, and
electric potential difference also demonstrate sigmoidal re-
sponses to stimulation, while the total energy shows an sReLU
response.

B. Information about the stimulus type

We have previously shown that using different types of
stimuli generate similar responses of the density aspect of

longitudinal pulses that reversibly cross the phase transition.
This was demonstrated by replacing the pressure stimulus
with either temperature or energy stimuli [11]. Therefore,
upon measuring the density aspect, it is challenging to de-
duce the source of stimulus, as shown in Fig. 2(a) for local
pressure (solid black curve) and temperature stimuli (dotted-
dashed yellow curve). In contrast, upon studying the pressure
and temperature aspects, we recognize significantly differ-
ent responses, as shown in Figs. 2(b) and 2(c), respectively.
The trajectory of the signal in the p − w plane of the vdW
phase space is shown in Fig. 2(d). Evidently, the temperature
stimulus generates a stronger response of the pressure and
temperature observables than the pressure stimulus. Thus, the

FIG. 2. Comparison of the (a) density, (b) pressure, and (c) tem-
perature aspect responses at a distance x/L = 1 from the stimulation
point, upon using either a pressure (solid black curve) or temper-
ature (dotted-dashed yellow curve) stimulus. (d) Trajectory of the
wave in the p − w projection of the van der Waals (vdW) phase
space. Initial state is marked with a black-filled circle. Dark-blue and
blue curves represent the coexistence and spinodal curves, respec-
tively. Parameter values: w̃0 = 1.8. Other parameters are the same as
in Fig. 1.
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FIG. 3. (a) Numerical solution of density field as a function of
space (x axis) and time (y axis) for two pulses in the nonlinear
regime. Blue denotes the low-density phase and red the high-density
phase. (b) Collision site is asymmetric when pulses have different
amplitudes. Yellow dashed lines mark a region used to analyze the
data presented in Fig. 4. Two stimuli were applied at x/L = ±2 with
amplitudes of p̃amp = 190 for the symmetric case and p̃amp = 190
and 160 for the assymetric case. Other parameter values are the same
as in Fig. 1.

transient change of both pressure and temperature carry infor-
mation about the type of stimulus in addition to its amplitude.

C. Collision site as short-term memory

We now turn to examine the outcome of a head-on collision
between two pulses. Collision sites do not exist in the linear
regime, and two pulses penetrate one another. However, the
transition from the linear to nonlinear response of the medium
is accompanied by partial or complete annihilation, as shown
in Fig. 3(a). This behavior is in accord with measurements in
lipid monolayers [10]. The annihilation events—as calculated
from the vdW fluid model—are associated with a long-lived
nonequilibrium state whose spatial size can be ∼5 times the
width of the pulse, and its duration is ∼5 times the duration of
the pulse. The shape of the collision site, however, is sensitive
to various properties of the colliding pulses, including the
distance of the stimuli from one another and the amplitude
of the two stimuli. The effect of the latter is exemplified in
Fig. 3(b), showing how two pulses stimulated at different
amplitudes generate an asymmetric collision site.

To illustrate how information about the two stimuli can be
extracted from the collision site, we calculate the peak am-
plitude at the collision site and connect it to the amplitude of
the two stimuli. The maximum values of the density, pressure,
and temperature fields at the collision site are calculated in a
region enclosed by the two dashed lines shown in Fig. 3(b).
The results are plotted in Fig. 4 as a function of the amplitude

of one stimulus, while the other is held fixed at pstim

pc
= 190

(solid black curve), 160 (dotted-dashed dark red curve), and
140 (dashed blue curve), respectively. The peak of density and
pressure shows variability depending on the amplitude of both
stimuli [Figs. 4(a) and 4(b)], but the peak of temperature is
sensitive mainly to the larger amplitude [Fig. 4(c)]. Hence,
the temperature signal can pinpoint the peak of the larger
amplitude. Subsequently, we can use the data from either the
density or pressure fields to estimate the amplitude of the other
stimulus.

IV. DISCUSSION

Many properties of longitudinal pulses that reversibly
cross a vdW-like phase transition are like action potentials
[7–11,13,14,33]. These similarities imply that it may be pos-
sible to harness longitudinal waves for in materio computing
schemes using principles of biological or artificial neural
network algorithms. The sigmoidal response is especially
important because it provides a close analogy to the all-or-
nothing nature of action potentials [34,35]. Herein, we showed
that longitudinal pulses near a phase transition propagate in
parallel a sigmoidal response of the density and electrical (in
charged medium) aspects and an sReLU response of the pres-
sure, temperature, and energy aspects. Interestingly, in recent
years, it was demonstrated that, in artificial neural network
models, a ReLU activation function shows better convergence
performance than the sigmoidal activation function [36,37].
We find the observation that two functions so commonly
used in artificial neural modeling emerge in hydrodynamics
from the structure of the phase diagram is surprising and
nonintuitive. Importantly, this result is general and requires
no finetuning. These dependencies are a direct consequence
of the soft nature of the coexistence of phases and the volume
exclusion [11].

The parallel propagation of both digitallike and analog
information about the stimulus means that longitudinal pulses
carry more information than is typically considered in neu-
ronal and artificial neural models (Fig. 1). An additional
observation that stresses the importance of the multidimen-
sionality of the signal is the insensitivity of the density aspect
to different types of stimuli, as shown in Fig. 2(a). By reading
the pressure or temperature aspects, we gain knowledge about
the source of the stimulus not visible from the density or

FIG. 4. The maximum value of the (a) density, (b) pressure, and (c) temperature aspects as calculated at the collision site [area enclosed
by the two dashed lines in Fig. 3(c)] as a function of the stimulation amplitude. The second stimulus was held constant at pstim

pc
= 190 (solid

black curve), 160 (dotted-dashed dark red curve), and 140 (dashed blue curve), respectively. Parameter values are the same as in Fig. 1.
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electrical aspects. Algorithms that could exploit the multidi-
mensionality of the signal have not yet been considered.

From the experimental side, a practical system that can
be used to stimulate these signals is a lipid membrane that
includes a vdW-like phase transition at standard laboratory
conditions of pressure and temperature. The emerging lon-
gitudinal pulses propagate at time and velocity scales that
require only moderate sampling rate, respectively, ∼10−3 to 1
s and ∼10−1 to 102 m/s [9,13]. In addition, the electrical
aspect in charged lipid membranes becomes visible or hidden
depending on the membrane charge density, which can be
modified by changing the subphase acidity [13]. This pro-
vides a means to reveal or hide certain features of the digital
aspect.

The longitudinal pulses discussed in this paper undergo
dispersion and lose their velocity and structure over a dis-
tance of ∼3−10 times the typical pulse size [11]. A way
to overcome this issue of pulse dispersion would be via the
subdivision of the computing substrate into interconnected
compartments [38]. Such a network structure of lipid bilay-
ers may be constructed using porous polymer sponges to
produce millimeter-sized lipid interconnected compartments
[39]. Subdivision of the medium into separate components

further provides convenient degrees of freedom to tune the
system into a desired response. This approach is referred to
as physical learning and is usually achieved by choosing a
learning rule that modifies these learning parameters [40].
Accordingly, the local mechanical characteristics of the lipid
membrane may be treated as learning parameters since they
directly modify the properties of the pulses. Since the mechan-
ical parameters are closely linked to the geometrical structure
of the membrane, these parameters may be tuned by locally
exposing the membrane to external stimuli, such as pressure,
temperature, or light [41–43].

In conclusion, nonlinear longitudinal pulses that reversibly
cross a phase transition show a rich dynamical behavior that
resembles neural activity and casts the information about the
stimulus into a high-dimensional space. Consequently, these
pulses could be useful to explore unconventional approaches
for in materio computation.
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