
PHYSICAL REVIEW E 108, 034208 (2023)

Impact of phase lag on synchronization in frustrated Kuramoto model
with higher-order interactions
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The study of first order transition (explosive synchronization) in an ensemble (network) of coupled oscillators
has been the topic of paramount interest among the researchers for more than one decade. Several frameworks
have been proposed to induce explosive synchronization in a network and it has been reported that phase
frustration in a network usually suppresses first order transition in the presence of pairwise interactions among
the oscillators. However, on the contrary, by considering networks of phase frustrated coupled oscillators in
the presence of higher-order interactions (up to 2-simplexes) we show here, under certain conditions, phase
frustration can promote explosive synchronization in a network. A low-dimensional model of the network in
the thermodynamic limit is derived using the Ott-Antonsen ansatz to explain this surprising result. Analytical
treatment of the low-dimensional model, including bifurcation analysis, explains the apparent counter intuitive
result quite clearly.
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I. INTRODUCTION

Synchronization [1–3] is a captivating phenomenon ob-
served in natural and artificial systems [4–14]. A large set
of coupled oscillators undergoes a continuous synchroniza-
tion transition if the interaction strength among themselves
is gradually increased. To describe such transition, a sim-
ple and analytically tractable phase model was developed by
Yoshiki Kuramoto [10], in which each oscillator has its own
intrinsic frequency (ωi), and cross-talks to each other via a
periodic coupling function representing pairwise interactions.
The phase of the ith oscillator is given by

θ̇i = ωi + K
N∑

j=1

sin(θ j − θi ), i = 1, 2, . . . , N, (1)

where K is the coupling strength and θi is the phase of the ith
oscillator. To measure the level of synchronization, the order
parameter r is defined as

reiψ = 1

N

N∑
j=1

eiθ j . (2)

The classical Kuramoto model (KM) [10,15] described above
shows second order (continuous) or first order (explosive)
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transition to synchronization (r → 1) state depending on the
choice of natural frequencies, as the coupling strength is
gradually increased from a small value. In general, it shows
second order transition for unimodal frequency distributions
[2], whereas first order transition is observed for uniform or
bimodal distribution of frequencies [16,17,19]. All the oscilla-
tors rotate with the mean of the natural frequencies in a higher
coupling strength. However, different scenarios may appear
if a phase-lag or frustration parameter (β) [13,18–27] is in-
troduced in the pairwise coupling function [sin(θ j − θi − β )].
This phase-lag parameter shifts the system’s synchronous fre-
quency from the mean natural frequency. Thus, β can be
used as a control parameter that can tune the mean frequency
to a desired one [24]. The model was first introduced by
Sakaguchi jointly with Kuramoto and is presently known as
the Sakaguchi-Kuramoto (SK) model. In the SK model, the
phase lag β generally opposes the coupled system to reach
to the global synchronous state and consequently, higher cou-
pling strength compared to KM is required for achieving a
desired level of synchronization. Also, for a particular choice
of frequencies, the synchronization may deviate from the
universal continuous transition route [19,28,29]. Further it
has been shown, that in a complex network setup, the SK
model cannot reach a global synchronous state (called ero-
sion of synchronization) [30]. Even over a critical β, where
the natural frequencies are correlated with degree, the hys-
teresis or explosive width can entirely vanish, and the level
of synchronization would be significantly reduced [20]. To
overcome such situations, the design of suitable frequencies
[22,23,31], usage of multiple layers of networks [32–34], and
time-dependent coupling functions [35] have been proposed.
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FIG. 1. Schematic diagram of a simplicial complex consisting of
0-simplex (circles), 1-simplex (edges), and 2-simplex (triangles).

Note that models of Josephson junction arrays [13], power
network systems [27], dynamics of mechanical rotors [36],
quantum networks [26] all can be captured by such phase-lag
oscillators under the paradigm of pairwise interactions.

However, in recent studies the importance of incorporating
higher-order interactions (HOI) along with its pairwise coun-
terpart has been emphasized [37–50]. Specifically, the works
on neuroscience [45–47,51], ecology [52–55] and physics
[56] have highlighted the crucial role of such higher-order
interactions (e.g., in a collaboration network multiauthor
collaboration [57]) in addition to pairwise one. Simplicial
complexes [58,59] can successfully encode these higher-order
structures. An n simplex is formed by (n + 1) interacting
units, consisting of all the d (< n) simplexes. For example, 1-
simplex denotes the pairwise interactions, 2-simplex denotes
the three way interactions, including pairwise one, and so on.
These simplices adhere to one another along their sides, and
form a simplicial complex. Figure 1 represents a schematic
diagram of a simplicial complex with higher-order interac-
tions. Until now some of the dynamical behaviors induced by
the HOI have been explored including multistability [60,61],
chimera states [62], chaos [63], etc. Also, it has been shown
that the presence of HOI along with pairwise interactions can
produce high levels of synchronization in weaker coupling
strength [64] and may lead to the first order or discontinuous
transition to desynchronization [60]. Recently, Skardal et al.
has reported in [65] that the HOI in a simplicial complex
can exhibit abrupt transition to synchrony, without any de-
gree frequency correlation. Subsequently, in [66], it has been
demonstrated that adaptation to higher-order coupling leads
to tired synchronization transition in addition to second order
transition.

In this paper, we consider the SK model with HOI under
the all-to-all coupling configuration and observe a signifi-
cantly different effect of phase frustration compared to the
ones observed in the presence of solely pairwise interac-
tions. For simplicity we restrict ourselves toward pairwise
and triadic interactions only. It is observed that instead of
inhibiting discontinuous transition to synchronization, phase -
lag promotes it in certain regions of the parameter space in the
presence of HOI. This surprising result is explained based on
an analytical framework based on Ott-Antonsen anastz [67].

II. MODEL DESCRIPTION AND NUMERICAL
SIMUATIONS

The dynamics of a phase frustrated undirected simplicial
complex of N number of nodes with global connectivity is
governed by the following system of equations:

θ̇i = ωi + K1

N

N∑
j=1

sin(θ j − θi − β )

+ K2

N2

N∑
j=1

N∑
l=1

sin(2θ j − θl − θi − β ),

i = 1, 2, . . . , N. (3)

This is the generalization of the classical Sakaguchi-
Kuramoto model obtained by incorporating HOI along with
pairwise ones. Here θi represents the phase and ωi is the
natural frequency of the ith oscillator, and ω is drawn
from a Lorentzian distribution with density function g(ω) =

�
π[�2+(ω−ω0 )2] with mean ω0. β denotes the uniform phase -lag
of the system. K1 and K2 are the coupling strengths of pairwise
interactions and HOI, respectively. Two complex order param-
eters associated with 1-simplex and 2-simplex are defined by

z = reiψ = 1

N

N∑
j=1

eiθ j , z2 = r2eiψ2 = 1

N

N∑
j=1

e2iθ j , (4)

where the amplitudes r = |z| and r2 = |z2| of the order
parameters z and z2, respectively, measures the level of syn-
chronization, and ψ and ψ2 are the respective arguments,
representing the average phases of the oscillators.

To find the effect of the phase frustration on the SK model
with HOI, we simulate the equations (3) with network size
N = 103 by the fourth order Runge-Kutta method with time
step δt = 0.01. First we set K2 = 8 and check the effect of
β by varying it in the range of [0, π

2 ). Initially, the phases
of the oscillators are spread uniformly at random around a
circle. The natural frequencies are drawn from a Lorenzian
distribution with mean 0 and half width � = 1. To determine
the nature of transitions to synchronization we continue the
simulation of the system (3) by varying the relevant parameter
both in forward and backward directions. For forward contin-
uation, the simulation is started with K1 = −1 and continued
until K1 = 12 by increasing it in small steps to achieve the
synchronized state and for backward continuation, simulation
is started with K1 = 12 and continued until K1 = −1 by grad-
ually decreasing K1 in small steps. Note that, during forward
and backward continuation, the final state of the previous
simulation is taken as the initial condition for the present
simulation. Figure 2(a) shows the variation of r with K1 for
different values of β, namely, β = 0 (blue), β = 1 (magenta),
β = 1.2 (cyan), β = 1.318 (green), and β = 1.35 (red) for
both forward and backward continuations. It is seen that the
system exhibits discontinuous synchronization transition for
smaller β and it becomes continuous as β is gradually in-
creased. Also, it is evident from Fig. 2(a) that the hysteresis
width for the synchronization transition decreases with the
increase of β and the transition becomes continuous for β >

1.318.
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FIG. 2. Numerically obtained synchronization profile of the
global network for different phase-lag values. Forward and backward
transitions are indicated by up and down arrows, respectively. (a) r is
shown as a function of K1 for fixed K2 = 8. (b) For fixed K1 = 2.5, r
is plotted as a function of K2 for various β.

Next, to understand the impact of HOI coupling strength
K2 on the synchronization transition, we simulate the system
(3) by varying K2 with fixed K1 = 2.5 for different β. The
variation of the order parameter r with respect to K2 is pre-
sented in Fig. 2(b). It is observed that for a low β value [β =
0 (blue) and 0.6435 (bright green)], r follows a continu-
ous transition. On the other hand, for β > 0.6435, say for
β = 0.8 (brown), 1 (magenta), and 1.2 (cyan), discontinuous
transitions to synchronization are observed. Therefore, it is
clearly observed that with the increase of β the backward
transition points move forward but discontinuous transition
is not suppressed by higher β. This surprising result seems
to be a unique feature of HOI. Here the effect is opposite to
the one that is observed in presence of pairwise interactions
only, where phase frustration is known to suppress the dis-
continuous transition to synchronization [20]. To develop a
deeper understanding about this interesting result we proceed
to derive a low-dimensional model (LDM) of the system (3)
using Ott-Antonsen ansatz [67].

III. A LOW-DIMENSIONAL MODEL

In this section we derive a (LDM) to explain the numer-
ically observed transition to synchronization in the system.
First we write the equation (3) with the help of the equation (4)
as

θ̇i = ωi + 1

2i
[e−i(θi+β )H − ei(θi+β )H̄ ], (5)

where H = K1z + K2z2z̄ and the overbar denotes complex
conjugate. In the thermodynamic limit, we assume that the
density of the oscillators with phase θ , frequency ω at time
t is given by f (θ, ω, t ). Since the natural frequency is drawn
from a distribution g(ω), the function f can be expanded in a
Fourier series as

f = g(ω)

2π

[
1 +

∞∑
n=1

[ fn(ω, t )einθ + c.c.]

]
, (6)

where c.c. denotes the complex conjugate and fn(ω, t ) is the
coefficient of the nth term of the series. Now, following the
Ott-Antonsen ansatz [67], we take fn = αn for some analytic
function α. The conservation of the oscillators in the network
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FIG. 3. Bifurcation diagrams prepared using the LDM. First col-
umn [(a)-(b)]: r as a function of K1 for K2 = 8 with β = 1 and 1.318;
Second column [(c)-(d)]: the variation of r with K2 for K1 = 2.5 with
β = 0 and 0.8 respectively. Solid and dashed lines are obtained from
the LDM, and respectively represent the stable and unstable equilib-
ria. The filled black circles show the saddle-node (SN) bifurcation
points. The colored circles show the values of r corresponding to the
stable solutions as obtained in the numerical simulation.

leads to the following continuity equation

∂ f

∂t
+ ∂

∂θ
( f v) = 0, (7)

where v = dθ
dt is the velocity given by Eq. (5). Replacing f by

its Fourier series representation (6) in the continuity equation,
we obtain

α̇ + iαω + 1
2 [Hα2e−iβ − H̄eiβ ] = 0. (8)

Integrating the complex order parameter in the lower half
of the complex plane using the Cauchy’s integral theorem
we get, z̄ = α(ω0 − i�, t ). Similarly, we can derive z̄2 =
α2(ω0 − i�, t ) = z̄2. At ω = ω0 − i�, Eq. (8) leads to

ż = izω0 − z� + 1

2
[(K1z + K2z2z̄)e−iβ−z2(K1z̄ + K2z̄2z)eiβ ].

(9)

Putting z = reiψ and comparing real and imaginary parts
on both sides of Eq. (9), we obtain the following LDM for the
system (3):

ṙ = −�r + cos β

2
(K1r + K2r3)[1 − r2], (10)

ψ̇ = ω0 − sin β

2
(K1 + K2r2)[1 + r2]. (11)

The LDM is now used for analytical treatment in the following
section.

IV. ANALYTICAL VS NUMERICAL RESULTS

We perform bifurcation analysis of the LDM [Eq. (10)]
using the software MATCONT [68] to understand the origin
of the numerically observed solutions of the system (3). First,
we take K2 = 8 and construct the bifurcation diagrams for
β = 1 and 1.318 by varying K1. Figures 3(a) and (b) show the
bifurcation diagrams where variations of r with K1 have been
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presented along with the stability information. For β = 1, the
trivial r = 0 solution (solid and dashed black line) becomes
unstable via a subcritical pitchfork bifurcation at K1 = 3.6.
An unstable branch originated from there moves backward
(dashed magenta curve) and eventually becomes stable via a
saddle-node (SN) bifurcation at K1 = 2.9, and move forward
(solid magenta curve) as a stable branch. Thus, in the range
2.9 � K1 � 3.6 bistability is induced which is responsible for
the appearance of discontinuous transition for β = 1. Further,
on top of the bifurcation diagram, some data points obtained
from the numerical simulation (magenta and black circles)
are also plotted and a very good agreement is observed. On
the other hand, for β = 1.318, the r = 0 branch (solid and
black line) becomes unstable via supercritical pitchfork bifur-
cation at K1 = 8 and a stable branch is originated (solid green
branch) which leads to continuous transition. In this case also,
numerical simulation data (green and black circles) closely
matches with the analytical ones.

Next, with fixed K1 = 2.5 we construct two bifurcation
diagrams for β = 0 and 0.8 by varying K2 [Figs. 3(c) and
3(d)]. For β = 0 (solid blue curve), we observe continuous
transition and the trivial r = 0 branch (dashed black line) is
always unstable in this case. On the other hand, for β = 0.8,
zero solution is always stable (solid black line). In addition
to that, another pair of non-zero fixed points of the reduced
system originated from a SN bifurcation point at K2 = 5.3,
of which one is stable (solid brown curve) and other one is
unstable (dashed brown curve). As a result, bistability occurs
for all K2 � 5.3. Here, the SN bifurcation is responsible for
the discontinuous transition to desynchronization. In this case
also along with the analytical curve we plot the data obtained
from the numerical simulation (brown and black circles) and
we observe a very close agreement. It is now apparent that
the LDM nicely mimics the dynamics of the whole system.
Therefore we proceed for more detailed analysis using the
model.

It is important to note here that for fixed K2 as β is in-
creased starting from 0, the system moves from discontinuous
to continuous transition states with the variation of K1. The
discontinuous transition here is associated with the existence
of the SN bifurcation point and it ceased to exist as the SN
point meets the trivial (r = 0) fixed point. This observation
helps to determine the starting point of continuous transition
analytically.

The equilibrium points of the LDM [Eq. (10)] are given by
r = 0 and

r =
√

K2 − K1 ±
√

(K1 + K2)2 − 8K2/ cos β

2K2
. (12)

Out of two nonzero equilibrium points given in (12), the one
obtained with the positive sign (say r+) is stable and the other
one (say r−) is unstable in the entire ranges of their existence
in the parameter space. Now the SN bifurcation will occur for
the parameter values for which r+ = r− and it leads to the
relation

(K1 + K2)2 cos β = 8K2 (13)

involving the parameters K1, K2 and β. Thus, for any two
given parameters, a feasible solution of the above equation for

the third one will provide the SN bifurcation point. Now when
the saddle node point merges with the fixed point r = 0, the
hysteresis will vanish and the system will follow a continuous
transition path. Imposing the condition (13) and r = 0 in
the equation (12) we can find the point marking the onset
of continuous transition, which gives K1 = K2. Using it in
the equation (13) the condition for the onset of continuous
transition is obtained as

K1 = K2 = 2

cos β
. (14)

Now in particular, for fixed K2 = 8, the onset of continuous
transition occurs for K1 = 8 and β = cos−1(1/4) = 1.3181.

In the numerical simulation, the continuous transition start
also occurs exactly at this analytically determined value.

On the other hand, for fixed K1, as β is increased, the
completely opposite scenario occurs. The trivial fixed point
r = 0 is unstable or stable according to β < or > cos−1( 2�

K1
).

In particular, for � = 1 and K1 = 2.5, cos−1( 2�
K1

) = 0.6435.
Thus, for β < 0.6435, the trivial equilibrium point is unstable
and it is stable for β > 0.6435. It can be easily checked that
for � = 1, K1 = 2.5, and β < 0.6435 only one nontrivial
equilibrium point, i.e., r+ will exist and be stable. As a result,
only continuous transition to synchronization is expected to
occur in this parameter regime and it is clearly visible from the
numerically obtained blue and bright green curves presented
in Fig. 2(b). Whenever β > 0.6435, along with the trivial
stable fixed point, both the nontrivial fixed points r+ and r−
will exist which marks the existence of bistability leading to
discontinuous transition. The analytical result matches very
closely with the simulation results presented in Fig. 2(b).

Inspired by the close agreement of the LDM and the
numerical simulations results, we use it to construct two pa-
rameter diagrams on different projections of the parameter
space and present in Fig. 4. Figure 4(a) shows the bifurca-
tions on the K1-β plane for fixed K2 = 8. The magenta curve
indicates the backward transition or SN bifurcation points and
the black curve indicates the forward transition points [given
by Eq. (14)]. The region bounded by these two curves depicts
the bistable region. It is observed that the area of bistability
reduces with the increase of K1. Furthermore, when these
two curves meet, the bistability vanishes at the critical point
(8,1.318) and the system exhibits synchronization via contin-
uous paths [see Fig. 2(a)] only. At these forward transition
points for different lag, the system shows pitchfork bifurca-
tion. When β is greater than (less than) the critical value
1.318, the supercritical (subcritical) pitchfork bifurcation is
observed. Here we use the color bar to indicate the values of
r calculated using Eq. (12), considering the stable one. The
blue side is for incoherent state; as the color changes from
blue to maroon the value of the order parameter r increases
from zero to one. The bistable region is shaded by gray color.
Next, on top of the two parameter diagram [Fig. 4(a)], we
put the forward (black dots) and backward transition points
(magenta dots) obtained from numerical simulations for a
comparison. The numerically computed points are found to
lie precisely on the analytical curve. These findings demon-
strate that the analytical theory correctly captures the system’s
dynamics.
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FIG. 4. Two parameter diagrams prepared from the LDM showing the incoherent (blue), coherent (cyan to maroon), and bistable (gray)
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Moving on to the stability diagram on the K2-β plane for
K1 = 2.5 [Fig. 4(b)], it is found that the region is divided
into three different parts, namely incoherent (blue), coherent
(maroon), and bistable (gray). Note that for K1 = 2.5, the
onset of SN bifurcation point as calculated from the condi-
tion (14) takes place at the critical phase - lag β = 0.643501
and K2 = 2.5. For β less than this critical value, the system
follows continuous path and the synchronization level is also
high [seen in Fig. 2(b)]. As β is increased a little more, the
system exhibits bistability. The numerically computed transi-
tion points (magenta dots) shown in the figure show a very
close match with the analytical one.

Finally, in Fig. 4(c) we present the stability diagram on the
K1-K2 plane for β = 0.8. Here the region is also parted into
coherent, incoherent, and bistable states as obtained in the pre-
vious case. The bistable regime starts at the intersection point
of the pitchfork line and the saddle node curve, and the area
of this regime broadened with increasing K2. From Figs. 4(b)
and 4(c) we can conclude that K2 contributes significantly to
promote bistability along with providing a high level of syn-
chronization in the system. It has been verified that for other
choices of the fixed values of one of the parameters, similar
stability diagrams are obtained. Therefore, in summary, it is
observed that K2 promotes bistability in the system. Moreover,
using the results of the LDM, we can appropriately tune the
parameters in such a way that β will promote discontinuous
transition in the system.

We have also computed the mean-field frequency � for the
phase lag β = 0.5. Figure 5 shows the variations of analyt-
ically and numerically obtained � and R with the pairwise
(K1) and higher order (K2) coupling strengths, respectively.
Note that � (= ψ̇) is analytically calculated from the LDM.
In Figs. 5(a) and 5(b) we fix K2 to 8 and vary K1. It is observed
that similar to r, � also exhibits explosive transition due to
nonlinearity induced by the triadic coupling strength K2. Next
in Figs. 5(c) and 5(d) we fix K1 to 2.5 and vary K2. In this case
both r and � exhibit continuous transitions for lower values
of phase lag. This figure shows that numerical values (black
circles) of both r and � closely match with the stable points
(red solid line) obtained from the LDM.

V. CONCLUSION

In this paper, the results of our investigation on the effect
of phase lag on the transition to synchronization in globally
connected networks of phase oscillators in the presence of
HOI have been presented.

The numerical simulations with Lorentzian natural fre-
quency reveals two distinct effects of phase - lag: (i) For
fixed K2, the system exhibits discontinuous transition to syn-
chronization for low β with the variation of K1. As β is
gradually increased, the system exhibits continuous transition
to synchronization when β crosses a critical value. This re-
sult is similar to the one observed in the presence of solely
pairwise interactions [20,21]. (ii) Surprisingly, the completely
opposite scenario is observed in numerical simulations as the
higher-order coupling parameter (K2) is varied for a fixed
K1. For lower β, transition is found to be continuous and
the system exhibits discontinuous transition as β is increased
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FIG. 5. Order parameter r and mean-field frequency � are plot-
ted as a function of [(a)-(b)] pairwise coupling strength K1 and
[(c)-(d)] triadic coupling strength K2 for phase lag 0.5. The solid and
dashed lines (red) are obtained from the LDM, represent stable and
unstable fixed points, respectively. The black circles represent the
numerically computed points.
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beyond a critical value. Therefore, in the presence of HOI,
high β promotes discontinuous transition instead of inhibit-
ing it. Simulated results for the mean-field frequency show a
similar kind of behavior as r.

To explain the counter intuitive result mentioned above, a
LDM is derived in the thermodynamic limit which faithfully
mimic the dynamics of the original system. The bifurca-
tion analysis of the LDM reveals the complex dependence
of the transition scenario on the governing parameters. It
is observed that the discontinuous transition is always as-
sociated with a SN bifurcation. In the first case mentioned
above, the SN responsible for discontinuous transition is

associated with a subcritical pitchfork bifurcation, while
in the second case, SN bifurcation independently occur in
a region of the parameter space. Further, all the analyti-
cally derived transition points determined from the LDM
show a very good agreement with numerical simulation
results.
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