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Slow dynamics and nonergodicity of the bosonic quantum East model in the semiclassical limit
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We study the unitary dynamics of the bosonic quantum East model, a kinetically constrained lattice model
which generalizes the quantum East model to arbitrary occupation per site. We consider the semiclassical limit
of large (but finite) site occupancy so that the dynamics is approximated by an evolution equation of the Gross-
Pitaevskii kind. This allows us to numerically study in detail system sizes of hundreds of sites. Like in the spin- 1

2
case, we find two dynamical phases, an active one of fast thermalization and an inactive one of slow relaxation
and the absence of ergodicity on numerically accessible timescales. The location of this apparent ergodic to
nonergodic transition coincides with the localization transition of the ground state. We further characterize states
which are nonergodic on all timescales in the otherwise ergodic regime.
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I. INTRODUCTION

The East model is a classical and stochastic lattice spin
model relevant for the study of slow dynamics as it occurs, for
example, in supercooled liquids and glasses [1,2]. It is a kinet-
ically constrained model (KCM) [3–5] where transitions (spin
flips) are subject to local constraints. Kinetically constrained
models have been shown to display very rich dynamics even
when their thermodynamics is very simple. In this way, they
allow one to differentiate the problem of complex slow relax-
ation from that of static phase transitions [6].

The idea of slow dynamics due to kinetic constraints,
rather than, say, due to quenched disorder in the energetics, is
also relevant for quantum many-body systems evolving under
unitary dynamics. In particular, the quantum East model has
been shown to display in one parameter regime characteristics
associated with nonergodicity, such as very slow relaxation
[7] and a proliferation of nonthermal eigenstate throughout
the spectrum [8].

Here we study a bosonic version of the quantum East
model, also recently considered in Ref. [9]. We focus on the
semiclassical limit, by extending the degrees of freedom at
each lattice site from spin 1

2 to large spin, approximating them
for the high-spin case by means of Holstein-Primakoff bosons
[10]. As we show below, at low energies this bosonic system
may form a (magnon) Bose-Einstein condensate character-
ized by off-diagonal long-range order, admitting a mean-field
treatment with straightforward fluctuation operator expansion
(FOE) corrections [11,12]. The large-spin limit further allows
for the semiclassical treatment of the equation of motion
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in terms of a Gross-Pitaevskii (GP) approach [13–15]. This
approach allows one to numerically study the dynamics of
systems of hundreds of sites for very long times.

As in the spin- 1
2 case [7,8], the Hamiltonian we consider

corresponds to a deformation (or tilting in the language of
large deviations) of the classical stochastic generator of the
bosonic East model [16]. Our numerics suggest the existence
of two distinct quantum phases controlled by the deformation
parameter, an active phase where the ground state is extended
and an inactive phase where the ground state is localized (cf.
Ref. [9]). Furthermore, the Gross-Pitaevskii-like dynamics
shows that while the system thermalizes fast in the active
phase, thermalization is logarithmically slow in the inactive
phase, with the system not being able to achieve ergodicity
within numerically accessible times. Our semiclassical ap-
proach allows us to study in detail the space-time patterns of
relaxation that distinguish both dynamical phases.

The paper is organized as follows. In Sec. II we introduce
the model. In Sec. III we consider the properties of the ground
state. In Sec. IV we consider the quantum dynamics in the
semiclassical limit. In Sec. V we give our conclusions.

II. MODEL

The classical East model is defined in terms of binary
variables on a one-dimensional lattice. The bosonic East
model is obtained by generalizing the single occupancy
of each lattice site to arbitrary occupation. The stochastic
generator reads [16]

W =
∑

�

n�−1(γ a†
� + κa� − γ − κn�), (1)

where the number of bosons n� = a†
�a� per site � is given in

terms of their creation (annihilation) operators a†
� (a�). The

operator (1) generates dynamics where particles are created or
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destroyed subject to the kinetic constraint that the occupation
of the nearest-neighbor site to the left is nonvanishing. When
the constraint is satisfied, the rate for creation n� → n� + 1 is
γ , while the rate to destroy n� + 1 → n� is κ . The equilibrium
state of the corresponding classical stochastic dynamics
is noninteracting, with site occupation independent and
identically Poissonian distributed with “rate” c = γ /κ [16],
which determines the stationary state occupation 〈n〉 = c.

The large deviations of the classical stochastic dynamics
can be studied by deforming or tilting the generator [5,17–19].
For the statistics of the dynamical activity (i.e., the number
of configuration changes in a trajectory [17,20,21]) the tilted
generator reads

Ws =
∑

�

n�−1[e−s(γ a†
� + κa�) − γ − κn�], (2)

where the parameter s controls the tilting.
The generator W obeys detailed balance, and so does the

tilted one Ws. This means that we can make Ws Hermitian via
a similarity transformation using the equilibrium state of W ,
which we know as it is a simple product state (see, e.g., [16]).

Specifically, if we make the transformations a†
i → b̂†

i

√
κ
γ

and

ai →
√

γ

κ
b̂i, the corresponding Hamiltonian takes the form

(we set h̄ = 1 throughout)

Hs = −
∑

�

n̂�−1[e−s√κγ (b̂†
� + b̂�) − γ − κ n̂�]. (3)

For s < 0 the Hamiltonian above will lead to runaway
occupation. To prevent this from happening in our numer-
ics below we will truncate the occupation numbers using
Holstein-Primakoff bosons (see also how this issue is alter-
atively addressed in Ref. [9]). Without loss of generality,
we set κ = 1 and γ = (N − n̂�)c̃, where N is the maximal
number of bosons per site and c̃ = c/N . The Hamiltonian thus
reads H = −∑

� n̂�−1ĥ� in terms of the local generator

ĥ�(s) = e−s
√

c̃(b̂†
�

√
N − n̂� + H.c.) − c̃(N − n̂�) − n̂�, (4)

which implies the possibility of product eigenstates. Besides
the trivial zero-energy vacuum state, for s = 0 each site may
also be the lowest eigenstate of −ĥ�(0)|ϕ〉 = 0|ϕ〉, which is of
binomial form in the Fock states |n〉,

|ϕ〉 =
N∑

n=0

ϕn/2

(1 + |ϕ|)N/2

√(
N

n

)
|n〉, (5)

with

〈ϕ|n̂|ϕ〉 = Nϕ

1 + |ϕ| , 〈ϕ|√N − n̂b̂|ϕ〉 = N
√

ϕ

1 + |ϕ| , (6)

where ϕ = c̃. For N → ∞ expectation values tend towards
their coherent values, so 〈ϕ|n̂|ϕ〉|N→∞ = c. As the product
mean-field (MF) state |ψ〉 = ∏

� |ϕ〉� is an eigenstate for s =
0, independent of the boundary conditions, the number of
spatial dimensions d , or the kinetic constraint, we expect the
MF ansatz to be a good approximation also for s �= 0 even for
d = 1 (assuming continuity).

III. LOCALIZATION TRANSITION
IN THE GROUND STATE

We determine the ground state of the Hamiltonian (3) by
comparing three numerical methods.

A. Mean field

The first of these corresponds to the MF supplemented by
FOE quasiparticle corrections. We start by minimizing the
energy of a product MF ansatz |ψ〉 = ⊗L

�=1|ϕ〉�. We define the
fluctuation operators δn̂� ≡ n̂� − n� and δĥ� ≡ ĥ� − h�, with
real-valued shifts n� and h�. The Hamiltonian takes the form

Hs =
L∑

�=1

n�−1ĥ� + n̂�h�+1 − n�h�+1 + δn̂�δĥ�+1. (7)

Discarding the terms of second order in the fluctuation terms
δn̂� and δĥ� yields the standard MF decoupling in terms of a
sum over the local contributions −n�−1ĥ� − n̂�h�+1 + n�h�+1.
Each of these has as its ground state |ϕ〉� of the form (6). This
combines into the global MF ground state |ψMF〉 = ⊗�|ϕ〉�.
For each term in (7) the self-consistency conditions

n� = �〈ϕ|n̂�|ϕ〉�, h� = �〈ϕ|ĥ�|ϕ〉� (8)

have to be fulfilled, which gives, for each �,

ϕ = (x +
√

x2 + y2)2/y2, (9)

with x = h�+1/n�−1 − (1 − c̃) and y = 2
√

c̃ exp(−s).

B. Fluctuation operator expansion

We obtain corrections to the MF result via the FOE
method. To do so, the eigenbasis {|k〉�} with energies E (�)

k (k ∈
[0, N]) for each H� is used to expand the terms using local
raising (lowering) operators σ

†
k,�

= |k〉��〈ϕ| (σk,� = |ϕ〉��〈k|).
As discussed elsewhere [11,12,22], this expansion yields an
exact representation of the Hamiltonian with terms up to
fourth order in the σ operators which generate the dynamics
of local fluctuations and their interactions. Using a generalized
Bogoliubov transformation of the form βα = ∑

k,� u∗α
k,�σk,� +

v∗α
k,�σ

†
k,�

with the normalization
∑

k,� u∗α
k,�uα

k,� − v∗α
k,�v

α
k,� = 1,

one finds the form

H =
∑

�

E (�)
0 + 1

2

(∑
α

ωα − Tr(h)

)

+
∑

α

ωαβ†
αβα + H, (10)

where ωα are the positive eigenvalues of

HFOE =
(

h �

−�∗ −h∗
)

(11)

given in terms of the matrix elements

hi�, j�′ = (
E (�)

i − E (�)
0

)
δi, jδ�,�′

− �〈i|δn̂�|ϕ〉��′ 〈ϕ|δĥ�′ | j〉�′δ�′,�+1 (12)

and

�i�, j�′ = −�〈i|δn̂�|ϕ〉��′ 〈 j|δĥ�′ |ϕ〉�′δ�′,�+1. (13)
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(a)

(c) (d) (e)

(b)

FIG. 1. Ground state. (a) Filling fraction |φ2| = 〈ψ | ∑� n̂�|ψ〉/L for s < 0, scaled by truncation parameter N , at c̃ = 0.1. Results are from
the MF treatment (dots) and FOE (solid lines). Dashed lines refer to limiting values discussed in the text. (b) Same as in (a) but for s > 0,
where ntot = L|φ2|. (c) Filling |φ2| in the Gross-Pitaevskii limit as a function of s and c̃. Regions delimited by black lines correspond to unit
cell sizes. The white vertical line indicates c̃ = 0.1. (d) Density profiles from FOE with N = 20 and L = 49 for s < 0. (e) Same from exact
diagonalization (ED) with N = 3 and L = 7.

The first and second terms of (10) are the MF energy
and a scalar correction, while the third and fourth terms
are the noninteracting quasiparticle modes and their interac-
tions. With all ωα > 0 we proceed to define the quasiparticle
ground state implicitly by demanding βα|ψFOE〉 = 0 for all
α. The FOE ground state is then determined by minimizing
〈ψFOE|H|ψFOE〉 over a set of self-consistent MF states con-
sisting of ones with variable high-density peak spacing l ∈
[1, 2, 3, 4, 6, 12] as well as one without high-density peaks
(〈ϕ|n̂|ϕ〉 < 3L/4 for all sites).

C. Results

The results of the MF and the FOE are shown in Fig. 1.
Throughout we use open boundaries analogous to those of
the spin- 1

2 case in Ref. [8], where the left boundary l = 0 is
fixed to maximum occupancy n0 = N ; given the constraint,
the state of the right boundary l = L + 1 does not affect the
dynamics in the bulk l = 1, . . . , L. In Fig. 1(a) we show the
filling fraction scaled by the truncation on the occupancy,
|φ2|/N = 〈ψ |∑L

�=1 n̂�|ψ〉/LN , for s < 0. In this regime there
is no significant dependence on N for N > 2. The scaled
filling fraction is bounded by 3

4 for s → −∞ (upper dashed
line) and by the exact MF result c̃/(1 + c̃) (lower dashed
line) at s → 0−. This we call the delocalized phase, as the
occupation density is spread out through the system.

In Fig. 1(b) we show the total particle number ntot = L|φ2|
for s > 0. In contrast to s < 0, when s > 0 only sites close
to the boundary (n0 = N) are appreciably occupied, with oc-

cupation density decaying exponentially fast with distance to
the left edge. We call this the localized phase. Both the MF
and the FOE total filling diverge for s → 0+, consistent with
a homogeneous MF state at s = 0. While the FOE divergence
is stronger, it tends towards MF behavior for increasing N .

For the limit of large truncation N → ∞, we further con-
sider the GP-like limit for which the ground state minimizes
the energy (14) (discussed below). In Fig. 1(c) we plot the
value of the filling in this limit as a function of both s and
c̃. In Fig. 1(d) we show how the spatial density (from FOE)
changes with s for the case c̃ = 0.1. For a range of negative
s the visible steps indicate density-wave patterns. For com-
parison, in Fig. 1(e) we show the corresponding results from
exact diagonalization (ED). Within the GP limit we find that
above c̃ ≈ 0.18 no density-wave pattern can be observed in
the ground state.

IV. DYNAMICS IN THE SEMICLASSICAL LIMIT

Considering the mean-field-like behavior of the ground
states as N is increased, we take the semiclassical limit
N → ∞ to study dynamics in terms of a GP-like equation.
We obtain this via the standard replacement b̂� → √

Nφ�.
In this limit the homogeneous ground state for s = 0 has
|φ2

� | = |φ2| = c̃/(1 + c̃) [cf. Eq. (6)]. Furthermore, the energy
functional has to be regularized as

E = E

N2
=

L∑
�=1

E� ≡
L∑

�=1

|φ�−1|2h(φ�), (14)
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(a) (b) (c) (d)

FIG. 2. Dynamics after a quench. Trajectories of (16) are shown in the (a) and (b) active (s = −1) and (c) and (d) inactive (s = 1) cases.
While (a) and (c) show sample trajectories of φ� with Lb = 20 and �g = 10 [marked in (c)], subsystem densities |φ2| = ∑30

�=21 |φ2
� |/10 sampled

over �b ∈ [1, 10] are shown in (b) and (d) for various widths Lb (see the legend). In the active case the densities thermalize within t < 100 for
any Lb of an initially activated (single-gapped) block, while no thermal or steady state is reached for times t = 2 × 105 and s = 1.

with

h(φ) =(1 − c̃)|φ|2 + c̃ − e−s
√

c̃(φ + φ∗)
√

1 − |φ|2. (15)

From the Heisenberg equation of motion we derive the GP-
like equation of motion with rescaled time t → tN in the limit
N → ∞:

φ̇� = φ�

ih̄
[c̃ + (1 − c̃)|φ�+1|2 − e−s

√
c̃
√

1 − |φ�+1|22 Re(φ�)]

+ |φ�−1|2
ih̄

[
(1 − c̃)φ� − e−s

√
c̃

×
(√

1 − |φ�|2 − φ�Re(φ�)√
1 − |φ�|2

)]
. (16)

The final singularity limits the complex field φ� to stay
within the physically meaningful disk |φ�|2 < 1. Depending
on boundary and initial conditions, one can identify distinct
dynamical regimes.

A. Relaxation dynamics after a quench:
Active to inactive transition

From here on we consider fixed boundary conditions of the
form φ0 = 0.2 and φL+1 = 0 unless specified otherwise. With
these, the simple dynamics above quickly gives way to chaotic
nonlinear dynamics. The general picture is summarized in
Fig. 2 for c̃ = 0.1. There we set L = 60 and always start
with Li = 30 sites initially “activated” (by which we mean
having a nonzero occupation, therefore facilitating dynamics
in the neighboring site) to φ0. By keeping the number of gaps
between active sites fixed we can guarantee identical initial
energies. As sample cases we split the set of initially active
sites into a block of Lb + 1 sites starting at � = 1 and the
remaining Li − Lb at the end of the system. We further want to
sample over similar initial conditions by adding a gap at site
�g in the first block. To determine whether the system thermal-
izes, we look at the subsystem densities |φ2| = ∑30

�=21 |φ2
� |/10

sampled over �g ∈ [1, 10].
In the active phase s < 0 (we show the example of s = −1

in Fig. 2) we observe a ballistic spreading of active sites over
the entire system. Note in particular how the initially empty
sites only reach |φ�| ≈ 1 after an extended time interval com-
pared to the rest of the system. This is an evident consequence

of the kinetic constraints that force empty regions to relax
from their boundaries; we discuss this prethermal dynamics in
further detail below. Independently of the width Lb of the first
block, the system always reaches its thermal state at t ≈ 100
[see Fig. 2(b)]. Differences at early times are related to the
gap between the first block and the observed subsystem and
reflect the ballistic spreading of excitations.

The behavior in the inactive phase s > 0 is very different
(see s = 1 in Fig. 2). Here excitations only spread logarithmi-
cally in time from the initially active into the empty region,
reminiscent of what occurs in the spin- 1

2 quantum East model
[7]. From the subsystem densities we see that the system does
not thermalize for times up to at least t = 105, while the values
for different block sizes Lb always remain distinct within the
observed time window.

B. Phase-space description of the active-inactive transition

In the simplest case of a homogeneous initial state φ� = φ

the dynamics due to Eq. (16) is determined by a fixed total
energy

E (φ)/L = |φ|2[(1 − c̃)|φ|2

+ c̃ − 2e−s
√

c̃
√

1 − |φ|2Re(φ)]. (17)

In this case and for periodic boundaries, φ oscillates along
closed loops of fixed energy E (φ)/L. These collective os-
cillations can even be visible for initially homogeneous
subsystems as in Fig. 2.

The dynamical phases of the bosonic quantum East model,
at the level of this semiclassical description, can be understood
by inspecting E . In general, this homogeneous energy may
have two minima, one at φ = 0 from the |φ|2 factor with
energy equal to zero and a second local minimum at φ > 0,
with a saddle point in between. The former is due to the
kinetic constraint and its value is always zero [since that
corresponds to the trivial (completely inactive) eigenstate of
the Hamiltonian; cf. (3)], while the latter is the minimum of
the local unconstrained (tilted) generator in this representation
and its value is determined by c̃ and s. This suggests the
possibility of a first-order transition when the global minimum
of E changes between that due to the constraint and that due
to the unconstrained generator. This is shown in column I of
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(a)

(b)

(c)

(d)

FIG. 3. Phase portrait of dynamics. An overview of typical dynamical regimes in the GP-like time evolution (16) is shown for c̃ = 0.1 and
(a) s = 0.067, (b) s = 0, (c) s = −0.03, and (d) s = −0.3. Each case is characterized by a distinct homogeneous energy profile E (column I);
time- and space-averaged local generator heast to the east (column II), with the white line marking its sign change; and time- and space-sampled

probability distribution of φ�, with black arrows indicating the average flow rate φ̇ (column III) and the corresponding trajectories |φ�| (column
IV) for times up to 2 × 105.

Fig. 3, where we plot E vs Re(φ) with Im(φ) = 0, at fixed c
and for decreasing values of s: For s > 0 the global minimum
is at Re(φ) = 0, indicative of the inactive dynamics, while
for s < 0 the global minimum is at Re(φ) > 0, indicative
of active dynamics. Coexistence occurs at s = 0, which also
corresponds to the point at which (3) reduces to a stochastic
operator.

To characterize the dynamics in terms of the structure of E ,
we analyze trajectories in the following manner. We consider

a system of L = 200 at c̃ = 0.1, where the first L = 100 sites
are initialized in an active state φ�(t = 0) = 0.2. In column
IV of Fig. 3 we show the trajectories corresponding to the
same values of s as in column I. From these trajectories we
first compute the local generator h(φ) next to each site (in
the direction of the constraint) for every value of φ taken
along the trajectory. This is shown in column II of Fig. 3.
From the same trajectories we also compute the probability
distribution P(φ) of φ� together with the average velocity
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φ̇(φ). The corresponding phase portraits are shown in column
III, showing both the density and the average velocity field.

The different dynamical regimes are closely related to the
properties of the homogeneous energy profile. Deep in the
inactive phase s > 0 [Fig. 3(a)] there is only the minimum
at φ = 0, with no signature of bistable dynamics: The local
generator is always positive (column II), the phase portrait of
the dynamics (column III) shows motion around the origin,
and the trajectory (column IV) shows that activity fails to
propagate to the initially empty half of the system, with only
late slow logarithmic spreading.

At coexistence s = 0 [Fig. 3(b)], since the initial values of
the field in the active half of the system are near the unstable
saddle point of E , we see bistable dynamics: The phase por-
trait (column III) shows an alternation between motion around
the origin and motion away from it, and since the local gen-
erator is always positive (column II), highly activated detours
of the field are rare, requiring precedent sites to become close
to empty. Correspondingly, the trajectory (column IV) shows
ballistic excitation or deexcitation of the initially inactive half
of the system.

For s = −0.03 [Fig. 3(c)] the active state is the stable one,
while the inactive one is only metastable, according to the
homogeneous energy E . In this case, after a slow transient,
initially empty sites are activated following a ballistic spread
of the active region, as seen in the trajectory (column IV). The
local generator (column II) is no longer positive everywhere,
while the metastability of the inactive state is evident in the
phase portrait (column III) where sites remain mostly cycling
the global minimum associated with a negative generator. In
addition, large |φ�| detours may occur as the system begins
to thermalize for t � 104, requiring only a few preceding
(nearly) empty sites. Eastward neighbors of highly activated
sites are usually in the vicinity of the local generator minimum
resulting in a sign change of h(φ) for sufficiently large ampli-
tudes of φ. Consequently, φ̇(φ) can point counterclockwise
whenever the first term of (16) dominates.

Finally, for s = −0.3 [Fig. 3(d)] the system is deep in
the active phase with fast ballistic spreading from the ini-
tial active region into the initially inactive region, as shown
in the trajectory (column IV). Both the homogeneous ini-
tial dynamics (� = 1, . . . , 100) and the prethermal dynamics
(� = 101, . . . , 200) are visible as cycles in the phase portrait
(column III). At long times the trajectories cover the whole
disk of φ, indicative of thermalization. Counterpropagating
large-amplitude detours of φ� enabled by negative h (column
II) are entirely common and accompanied by a single preced-
ing (nearly) empty site.

C. Nonergodicity of the h(φ) = 0 manifold

In Figs. 2(a) and 3(d) one can observe prethermal dynamics
for initially empty sites where values of |φ�| ≈ 1 are only
reached at later times. These special dynamics are related to
the occurrence of an extended zero of h(φ) for any s < 0.
Any site with a φ� on (or close to) the h(φ�) = 0 manifold
suppresses the first term of (16) in favor of the second term.
The remaining dynamics are (almost) identical to the dynam-
ics of the local generator modified by the density |φ�−1|2 of the
previous site. The dynamics on this limit cycle are quasistable

(a) (b)

FIG. 4. Nonergodic dynamics on the h(φ) = 0 manifold.
(a) Contour lines of h(φ) for s = −1 and c̃ = 0.03. The zero con-
tour is indicated by the labels. (b) Trajectory of |φ�| for the initial
condition φ0 = φ− and φ� = φ+ for all � ∈ [1, L + 1] with L = 100.

on some site � insofar as any (perpendicular) fluctuation in φ�

drives the site � − 1 away from the manifold, resulting in the
eventual demise of these transient nonergodic or prethermal
dynamics.

An entire system on the h(φ) = 0 manifold will thus re-
main there for all times. For given s < 0 and c̃ this manifold
(zero contour in Fig. 4) is given by

Im(φ)2 = [2(1 − c̃)2 + 4e−2sc̃]Re(φ)2 + 2c̃(1 − c̃)

−2(1 − c̃)2

+ 2|Re(φ)|e−s
√

c̃

(1 − c̃)2

√
e−2sc̃ Re(φ)2 + 1 − c̃, (18)

where Re(φ) is bounded between

φ± =
√

c̃2 + (2e−2s − 1)c̃ ± 2c̃e−s
√

e−2s − 1

c̃2 + 2(2e−2s − 1)c̃ + 1
. (19)

Initializing all sites on the minimal value φ−, we can
suppress full thermalization (see Fig. 4), indicating the pos-
sibility of nonergodic dynamics even on the typically ergodic
side s < 0. Notably, the occupation trajectory of this dy-
namics has the appearance of a random triangular fractal,
especially at early times for a homogeneous initial state. This
is also reminiscent of the trajectories of the classical East
model [23].

V. CONCLUSION

In this work we studied the dynamical properties of the
bosonic quantum East model, a generalization of the spin- 1

2
quantum East model. We found that the bosonic East model
has two dynamical phases separated by a quantum first-order
transition. In one phase, which we call active, the ground
state is extended and thermalization is fast. In the second
phase, which we call inactive, the ground state is localized
and thermalization is slow. This is analogous to what one
sees in the spin- 1

2 case [7,8]. We studied the dynamics in the
semiclassical limit within a Gross-Pitaevskii approximation,
which allowed us to access large system sizes in our numerics.

Our results are closely related to those of Ref. [9]. In that
work also a version of the bosonic quantum East model was
studied in detail, finding a family of many-body localized
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states which allowed one to create composite excitations with
long-time memory. One result of Ref. [9] is that the bosonic
East model has a localization transition in its ground state
only in the presence of density-density interactions. While
we consider a slightly different model as we restrict the site
occupation to a large but finite value, we find something
similar in our case: The diagonal interaction terms in Eq. (3)
appear naturally from the escape rate (the part coming from
particle annihilation) of the corresponding stochastic genera-
tor (2). The absence of localization without those terms can be
understood from the companion classical stochastic problem:
Setting them to zero is equivalent to studying rare trajec-
tories with a very large escape rate for annihilation events,
which naturally would put the system in an active (and thus

extended) phase. Our results here, together with those of
Ref. [9], suggest that other quantum KCMs with interesting
dynamics, such as the PXP model [24–27] or the quantum
Fredrickson-Andersen model [28], will be worth studying in
their bosonic versions, in particular in the semiclassical limit.
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