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Elliptic billiard with harmonic potential: Classical description
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The classical dynamics of the isotropic two-dimensional harmonic oscillator confined by an elliptic hard
wall is discussed. The interplay between the harmonic potential with circular symmetry and the boundary with
elliptical symmetry does not spoil the separability in elliptic coordinates; however, it generates nontrivial energy
and momentum dependencies in the billiard. We analyze the equimomentum surfaces in the parameter space
and classify the kinds of motion the particle can have in the billiard. The winding numbers and periods of the
rotational and librational trajectories are analytically calculated and numerically verified. A remarkable finding
is the possibility of having degenerate rotational trajectories with the same energy but different second constant
of motion and different caustics and periods. The conditions to get these degenerate trajectories are analyzed.
Similarly, we show that obtaining two different rotational trajectories with the same period and second constant
of motion but different energy is possible.
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I. INTRODUCTION

The study of billiards in the classical and quantum regimes
is valuable as it provides a simple way to model physical
phenomena, for example, particle trapping at the nanome-
ter scale, quantum-classical correspondence, low disorder
systems, quantum dots, chaotic systems, laser dynamics in mi-
crocavities, ray-optics approximation in waveguides, among
others [1–4].

An elliptic billiard consists of a point particle moving in-
side a planar elliptic domain, bouncing elastically at its hard
boundary [5]. Investigation of the mathematical and physi-
cal properties of elliptical billiards in both the classical and
quantum regimes has a long history [5–7]. It is well known
that the elliptical billiard is an integrable system with two
well-defined constants of motion: the energy and the product
of angular momenta about the foci [8–11]. The particle moves
rectilinearly, forming a polygonal trajectory with vertices on
the billiard boundary. The system presents two types of mo-
tion: rotational and librational, depending on the sign of the
second constant of motion. The trajectories are always tangent
to elliptic caustics for rotational motion or hyperbolic caustics
for librational motion [10].

Various modifications to the elliptical geometry have been
studied, such as the transition to oval or circular billiards
[7,12], or the annular [11] and open boundary structures
[13]. Variations of the potential to smooth the sharp ellipti-
cal boundary have also been considered [14]. Most of these
properties have been verified experimentally in recent years,
thanks to the improvement of nanofabrication processes that
allow the construction of quantum corrals to confine electrons
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[15]. To this day, interesting geometric properties of the tra-
jectories in elliptic billiards continue to be discovered [16,17].

In this paper, we study the dynamic properties of the sys-
tem formed by the elliptic billiard and the isotropic harmonic
potential attracting to the center of the ellipse. The trajectory
is, in general, a self-intersecting polygon whose sides are
elliptical segments connecting at the boundary. We present
a derivation of the second constant of motion and propose a
suitable normalization scheme that allows mapping all sce-
narios in the billiard. The interplay between the harmonic
potential with circular symmetry and the boundary with el-
liptical symmetry does not affect the separability in elliptic
coordinates, but it generates nontrivial energy and momentum
dependencies in the billiard that are absent in the elliptic
billiard without potential. We will therefore discuss the be-
havior of equimomentum surfaces in the space of parameters
that allow the characterization of the four types of motion
the particle can exhibit. We derive the conditions to obtain
periodic orbits in the billiard by applying the Hamilton-Jacobi
theory [18,19]. The analytical evaluation of the action-angle
variables yields closed-form expressions for the winding num-
bers and the periods of the librational and rotational orbits.
From these expressions, several geometric constructions can
be developed. A remarkable finding is the possibility of hav-
ing degenerate rotational trajectories with the same energy
but different second constant of motion and caustics and pe-
riods. The conditions to get these degenerate trajectories are
analyzed. Similarly, we show that obtaining two different ro-
tational trajectories with the same period and second constant
of motion but different energy is possible.

From a historical point of view, the antecedents of this
problem can be traced back to Jacobi, who, in 1884, analyzed
the problem of the motion of a particle along the surface of a
triaxial ellipsoid under the action of an elastic force directed
toward the center of the ellipsoid [20]. Suppose one of the axes
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of the ellipsoid tends to zero. In that case, the Jacobi problem
reduces to the problem of the oscillations of the harmonic
oscillator inside an ellipse. More recently, Wiersig studied
the classical dynamics of the triaxial ellipsoidal billiard with
harmonic potential describing the motion in terms of the en-
ergy surfaces in the space of action variables [21]. Dragović
et al. extended the study of the ellipsoids to n dimensions but
without potential [22].

The most direct antecedent of our work is the analysis
by Radnović, published in 2015, on elliptic billiards with
Hooke’s potential [23]. Radnović uses Fomenko graphs to
characterize the billiard’s topologies. Her analysis provides
expressions for the caustics, their geometric properties, and
the bifurcation diagram. In this work, we apply the Hamilton-
Jacobi formalism in elliptic coordinates, which allows for
generating many additional analytical results (not reported in
Radnovic’s paper) such as the Poincaré maps, the condition
for periodic rotational and librational trajectories, the winding
number function, the eigenmomentum surfaces, graphs of the
trajectories, the analytical expressions for the periods of pe-
riodic orbits, among others. Additionally, our analysis reveals
that it is possible to have degenerate trajectories with the same
energy but different second constants of motion, and we found
the condition for this to happen.

The material in this paper focuses on the classical de-
scription of the billiard. It constitutes the first part of a
more extended analysis considering the quantum description
and the semiclassical approximation. The classical charac-
terization of the elliptic billiard with harmonic potential is
sufficiently complex in terms of phenomena and properties
that its analysis is justified in separate papers. This work con-
solidates and extends previous analysis of classical billiards
with harmonic potentials [23,24].

II. STATEMENT OF THE PROBLEM

We consider the motion of a point particle with mass M in
an isotropic two-dimensional harmonic potential

U (r) = 1
2 Mω2r2 = 1

2 Mω2(x2 + y2), (1)

where ω is the angular frequency of the oscillator. The particle
is confined in the region of the plane (x, y) bounded by the
ellipse

x2

a2
+ y2

b2
= 1 (b � a), (2)

whose foci are located at x± = ± f = ±(a2 − b2)1/2, as
shown in Fig. 1.

The particle moves inside the billiard under the effect of the
central force produced by the parabolic potential. As it travels
through the potential, the total (kinetic plus potential) energy

E = p2

2M
+ 1

2
Mω2r2 = const � 0, (3)

and the angular momentum about the origin

L = r × p = L̂z = (xpy − ypx )̂z, (4)

remain constant along the trajectory. Here, p is the momen-
tum of the particle, and p, px, py are their magnitude and
Cartesian components, respectively.

FIG. 1. Geometry of the elliptic billiard with harmonic poten-
tial. For a given focal distance f , the boundary is defined by the
radial elliptic coordinate ξ = ξ0 or, alternatively, by the parameter
γ0 = (b/ f )2 = sinh2 ξ0.

If the particle does not hit the boundary, it is well known
that its orbit is a closed ellipse centered at the origin whose
size and orientation are determined by the initial conditions
[18,19].

On the other hand, if the particle hits the boundary, it makes
a polygonal trajectory with elliptical segments connecting at
the reflection points. In this case, the energy E before and
after each impact is still conserved because the collisions are
elastic, but the angular momentum L changes because the
force exerted by the elliptic wall on the particle is not central.
From the analysis of the elliptic billiard with zero potential
[8–10], it is known that the quantity that is conserved in the
reflection with the elliptic wall is the product of the angular
momenta about the foci, i.e.,

L1 · L2 = (r1 × p) · (r2 × p) = L1L2, (5)

where r1 = (x − f ) x̂ + ŷy and r2 = (x + f ) x̂ + ŷy (see
Fig. 1). By expanding Eq. (5), the product L1L2 can be easily
related to the angular momentum L as follows:

L1L2 = L2 − f 2 p2
y, (6)

where py is the component of the momentum along the y axis.
If the potential energy U (r) were zero in all points of the

billiard’s area, the quantity L1L2 would be conserved as the
particle moves rectilinearly inside the billiard. However, as
the particle moves elliptically within the parabolic potential,
L1L2 is not constant anymore; thus, it cannot serve as a second
constant of motion for our problem. It is then necessary to
identify the second constant of motion needed to characterize
the elliptic billiard with parabolic potential.

III. DERIVATION OF THE SECOND CONSTANT
OF MOTION

We begin by noting the total energy of the particle [Eq. (3)]
can be split into two Cartesian contributions

E = Ex + Ey =
(

p2
x

2M
+ Mω2x2

2

)
+

(
p2

y

2M
+ Mω2y2

2

)
.

(7)
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Both Ex and Ey are individually conserved during the motion
through the harmonic potential. Now, when the particle hits
the boundary, the values of Ex and Ey of the incident trajectory
shift an amount W, i.e.,

Ex → Ex − W, Ey → Ey + W, (8)

such the total energy E = Ex + Ey remains constant after the
collision. The shift W is attributable to a rearrangement of the
kinetic energy contributions among the x and y components
since the potential energy is the same before and after the
impact.

To find W, we recall that L1L2 does not change at the
reflection with the boundary, i.e., �(L1L2) = 0, then from
Eq. (6) we have

�(L2) = 0������0
(L1L2) + f 2�

(
p2

y

) = 2M f 2W, (9)

where we applied �(p2
y ) = 2M(�Ey) = 2MW. Replacing W

in Eq. (8) gives

Ex → Ex − �(L2)

2M f 2
, Ey → Ey + �(L2)

2M f 2
. (10)

To construct two conserved quantities, we compensate Ex and
Ey by the amount of energy that is lost (gained) at the collision,
that is,

Ex ≡ Ex + L2

2M f 2
, Ey ≡ Ey − L2

2M f 2
. (11)

Both Ex and Ey remain constant at (a) each collision with
the elliptic boundary and (b) along the segments between
collisions because Ex, Ey, and L are conserved quantities in
the harmonic potential.

We can set combinations of Ex and Ey that are also con-
served quantities themselves. For instance,

Ex + Ey = E , (12)

Ex − Ey = Ex − Ey + L2

M f 2
. (13)

The first quantity is evidently the total energy of the particle.
The second quantity (13) can be rewritten, using Eq. (6) and
multiplying by M f 2, in the form

� ≡ L1L2 − f 2M2ω2y2 = const, (14)

where � has units of squared angular momentum.
Throughout the paper, we will consider the total energy E

[Eq. (3)] and the quantity � as the two fundamental constants
of motion of the billiard. We choose the form of Eq. (14)
because the parameters f and ω appear explicitly as simple
factors, allowing us to easily make the transition to the elliptic
billiard without potential (if ω → 0 then � → L1L2), or to the
case of the circular billiard with harmonic potential (if f → 0
then � → L2).

IV. FORMULATION IN ELLIPTIC COORDINATES

The problem is conveniently described in elliptic coordi-
nates

x = f cosh ξ cos η, y = f sinh ξ sin η, (15)

where ξ ∈ [0,∞) is the elliptic radial coordinate and η ∈
(−π, π ] is the elliptic angular coordinate. Lines of constant
ξ are confocal ellipses and lines of constant η are confocal
hyperbolae. The locus ξ = 0 corresponds to the interfocal line
|x| � f .

The surface of the billiard is specified by the region

ξ ∈ [0, ξ0], η ∈ (−π, π ], (16)

where

ξ = ξ0 = arctanh(b/a) (17)

defines the elliptic boundary.
The constants of motion E and � can be expressed in terms

of the elliptical coordinates (ξ, η) and canonical momenta
(pξ , pη ), where pξ and pη are the radial and angular com-
ponents of the momentum vector in elliptic coordinates, i.e.,

p = Mv =
(

pξ

σ

)
ξ̂ +

(
pη

σ

)
η̂, (18)

with

σ = σ (ξ, η) = f
√

cosh2 ξ − cos2 η, (19)

being the scaling factor of the elliptic coordinates. The canon-
ical momenta pξ and pη have units of momentum per length,
that is, angular momentum. In elliptic coordinates, the total
energy E [Eq. (3)] becomes

E = p2
ξ + p2

η

2Mσ 2
+ Mω2 f 2

2
(cosh2 ξ − sin2 η), (20)

where we applied r2 = x2 + y2 = f 2(cosh2 ξ − sin2 η), and
the constant � [Eq. (14)] becomes

� = f 2

σ 2

(
p2

η sinh2 ξ − p2
ξ sin2 η

) − f 4M2ω2 sinh2 ξ sin2 η.

(21)

Inspection of Eq. (14) or (21) reveals that � minimizes when
the particle moves along the y axis. By replacing η = ±π/2
and pη = 0, we get after some calculations �min = −2ME f 2,

where E is the total energy. On the other hand, the maximum
value of � occurs when the particle moves tangentially along
the elliptic boundary. In this case, ξ = ξ0 and pξ = 0, and we
obtain �max = 2MEb2. Consequently, the range of � is given
by

� ∈ [−2M f 2E , 2Mb2E ]. (22)

At this point, it is convenient to introduce a normalized ver-
sion of � that will serve as a new dimensionless constant of
motion, namely,

γ = �

�0
≡ �

2M f 2E
∈ [−1, γ0], (23)

where

�0 ≡ 2M f 2E , γ0 ≡ b2

f 2
= sinh2 ξ0, (24)

Note that the upper limit γ0 is defined only by the geometric
parameters of the billiard boundary. In fact, similar to the
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eccentricity ε = f /a = sechξ0, the parameter γ0 could be
used to specify the ellipticity of the boundary.

We now combine Eqs. (20) and (21) to decouple the mo-
menta pξ and pη. After some algebraic manipulations, we get

p2
ξ = �0(sinh2 ξ − γ − β sinh2 ξ cosh2 ξ ), (25)

p2
η = �0(sin2 η + γ − β sin2 η cos2 η), (26)

where

β ≡ Mω2 f 2

2E
= Uf

E
, Uf = 1

2
Mω2 f 2 (27)

is a new dimensionless constant of motion associated with
the energy, and Uf is the potential energy at a radius equal
to f . Each of the equations (25) and (26) can be interpreted
as a Hamiltonian system with one degree of freedom, with
effective potential Ueff (ξ ) ∝ β sinh2 ξ cosh2 ξ − sinh2 ξ , and
Ueff (η) ∝ β sin2 η cos2 η − sin2 η, respectively.

The constant of motion β characterizes how strong the
coupling of the particle to the harmonic potential is. It ac-
counts for the effects of the energy E (a dynamic parameter),
the mass M (particle’s property), the frequency ω (potential’s
property), and the distance f (elliptic boundary’s property).

Low values of β correspond to a small coupling. In this
case the particle moves inside the billiard almost as if it were
a free particle, and thus their trajectory segments become
quasistraight lines that collide with the boundary. If β = 0,
the system reduces to the well-known elliptic billiard with a
free particle inside [8–10].

On the other hand, high values of β correspond to a strong
coupling where the particle’s excursion around the origin is
small. In this case the trajectory does not reach the bound-
ary and thus becomes a closed ellipse centered at the origin
[18,19].

Alternatively, β could be expressed as β = f 2/R2, where
R =

√
2E/Mω2 is the amplitude that a one-dimensional har-

monic oscillator with energy E reaches in the parabolic
potential. In other words, R defines the largest circular region
where the particle could move for a given energy E if there
were no elliptical wall.

In what follows, the parameters γ and β will be considered
as the constants of motion of the problem. β is related to the
energy, and γ to the constant �.

V. EQUIMOMENTUM SURFACES AND CLASSIFICATION
OF THE TRAJECTORIES

Equations (25) and (26) describe the dynamics of the parti-
cle in the billiard. To facilitate their analysis we rewrite them
in the form

p2
ξ (γ , β; u) = �0[−βu2 + (1 − β )u − γ ], (28)

p2
η(γ , β; v) = �0[βv2 + (1 − β )v + γ ], (29)

where

u ≡ sinh2 ξ and v ≡ sin2 η. (30)

The domains of the square canonical momenta p2
ξ and p2

η in
the three-dimensional spaces (γ , β; u) and (γ , β; v) are

γ ∈ [−1, γ0], β ∈ [0,∞),
(31)

u ∈ [0, γ0], v ∈ [0, 1],

where γ0 = b2/ f 2 = sinh2 ξ0 [Eq. (23)]. Note that the normal-
ization scheme makes the upper limits of γ and u equal to γ0.

To ensure that pξ and pη are real quantities, the triplets
(γ , β; u) and (γ , β; v) must lie within the regions

p2
ξ � 0 → −βu2 + (1 − β )u − γ � 0, (32)

p2
η � 0 → βv2 + (1 − β )v + γ � 0. (33)

We now analyze each condition separately.

A. Surface p2
ξ (γ, β; u) = 0

Let us first discuss the radial condition (32). The locus
p2

ξ (γ , β; u) = 0 corresponds to an equimomentum surface in
the three-dimensional parametric space (γ , β; u) where all
points on the surface have zero radial momentum. This sur-
face separates the valid region p2

ξ > 0 from the forbidden
region p2

ξ < 0. Solving the quadratic equation for u, we see
that the surface p2

ξ (γ , β; u) = 0 is composed of two sheets
given by

u±(γ , β ) = 1 − β ± D
2β

, (34)

where

D = D(γ , β ) =
√

(β − 1)2 − 4γ β. (35)

Since D has to be real, then γ and β must satisfy the condition

γ � (β − 1)2

4β
. (36)

The behaviors of u±(γ , β ) are shown in Fig. 2(a) for the valid
ranges of the variables (γ , β; u) in Eq. (31). The surfaces
u+(γ , β ) and u−(γ , β ) bifurcate at the curve

(γ , β, u) =
(

(β − 1)2

4β
, β,

1 − β

2β

)
, β � 0 (37)

[see the red line in Fig. 2(a)].
Now, the variable u is limited to the range [0, γ0]. The

intersection of the plane u = γ0 with the surfaces u±(γ , β )
occurs at straight line

β = γ0 − γ

γ0(1 + γ0)
, (38)

that goes from the point (−1, 1/γ0; γ0) to the point (γ0, 0; γ0).
The intersection of the plane u = 0 with the surfaces u±(γ , β )
corresponds to the line γ = 0, i.e., the β axis in the space
(γ , β; u).
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FIG. 2. (a) Surfaces u±(γ , β ) for γ ∈ [−1, γ0], β ∈ [0, 2], and
u ∈ [0, γ0] with γ0 = 1.5. Red curve is the branch line (37). The sur-
face is doubled valued in the region defined by Eq. (50). (b) Surfaces
v±(γ , β ) in the interval v ∈ [0, 1]. Red curve is the branch line (40).
The surface is doubled valued in the region defined by Eq. (42).

B. Surface p2
η(γ, β; v) = 0

The equimomentum surfaces p2
η(γ , β; v) = 0 are obtained

by solving Eq. (33), we get

v±(γ , β ) = β − 1 ± D
2β

, (39)

where D is given by Eq. (35).
Since the argument of the radical in D is the same as

Eq. (34), the condition in Eq. (36) applies for this case as
well. The curve where the surfaces v+(γ , β ) and v−(γ , β )
bifurcate is

(γ , β, v) =
(

(β − 1)2

4β
, β,

β − 1

2β

)
, β � 0 (40)

which is the reflection of the curve (37) on the plane u = 0,

as shown in Fig. 2(b). This result comes from the fact that

v±(γ , β ) = −u∓(γ , β ), (41)

as can be corroborated from Eqs. (34) and (39).

FIG. 3. (a) Regions on the plane (γ , β ) corresponding to
different types of trajectories in the billiard with γ0 = 1.5. (b) Rep-
resentative periodic trajectories and their caustics (red dashed lines).
Orbits (3, 7) for L and R motions.

The equimomentum surface v(β, γ ) is double valued at the
region defined by

γ ∈
[

0,
(β − 1)2

4β

]
, β > 1. (42)

The range of v is [0, 1]. The intersection of the planes v = 0
and 1 with the surfaces v±(γ , β ) is the straight lines γ = 0
and −1, respectively.

C. Classification of the trajectories

The results discussed above allow us to classify the kinds
of orbits the particle can exhibit in the billiard. As shown in
Fig. 3, the plane (γ , β ) is divided into zones by three curves:

(i) The (red) curve γ = (β − 1)2/4β separates the valid
region of pairs (γ , β ) that generate allowed trajectories within
the billiard, from the forbidden region where pξ and pη be-
come imaginary. The curve is tangent to the β axis at the point
(0, 1).

(ii) The (blue) straight line Eq. (38) separates the regions
where the particle hits the boundary (regions below the line)
from the regions where the particle does not hit the boundary
(regions above the line). The straight line is tangent to the
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curve at the point

(γe, βe) =
(

γ 2
0

2γ0 + 1
,

1

2γ0 + 1

)
, (43)

as shown in Fig. 3(a).
(iii) The vertical axis γ = 0 separates the regions where

the particle always crosses the x axis between the foci of
the elliptic boundary (negative γ ) from the regions where it
crosses the x axis outside the interfocal line (positive γ ). If
γ = 0, the particle successively passes through the foci of the
elliptic boundary.

Each zone in the plane (γ , β ) corresponds to a kind of
orbit.

Rotational (R = R1 + R2). Triangular region defined by

0 < γ � γ0, 0 � β � γ0 − γ

γ0(1 + γ0)
, (44)

as shown in Fig. 3(a). For a point (γ , β ) lying in the R region,
there is one real root for p2

ξ (u) in the interval u ∈ [0, γ0] and
none for p2

η(η). The particle rotates around the interfocal line
making a polygonal trajectory with vertices at the collision
points on the boundary; see Fig. 3(b). The particle always
crosses the x axis outside the interfocal line. All segments of
the trajectory are tangent to a confocal elliptic caustic ξ = ξC .
These points of tangency with the caustic are just where the
radial momentum vanishes, i.e., p2

ξ (ξC ) = 0. From Eq. (34)
we obtain

ξC = arcsinh
(√

u−
) = arcsinh

⎛⎝√
1 − β − D

2β

⎞⎠, (45)

where D is given by Eq. (35). The radial coordinate
of the particle is restricted to the range ξ ∈ [ξC, ξ0], whereas
the angular coordinate η is not bounded. As shown in Fig. 3,
the region R is divided into two subregions, R1 and R2,
by the vertical line γ = γe. The difference between both re-
gions will be discussed later.

Librational (L). Trapezoidal region defined by

−1 � γ < 0, 0 � β � γ0 − γ

γ0(1 + γ0)
. (46)

For a point (γ , β ) lying in this region, there is one real root
for p2

η(v) in the interval v ∈ [0, 1], and none for p2
ξ (ξ ). The

particle bounces alternately between the top and bottom of
the boundary, crossing the x axis always between the two foci
[see Fig. 3(b)]. Recalling that v = sin2 η, the angular mo-
mentum pη vanishes at η = ±ηC and η = ±(π − ηC ), where
ηC ∈ (0, π/2). Thus, the librational orbits are confined within
two confocal hyperbolic caustics, as shown in Fig. 3(b). The
value of ηC is obtained with Eq. (39), namely,

ηC = arcsin
(√

v+
) = arcsin

⎛⎝√
β − 1 + D

2β

⎞⎠, (47)

The range of the radial coordinate in the librational motion is
full, i.e., ξ ∈ [0, ξ0].

Elliptical inner (EI). Region defined by

−1 � γ < 0,
γ0 − γ

γ0(1 + γ0)
< β < ∞. (48)

For a point (γ , β ) lying in this region, there is one root for
p2

ξ (u) and one root for p2
η(v). The particle trajectory is an el-

lipse that does not touch the billiard boundary. Both foci of the
billiard are located outside the particle orbit; thus, it always
crosses the x axis within the interfocal line. The trajectory is
confined by two hyperbolic caustics and one elliptic caustic.
The hyperbolic caustics are the same as in the librational case,
i.e., Eq. (47). The elliptic caustic is determined with Eq. (34)
taking the positive sign, namely,

ξEI
C = arcsinh

(√
u+

) = arcsinh

⎛⎝√
1 − β + D

2β

⎞⎠. (49)

Elliptical outer (EO). Region enclosed by the three lines

γ = 0, β = γ0 − γ

γ0(1 + γ0)
, γ = (β − 1)2

4β
. (50)

For a point (γ , β ) lying in this region, there are two differ-
ent real roots for p2

ξ (u) in the interval [0, 1], and none for
pη(η). The trajectory is again an ellipse that does not touch
the billiard boundary, but now the foci of the billiard are
located inside the particle’s orbit; thus, it always crosses the
x axis outside the interfocal line. The trajectory is confined by
two elliptical confocal caustics which can be calculated with
Eqs. (45) and (49).

Vertical (V). If γ = −1, the particle becomes a one-
dimensional harmonic oscillator moving vertically along the
y axis. If β � 1/γ0, the particle bounces at the covertex points
of the elliptic boundary located at y = ±b. If β > 1/γ0 the
oscillator does not touch the boundary.

Focal (F). The line γ = 0 is the separatrix between the
librational and the rotational motions. In this case, the particle
crosses through one of the foci, then bounces off the boundary
and crosses through the other focal point, and continues like
that, crossing both foci alternately. As the particle bounces
back and forth, the trajectories become more and more
horizontal, and the orbit tends to align with the x axis. Even-
tually, the orbit is practically a horizontal harmonic oscillator
after many bounces. When the particle moves along the x
axis, if β � 1/(1 + γ0) it bounces at the vertex points of
the boundary located at x = ±a; else if β > 1/(1 + γ0), the
horizontal oscillator does not reach the boundary.

Special points of the plane (γ , β ):
(i) The point (γe, βe) [Eq. (43)] is the limiting case when

the two elliptic caustics of the EO motion collapse into a
single caustic equal to the boundary. In this case, the parti-
cle moves tangentially to the boundary without touching it.
In other words, if we remove the wall, the particle would
continue moving on an ellipse identical to the billiard bound-
ary due exclusively to the attractive force of the harmonic
potential.

(ii) The point (0,1) is the limiting case when the two el-
liptic caustics of the EO motion collapse into the interfocal
line. Then, the particle becomes a one-dimensional harmonic
oscillator moving horizontally with amplitude f .

(iii) The point [0, 1/(γ0 + 1))] is the meeting point of
the four regions L, R, EI, EO, and can be considered the
borderline case of the four types of motion. In this case,
the particle oscillates harmonically along the ellipse’s major
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FIG. 4. Poincaré phase mappings (ξ, pξ ) and (η, pη ) of the
billiard with γ0 = 1.5 for several values of the energy parameter
β = {0, 0.2, 0.5, 0.8, 1.1}. The iso-γ lines are contour lines of the
surfaces γ (ξ, pξ ; β ) and γ (η, pη; β ) obtained from Eqs. (25) and
(26), respectively.

axis with amplitude a; that is, it only touches the elliptical
boundary at their vertex points. Any slight perturbation of this
condition leads the particle to have one of the four main types
of motion.

(iv) A point (γ , β ) lying in the region Q1 (see Fig. 3)
produces real positives values of u± but both are outside of
the valid interval u ∈ [0, γ0]. Then, there are not possible
trajectories in this region.

(v) A point (γ , β ) lying in the region Q2 leads to negative
values of p2

ξ , so there are no physically valid solutions in that
region either.

D. Poincaré maps

Figure 4 shows the Poincaré phase maps in the radial
(ξ, pξ ) and angular (η, pη ) position-momentum spaces for

several values of β. The level curves correspond to constant
values of γ in Eqs. (25) and (26). These expressions are
doubled-valued functions corresponding to the two possible
signs of the momenta. The particle moves in the phase map in
a trajectory where γ and β (i.e., the energy E and the quantity
�) remain constant.

We chose the values of β to illustrate the typical phase map
for each region in the trajectory chart in Fig. 3. If β = 0,

we recover the known phase maps of the elliptic billiard
without potential [10,11]. The thick black line corresponds
to the separatrix γ = 0. Note in the maps γ (ξ, pξ ) that the
area with positive γ decreases as β increases. When γ =
1/(γ0 + 1) = 0.4, the thick black line no longer touches the
boundary ξ = ξ0, which means that rotational trajectories can
no longer exist in the billiard. In the interval β ∈ [0.4, 1], the
region with positive γ corresponds to the EI trajectories, and
as β grows, its area reduces even more until it disappears when
β = 1. Finally, only negative γ values exist for β > 1. All
these results are consistent with the map of regions in Fig. 3.

As β increases, the two lobes of the angular map (η, pη )
become thinner and thinner until they separate definitively for
β > 1. The particle’s motion can be traced along a specific
iso-γ curve in phase space. For example, a libration motion
corresponds to a closed orbit in the plane (η, pη ) moving in
a finite interval of the coordinate η between both hyperbolic
caustics.

In the radial map (ξ, pξ ), the particle moves towards the
boundary in the upper half-space pξ > 0; conversely, it travels
in the direction of the interfocal line when pξ < 0. The reflec-
tions of the particle at the boundary correspond to changes
+pξ → −pξ that are represented in the map (ξ, pξ ) by a ver-
tical jump along the line ξ = ξ0 connecting the upper and the
lower level curves. The orbits in the map (ξ, pξ ) are always
circulated clockwise.

For arbitrary values of γ and β, if the particle touches the
billiard boundary, its trajectory is open in general. That is,
the particle never returns to the starting point with the initial
momentum. Thus, after many bounces, it fills densely the
region bounded by the boundary and the caustics. For specific
values of γ and β, the trajectory can close and form a self-
intersecting polygon (whose sides are elliptic arcs) inscribed
about the caustics and the elliptic wall. In the next section,
we will derive the conditions to get periodic trajectories in the
billiard.

VI. PERIODIC TRAJECTORIES

The action variables for the canonical coordinates are
[18,19]

Jξ = 1

2π

∮
pξ (ξ )dξ, Jη = 1

2π

∮
pη(η)dη, (51)

where the integrals are carried out over a complete period
of the coordinates ξ and η. Replacing pξ (ξ ) and pη(η) from
Eqs. (25) and (26) we get

Jξ (γ , β ) = c

2π

∮
dξ

√
sinh2 ξ (1 − β cosh2 ξ ) − γ , (52)

Jη(γ , β ) = c

2π

∮
dη

√
sin2 η(1 − β cos2 η) + γ . (53)
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Given the values of γ , β, the actions Jξ and Jη are proportional
to the geometric area enclosed by the corresponding orbits on
the Poincaré maps shown in Fig. 4.

According to the types of motion discussed in Sec. V C and
the phase maps in Fig. 4, the closed integrals become open
integrals whose limits are

Jξ

R-type
Jξ

L-type
Jη

R-type
Jη

L-type

2
∫ ξ0

ξC

, 2
∫ ξ0

0
, 4

∫ π/2

0
, 4

∫ π/2

ηC

,

(54)

where ξC and ηC are given by Eqs. (45) and (47), respectively.

A. Winding number function

The winding number w of the system is the ratio of the
angle variables ωξ and ωη conjugate to the actions, namely,

w = ωη

ωξ

=
∂H
∂Jη

∂H
∂Jξ

= ∂Jξ

∂Jη

=

∣∣∣ ∂Jξ

∂γ

∣∣∣∣∣∣ ∂Jη

∂γ

∣∣∣ , (55)

with H being the Hamiltonian. Clearly, the winding number
is a function of the constants (γ , β ).

The derivatives of the actions with respect to γ are

∂Jξ

∂γ
= − c

4π

∮
dξ√

sinh2 ξ (1 − β cosh2 ξ ) − γ
, (56)

∂Jη

∂γ
= c

4π

∮
dη√

sin2 η(1 − β cos2 η) + γ
, (57)

where the closed integrals are replaced by the corresponding
open integral in Eq. (54) depending on the particular case.

Carrying out the changes of variable u = sinh2 ξ and v =
sin2 η, the integrands of Eqs. (56) and (57) are expressed
in terms of square roots of fourth-order polynomials in the
variables u and v. This allows us to write explicit results uti-
lizing the incomplete F (φ, k) and the complete K (k) elliptic
integrals of the first kind [25,26]

F (φ, k) =
∫ φ

0

dθ√
1 − k2 sin2 θ

, K (k) = F

(
π

2
, k

)
. (58)

We obtain for the rotational (R) and librational (L) motions

∂Jξ

∂γ
=

⎧⎪⎨⎪⎩
− c

2π

h√
D

F (φ1, h), R-type

− c
2π

1√
DF

(
φ2,

1
h

)
, L-type

(59)

∂Jη

∂γ
=

⎧⎪⎨⎪⎩
c

π

h√
D

K (h), R-type

c
π

1√
DK

(
1
h

)
, L-type

(60)

where D =
√

(β − 1)2 − 4γ β [Eq. (35)], and

h ≡
√

2D
1 − β + D + 2γ

, (61)

sin φ1 = 1

sin φ2
=

√
1 − β + D − 2γ /γ0

2D . (62)

FIG. 5. (a) Winding number surface w(γ , β ) with γ0 =
1.5 showing curves iso-β. The cutoff condition wc(β ) is
given by Eq. (64). (b) Iso-w level curves of w(γ , β ) =
{0, 0.025, 0.05, . . . , 0.5}. The winding number cannot be greater
than 1

2 . (c) Detail of the R1 region. For β > βe, the level curves have
two roots of γ , which correspond to degenerate orbits in the billiard.
For γ = 0.4 we have γp = 0.1525 and γq = 0.3284.

Replacing Eqs. (59) and (60) into Eq. (55), the winding num-
ber function is given by

w(γ , β ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F (φ1, h)

2K (h)
, R region

F (φ2, 1/h)

2K (1/h)
, L region

1/2, EI and EO regions.

(63)

The analytical expressions of the winding number function
are an important result of this work. They fully characterize
the particle trajectories in the billiard. Figure 5(a) shows the
winding number function w(γ , β ) for a billiard with γ0 = 1.5.
Waterfall lines in subplot 5(a) show the behavior of w(γ , β )
as a function of γ for constant values of β; that is, they are
lines of constant energy.

The contour plot in Fig. 5(b) shows the level curves w =
{0, 0.025, 0.05, . . . , 0.5} of the winding number function. All
points (γ , β ) lying on a level curve have the same wind-
ing number. Note the parallelism between the region map in
Fig. 3(a) with the winding number function.

Analysis of the function w(γ , β ) plotted in Fig. 5 reveals
the following properties:

(i) The winding number reaches the maximum of 1
2 when

γ = 0, corresponding to focal F trajectories.
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(ii) The elliptical trajectories in regions EI and EO have
a winding number of 1

2 , which tells us that in an elliptic orbit,
the angular coordinate η goes through its range once, and the
radial coordinate ξ goes through its range twice.

(iii) All iso-w lines in the librational region begin at the
baseline β = 0 with negative γ , increase monotonically as
γ decreases, and end at the vertical axis γ = −1.

(iv) A librational orbit with energy constant β can occur
in the billiard only if its winding number lies in the interval
[wc,

1
2 ), where

wc = w(−1, β ) = 1

π
arcsin

⎛⎝√
γ0(β + 1)

γ0 + 1

⎞⎠ (64)

is the cutoff winding number for librational orbits [see
Fig. 5(a)].

(v) All iso-w lines in the rotational region begin at the
baseline β = 0 with γ > 0, and converge to the vortex point
(γe, βe) given by Eq. (43).

(vi) The winding number at γ = γe is constant for all
values of β, namely,

w(γe, 0 � β � βe) = 1/4. (65)

(vii) The iso-w line equal to 1
4 at γ = γe divides the region

R into the subregions R1 and R2, as shown in Figs. 3 and
5. All rotational orbits lying in R1 (γ < γe) have w > 1

4 ,
whereas orbits lying in R2 (γ > γe) have w < 1

4 and β < βe.

The level curves in the subregion R2 tend monotonically to
the vortex point, whereas the curves in R1 grow, reach a
maximum, and descend to the vortex.

(viii) Observe the value of the winding number along the
upper border of region R. In zone R1, its value is w = 1

2 ,
and in zone R2, we have w = 0. The discontinuity occurs at
the vortex point, where the winding number is indeterminate.
By adopting the half-maximum convention, the value at the
vortex is, by definition, 1

4 .

B. Degenerate trajectories

From the behavior of the winding number function shown
in Fig. 5, we observe that it is possible to get two different
trajectories with the same winding number w and the same β,

but different values of γ , as long as w ∈ (1/4, 1/2) and β >

βe. To explain this result, in Fig. 6(a), we plot the subregion
R1 showing in more detail the iso-w curves. For example, the
horizontal line β = 0.3 is above the vortex [βe = 0.25] and
intersects twice with the contour curve w = 0.4. Conversely,
the line γ = 0.2 is below βe; thus, there is only one cross point
with the curve w = 0.4. Since all points lying in an iso-β line
have the same energy E , the trajectories that share the same
β and the same winding number w but a different γ can be
considered degenerate trajectories. By having different γ , two
degenerate trajectories have different elliptic caustics, periods,
and lengths.

To have degenerate trajectories, the point (γ , β ) has to lie
within the triangular region defined by the straight lines γ =
0, β = βe, and β = (γ0 − γ )/γ0(γ0 + 1). It is not possible to
have degenerate librational trajectories.

In Fig. 6(b), we show a pair of degenerate trajectories
with β = 0.3 and w = 0.4. The location of the corresponding

FIG. 6. Degenerate rotational trajectories (2, 5) for a billiard
with γ0 = 1.5. Both orbits have the same winding number w = 0.4,

the same energy β = 0.3, but different constant γ . The values of
the elliptic caustics ξC and the periods T in units of T0 = 2π/ω are
included for each orbit.

points (γp, β ) and (γq, β ) on the (γ , β ) chart is shown in
Fig. 6(a). The vertices 1 in both trajectories are located at
the same point η = 75◦ to easily notice that the corresponding
vertices between both orbits are located at different positions.
As expected for degenerate trajectories, their caustics, periods,
and lengths differ.

C. Characteristic equations of periodic trajectories

The periodic orbits are determined by the condition that the
winding number is equal to a rational number

w = wn
m = n

m
, (66)

where n and m are two integer numbers. The periodic trajec-
tory closes after m periods of the coordinate ξ and n periods
of the coordinate η. If w is an irrational number, then the
trajectory never closes and ends up filling the available con-
figuration space inside the billiard.

From Eqs. (63) and (66), the characteristic equations to get
periodic orbits (n, m) in the billiard are

wn
m = F (φ1, h)

2K (h)
= n

m
, R-type (67a)

wn
m = F (φ2, 1/h)

2K (1/h)
= n

m
, L-type. (67b)

These equations have the same structure as the characteristic
equations of the elliptic billiard without potential [9,10], but
the arguments are different.
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The behavior of the iso-w lines on the plane (γ , β ) is
shown in Fig. 5(b). For example, any point (γ , β ) on the iso-w
line equal to 0.375 generates a closed path (n, m) = (3, 8) that
could be rotational or librational. If the value of w is below
the cutoff [Eq. (64)], for example w = 0.15, only rotational
trajectories can exist.

Alternatively, the characteristic equations (67) can be in-
verted by applying the Jacobian elliptic function sn(x, α)
[26,27]. For rotational orbits, Eq. (67a) becomes

sn

[
2n

m
K (h), h

]
=

√
1 − β + D − 2γ /γ0

2D . (68a)

This equation has real solutions for m � 3 and n � m/2. The
numbers m and n are the number of bounces at the bound-
ary and the number of turns the particle makes in a cycle,
respectively.

For librational orbits, Eq. (67b) becomes

sn

[
2n

m
K

(
1

h

)
,

1

h

]
=

√
2D

1 − β + D − 2γ /γ0
, (68b)

which has real solutions for m � 4 and n � m/2, where
m must be an even integer to have closed librational
trajectories.

The process of determining the periodic trajectories in the
billiard is as follows: For a specific trajectory (n, m), either
rotational or librational, locate a point (γ , β ) lying on the
contour line with winding number w = n/m. Usually, β is
proposed (since it is equivalent to giving the energy), and γ

is calculated by finding the root of the corresponding char-
acteristic equation, either using Eq. (67) or (68). Determine
the value of the caustics evaluating either Eq. (45) or (49) at
the point (γ , β ). This information lets us know the allowed
region where the particle moves within the billiard. Later, set
the coordinates (ξ, η) of the starting point of the trajectory;
they must be within the valid region of motion of the particle.
Typically, one chooses a point (η) on the boundary ξ = ξ0.
Now, Eqs. (18), (25), and (26) give the components pξ /σ and
pη/σ of the initial momentum p, which provides the angle
about the tangent to the boundary of the first segment of
the trajectory, namely, α = arctan(pξ /pη ). Calculate the first
elliptic trajectory through the potential and find the impact
point with boundary. Calculate the velocity vector after the
bounce considering that the collision is elastic. From here, it
is an iterative process. Trace the complete orbit by calculating
the successive elliptical segments and the collision points on
the boundary. The trajectory will close after m bounces for
R-motion and 2m bounces for L-motion.

Some rotational and librational periodic orbits are de-
picted in Fig. 7 for a billiard with γ0 = 1.5. For rotational
orbits, m is either the number of bounces at the boundary
or the number of sides, and n is the number of turns around
the interfocal line in a cycle. For librational orbits, 2m is the
number of reflections at the boundary, and n is the number of
times the trajectory touches the caustics. In most examples,
we select the upper covertex as the starting point of the trajec-
tory, which produces symmetric orbits about the y axis. The
topologies of the rotational trajectories are straightforward,
but in the librational case, interesting phenomena can occur.
For example, the orbit L(3, 8) is shown twice; in the first

FIG. 7. Rotational (R) and librational (L) trajectories for a
billiard with γm = 1.5. Caustics are depicted with dashed red lines.
All orbits have β = 0.2.

image, the particle bounces perpendicularly on the border, and
then it returns by the same path to complete the trajectory; in
the second, we choose another starting point to unfold the tra-
jectory. The path L(7, 18) is also shown twice to illustrate that
symmetric or nonsymmetric librational paths around the y axis
can be obtained. Finally, in the last line, we show three orbits
with m = 26 but different n to show the effect of the gradual
variation of the winding number on the hyperbolic caustics.

The starting point of a given trajectory (n, m) does not
affect the calculation of the constants of motion (γ , β ). Thus,
we can choose any point of the boundary, within the allowed
region, as the first vertex for constructing the polygonal tra-
jectory. Moving the initial point along the boundary generates
different orbits with the same number of sides and, as we
will see, the same period and length. Indeed, in an integrable
system, the periodic tori are not isolated but form a continuous
family that fills the configuration space.

D. Period of the periodic orbits

In the simple case when the particle does not hit the bound-
ary and its trajectory becomes an ellipse (winding number
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w = 1
2 ), it is clear that the period of the orbit is simply

T0 = 2π/ω. (69)

T0 can be considered as the characteristic constant of time of
the system.

On the other hand, when the particle describes a polygonal
trajectory, the calculation of the period is much more complex.
Fortunately, a general expression for the period T n

m of the tra-
jectory (n, m) can be derived starting from the definition of the
Hamiltonian in terms of canonical coordinates and momenta,
i.e., H = ∑

j p j q̇ j − L, where L is the Lagrangian, and the
overdot means time derivative. Integrating with respect to time
over one cycle yields∑

j

∮
p jq j =

∮
H dt +

∮
L dt, (70a)

2π (mJξ + nJη ) = ET n
m + S. (70b)

where S is the action, and Jξ and Jη are defined by Eqs. (52)
and (53). Because S is constant for a specific trajectory, partial
derivation with respect to the energy yields

T n
m = 2π

(
m

∂Jξ

∂E
+ n

∂Jη

∂E

)
, (71)

which is the desired expression.
The evaluation of Eq. (71) is laborious, but the result can be

expressed in terms of the incomplete �(φ, n, k) and complete
�(n, k) elliptic integrals of the third kind [25,26]

�(φ, n, k) =
∫ φ

0

dθ

(1 − n sin2 θ )
√

1 − k2 sin2 θ
, (72a)

�(n, k) = �(π/2, n, k). (72b)

For rotational (R) trajectories, we get

T n
m = T0

h

π

√
β

D

{
μ−�

(
φ1,

1

s+
, h

)
+ 2n

[
(1 − v−)�

(
1

v−
, h

)
+ v−K (h)

]}
, (73)

where D is given by Eq. (35), u± by (34), v± by (39), h by
(61), φ1,2 by (62), and

s± ≡ D − β ± 1

2D . (74)

For librational (L) trajectories we get

T n
m = T0

1

π

√
β

D

{
μ−

[
F

(
φ2,

1

h

)
− �

(
φ2, s+,

1

h

)]
+ 2n

[
(1 − v−)�

(
s−,

1

h

)
+ v−K

(
1

h

)]}
. (75)

Equations (73) and (75) are formidable; they allow us to eval-
uate the period of a periodic orbit in the billiard analytically.
We have compared the results of these equations with those
obtained using numerical simulations of the particle moving
in the billiard, and the discrepancy is less than 10−10.

FIG. 8. Period function T n
m /T0 = m f (γ , β ) with m = 2. The

period in the regions EI and EO is T0, as expected.

If we now extract the index m from Eq. (71) and use the
definition of winding number wn

m = n/m, the period writes as
T n

m = m2π (∂Jξ /∂E + wn
m∂Jη/∂E ). From here, we can infer

that the expressions for the period can be written in the nor-
malized form

T n
m /T0 = mτ (γ , β ), (76)

where τ (γ , β ) is a dimensionless function that only depends
on the constants of motion (γ , β ) and is valid in the regions L
and R.

The behavior of the period function T n
m /T0 = mτ (γ , β )

with m = 2 is illustrated in Fig. 8. The image shows the curves
of constant period in the rotational and librational regions.
Setting m = 2 ensures the period at the border with the regions
EI and EO is continuous. The period function for a trajectory
(n, m) is the same, except for a scale factor of m/2.

Figure 8 reveals other interesting results of the billiard. As
it happened in the winding number function in Fig. 5, it is
possible to get two different orbits with the same energy β

but different γ as long as the points (γ , β ) lie in the upper
triangular zone of the region R1 above βe. Further analysis
of the contour lines in Fig. 8 reveals that it is also possible to
get two different orbits in the region R2 with the same γ and
different energy β that share the same period.

Finally, it is worth mentioning that the period of the orbit
(n, m) can also be calculated with

T n
m = π

mJξ (γ , β ) + nJη(γ , β )

〈Ek〉 , (77)

where 〈Ek〉 is the average value of the kinetic energy in a
complete cycle. The result is fully equivalent to Eqs. (73)
and (75).

VII. GEOMETRIC CONSTRUCTIONS

As illustrated in Fig. 9, the self-intersecting points of a
trajectory (n, m) with constants of motion (γ , β ) lie on el-
lipses (and hyperbolae) that are confocal to the boundary.
Any selection of these confocal ellipses can define a new
internal billiard that supports a new subtrajectory with the
same (γ , β ) but different indices (n′, m). In the same way,
if we extend the elliptical segments beyond the boundary (as
if it did not exist), we can see that the outer elliptic paths also
intersect at confocal ellipses that could be considered the wall
of larger elliptic billiards. This result applies to both rotational
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FIG. 9. Self-Intersecting ellipses (dashed lines) for (a) rotational
trajectory (3,10) with β = 0.2 and γ = 0.403; (b) rotational trajec-
tory (2,7) with β = 0.1 and γ = 0.402, and (c) librational trajectory
(3,8) with β = 0.2 and γ = −0.158.

and librational orbits. In the following, we adopt the term SI
ellipses to refer to the confocal ellipses outlined by the cross
points where the elliptic paths intersect. Let us analyze the
rotational and librational cases separately.

A. Rotational orbits

For R orbits (n, m) with even m, there are m/2SI ellipses
distributed as follows: (n − 1) internal ellipses, 1 correspond-
ing to the boundary, and (m/2 − n) external ellipses. These
results are exemplified in Fig. 9(a) for a rotational orbit
with (n, m) = (3, 10) and β = 0.2. The winding numbers

w′ = n′/m of the trajectories (n′, m) formed by the family of
SI ellipses are

w′ =

(n−1) internal︷ ︸︸ ︷
1

m
, . . . ,

n − 1

m
,

1 boundary︷︸︸︷
n

m
,

(m−2n)/2 external︷ ︸︸ ︷
n + 1

m
, . . . ,

m/2

m
, (78)

where the index n′ is the number of turns around the inter-
focal line that the particle makes in a complete orbit with m
bounces. Note that the amount of SI ellipses is defined ex-
clusively by the number m of bounces at the boundary. Thus,
as long as m is constant, we can gradually vary the physical
parameters of the problem and the number of SI ellipses does
not change.

The elliptical radii ξ0 of the SI ellipses can be found with
the characteristic equation (68a). So far, we have considered
the winding number w as a function of (γ , β ), and the goal
has been to calculate a pair (γ , β ) for a given w = n/m. Now,
the problem can be inverted and formulated as follows: Given
(γ , β ) and the winding numbers w′ = n′/m, find the values of
γ0 that satisfy Eq. (68a).

Solving γ0 from Eq. (68a), we get

γ
(n′,m)

0 = sinh2 ξ
(n′,m)
0

= 2γ

1 − β + D − 2D sn2[2w′K (h), h]
, (79)

where w′ = n′/m takes the values according to Eq. (78). Note
that D [Eq. (35)] and h [Eq. (61)] depend exclusively on
(γ , β ).

The last SI ellipse with w = n′/m = 1
2 corresponds to the

outermost elliptic caustic formed by the return points of the
external trajectories [see Fig. 9(a)]. Replacing n′/m = 1

2 into

Eq. (79) and using sn[K (h), h] = 1, we get the radius ξ
(m/2)
0

of the extreme caustic

ξ
(m/2,m)
0 = arcsinh

⎛⎝√
2γ

1 − β − D

⎞⎠. (80)

The construction of the SI ellipses for the case when m is
odd is shown in Fig. 9(b) for (n, m) = (2, 7) with β = 0.1.
Note that the cross points which outline the SI ellipses corre-
spond to the intersections of m ellipses oriented at different
angles. Consequently, the number of SI ellipses is doubled
with respect to the case when m is even. The winding numbers
w′ = n′/m of the corresponding orbits are

w′ =

(2n−1) internal︷ ︸︸ ︷
1

2m
, . . . ,

2n − 1

2m
,

1 boundary︷︸︸︷
2n

2m
,

(m−2n) external︷ ︸︸ ︷
2n + 1

2m
, . . . ,

m

2m
. (81)

The elliptic radii ξ
(n′,m)
0 of the SI ellipses with odd m can be

also determined with Eq. (79) taking the winding numbers
from Eq. (81).

B. Librational orbits

Figure 8(c) shows the SI ellipses for a librational orbit
with (n, m) = (3, 8) and β = 0.2. In order to have closed
trajectories, m is always an even number for L trajectories.

The winding numbers w′ = n′/m of the SI ellipses are
given by Eq. (81), but now their elliptical radii ξ0 are
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calculated by solving the characteristic equation (68b) for γ0,

we have

sinh2 ξ
(n′,m)
0 = 2γ

1 − β + D − 2D/sn2[2w′K (1/h)]
. (82)

The outermost SI ellipse of the librational case can be calcu-
lated with Eq. (80) as well.

Finally, in characterizing the SI ellipses generated by
the self-intersections of the trajectories in the billiard, we
have partially solved the outer problem. In this problem, the
particle moves outside the elliptic wall and is attracted toward
the origin by the parabolic potential. The trajectory is created
with the particle bouncing off the boundary from the outside.
The goal is to determine the conditions to get rotational or
librational periodic trajectories. The rotational orbits in the
outer problem have similar characteristics to the rotational or-
bits we reviewed above. Nevertheless, librational trajectories
are somewhat different since the particle cannot go through
the wall, so it can only move above or below the billiard, as
shown in Fig. 9. In any case, the main properties and the basic
equations of the outer problem can be inferred from the inner
problem we discussed in this paper.

VIII. CONCLUSIONS

In this paper, we characterize the particle trajectories in an
elliptic billiard with an attractive harmonic oscillator poten-
tial, emphasizing the analysis of the periodic trajectories.

It was found that there are four main motion scenarios:
rotational, librational, inner elliptical, and outer elliptical. Ad-
ditionally, there are some particular cases, such as rectilinear
and focal motions. Two independent constants of motion char-
acterize the particle dynamics: β, associated with the total
energy, and γ , associated with the angular momenta about
the foci and the position y within the billiard. The different
scenarios can be mapped in the (γ , β ) plane, which helps
to understand the constraints and ranges of the constants of
motion for a particular trajectory to occur.

We derived closed analytical expressions for the winding
number function w(γ , β ) and the characteristic equations to
get periodic trajectories with angular n and radial m indices.
These are expressed in terms of elliptic integrals of the first
kind. We found that it is possible to have two degenerate
(n, m) rotational trajectories that share the same energy β

but different γ values. It is not possible to get degenerate
librational trajectories.

A notable result was the closed expressions of the time
period T n

m of rotational and librational orbits. These expres-
sions are written in terms of elliptic integrals of the third kind.
It was also shown that it is possible to obtain two different
rotational trajectories with the same period and γ but different
β energy.

We analyzed the caustics and ellipses outlined by
the self-intersections of an orbit (n, m) in the billiard,
both for intersections occurring inside and outside the
elliptical wall.
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