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Obstruction to ergodicity in nonlinear Schrödinger equations with resonant potentials
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We identify a class of trapping potentials in cubic nonlinear Schrödinger equations (NLSEs) that make
them nonintegrable, but prevent the emergence of power spectra associated with ergodicity. The potentials are
characterized by equidistant energy spectra (e.g., the harmonic-oscillator trap), which give rise to a large number
of resonances enhancing the nonlinearity. In a broad range of dynamical solutions, spanning the regimes in which
the nonlinearity may be either weak or strong in comparison with the linear part of the NLSE, the power spectra
are shaped as narrow (quasidiscrete), evenly spaced spikes, unlike generic truly continuous (ergodic) spectra. We
develop an analytical explanation for the emergence of these spectral features in the case of weak nonlinearity. In
the strongly nonlinear regime, the presence of such structures is tracked numerically by performing simulations
with random initial conditions. Some potentials that prevent ergodicity in this manner are of direct relevance
to Bose-Einstein condensates: they naturally appear in 1D, 2D, and 3D Gross-Pitaevskii equations (GPEs), the
quintic version of these equations, and a two-component GPE system.
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I. INTRODUCTION

The clash between integrability and ergodic behavior is
a well-known basic phenomenon in the dynamics of non-
linear systems [1,2]. While the evolution of generic systems
with many degrees of freedom typically exhibits thermaliza-
tion, chaotization, and stochasticity, dynamics of integrable
systems are tightly constrained by a large (or infinite) num-
ber of conservation laws. A conflict between these scenarios
arises when the system is “close” to integrability [1]. In
that case, a natural question is to what extent the dynamics
displays ergodic features. Such questions were suggested, in
particular, two decades ago by experiments with nearly 1D
cold atomic gases [3,4] because the underlying basic model
may be the integrable Lieb-Liniger one [5], but integrability-
breaking effects cannot be completely eliminated from the
real-world setup [6]. The problem of the competition between
the integrability and ergodicity motivated studies of deviations
from the standard framework of nonequilibrium dynamics [7],
bringing along intriguing ideas such as generalized hydrody-
namics [8–14], prethermalization [15–18], generalized Gibbs
ensembles [19–21], etc.

A common approach to analytical and numerical studies of
these problems relies on perturbing an integrable equation by
extra terms—typically, this is an external trap added to the
nonlinear Schrödinger equation (NLSE) [11,22]. Then, one
explores consequences of the integrability breaking in the per-
turbed model [11,12,18,22–24]. One may, however, wonder
whethera mechanism other than integrability exists to produce
essential deviations from ergodic signatures of nonintegrable
dynamics. This question underlies the present work, leading to

a class of NLSEs including highly resonant potentials (HRP),
namely, ones that, for the linear Schrödinger equation, yield
equidistant spectra of energy eigenvalues En:

En = an + b, (1)

with integer n and real constants a and b. A commonly known
example is the harmonic-oscillator (HO) potential, whose
equidistant spectrum is a consequence of the hidden symmetry
of the respective quantum Hamiltonian [25]. Similarly, the
equidistant structure of spectra of other potentials is related
to their symmetries [26].

The term highly resonant reflects extreme abundance of
resonances in these systems. Indeed, the equidistant posi-
tioning of eigenvalues in Eq. (1) ensures that the four-wave
constraint, En + Em − El − Ej = 0 with integers n, m, l, j,
which is the resonance condition for the cubic nonlinearity,
reduces to a simple relation between the integer numbers, n +
m − i − j = 0. It implies an infinite number of resonances for
any mode (n = i + j − m). It is shown below that the special
structure of energy eigenvalues (1) has a strong impact on
the dynamics, producing a regime of nonergodic evolution,
in contrast with the generic (nonequidistant) energy spectra.
This phenomenon is demonstrated, in particular, by the power
spectra for the cubic NLSE with the HO potential displayed in
Fig. 1. In the case of generic trapping potentials, the system in-
discriminately excites a large range of frequencies, leading to
ergodic (continuous and unstructured) power spectra [27], as
shown in Figs. 1(b) and 1(c), which correspond, respectively,
to the infinitely deep square well and an anharmonic potential.
By contrast, HRPs, in a parameter range spanning regimes
in which the cubic nonlinearity may be weak or strong, in
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FIG. 1. The contrast between power spectra of the first-mode
amplitude â0, defined according to Eq. (11), as produced by the nu-
merical solution of the one-dimensional NLSE with the HO potential
(a), infinitely deep square potential well (b), and quartic potential
(c), initialized by the input with a random phase and amplitude.
Amplitudes of higher modes produce similar plots.

comparison to the linear part of the NLSE, give rise to
unusually depopulated power spectra, in which the excited
frequencies reside in a “comblike” arrangement of spikes, as
shown in Fig. 1(a). The comblike spectra induced by HRPs
reveal an obstruction to ergodicity, being drastically differ-
ent from the continuously distributed spectra created by the
generic traps. This conclusion is upheld by the similarity of
the comblike power spectra in HRPs to the discrete power
spectra which are a characteristic feature of the integrable dy-
namics. The truly discrete spectra are associated with periodic
and quasiperiodic trajectories that the integrable dynamics
track on the surface of invariant tori in the phase space (with
a very small share of the invariant tori being destroyed by
integrability-breaking perturbations, according to the KAM
theorem [28]).

Our motivation to search for alternatives to exact integra-
bility in explaining nonergodic behavior came from specific
results for the 1D Gross-Pitaevskii equation (GPE) [29,30],
which is a well-established model for the dynamics of atomic
Bose-Einstein condensates, based on the NLSE for the mean-
field wave function of the condensate [31–33]. It is commonly
known that the NLSE is integrable in the free 1D space
[34,35], thus providing a good starting point for the study of
the integrability-ergodicity clash. The dynamical behavior in
the presence of an external trap, which breaks integrability
[36], has been addressed for nonequilibrium configurations
[27,37–43], coherent states in time-dependent traps [44,45],
and propagation of a small number of solitons [46–55] (see
also Refs. [56–66] for related models). Numerical works
[46–49] suggested remarkable contrast between the GPE with
the HO potential, and the equation including either anhar-
monic potentials or the infinitely deep potential box, which
is represented by zero boundary conditions at the box edges.

In particular, a single dark soliton trapped in the box po-
tential displays a continuous power spectrum, in consonance
with ergodicity and indicating the emission of radiation [49].
However, the evolution of the dark soliton governed by the
GPE with the HO potential gives rise to a quasidiscrete power
spectrum, reminiscent of discrete spectra associated with the
quasiperiodic dynamics of integrable systems [49]. The non-
ergodic behavior of the 1D GPE with the HO potential, as
opposed to the apparent ergodicity maintained by other poten-
tials, is not restricted to the soliton motion, but also happens
for more generic initial conditions, such as random waves.
As shown in Fig. 1, the evolution initialized by these con-
figurations in the case of the HO potential displays comblike
power spectra, while ergodic ones (truly continuous and un-
structured) are seen in case of the box and quartic potentials.
The specific shape of the power spectra supported by the HO
potential suggests the presence of an underlying mechanism
constraining the dynamics to a nonergodic form. It was re-
ferred to as “quasi-integrability” in Ref. [49], because, as said
above, discrete spectra are a hallmark of integrable systems.

NLSEs with the HO potential display peculiar behavior
which is not restricted to 1D. In particular, in 2D there are an-
alytical solutions describing periodically modulated motion of
a single-vortex [67] and multi-vortex configurations [68–70],
as well as dark rings [69], as well as analytical and numeri-
cal manifestations of Fermi-Pasta-Ulam recurrences [70]. In
Ref. [71], the rich structure exhibited by weakly nonlinear
dynamics of the 2D GPE with the HO potential was extended
to a large family of related systems with similar behaviors,
and in Ref. [72], it was connected to the presence of breathing
modes [73,74]. Another setup where the HO potential has
shown quasiperiodic motions is the 1D quintic NLSE [75].

The connection between the 2D GPE with the HO potential
and other systems with equidistant linear spectra subject to
condition (1), which were considered in Refs. [71,72,75], is
an incentive to find out whether the quasi-integrability of the
1D GPE with the HO potential, established in Ref. [49], is an
exceptional feature, or, on the contrary, it is shared by a large
class of NLSEs. To this end, we here examine the role played
by the potential and conclude that comblike power spectra
similar to the one plotted in Fig. 1(a) are displayed by NLSEs
with HRPs, whose linear spectra of energy eigenvalues take
the form of Eq. (1). However, NLSEs with potentials that do
not obey definition (1) do not display comblike spectra either,
even if the spectra admit resonances between some modes.

Our results suggest three essential implications. First,
NLSEs including HRPs constitute a broad class of models
ranging from some of the most common and physically rel-
evant ones, such as the GPE with the HO potential in any
number of spatial dimensions, to more sophisticated poten-
tials [e.g., the one accounting for the “superselection,” see
Eq. (30)] and nonlinear terms. The availability of 2D and 3D
models of this type is particularly interesting for the experi-
ment because they overcome fundamental limitations inherent
to studies of weakly broken integrable dynamics. First, the
perturbation theory applies, in the traditional form, solely to
1D models [36]. The second lifted limitation, which is related
to the first one, is that our models are not necessarily pro-
duced by deformations of integrable equations. An example is
the 1D quintic NLSE with the HO potential, which features
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nonergodic power spectra without proximity to an exactly
integrable equation (see details below). Finally, it is relevant
to stress that our results offer an example of how a linear
property, viz., the equidistant linear energy spectrum (1), may
impose a fundamental constraint on the full nonlinear dynam-
ics, preventing the onset of ergodicity. For our exposition of
the results we mostly refer to two models, the 1D GPEs with
the HO and box potentials, which represent the HRPs and
non-HRPs, respectively. Then, we explain how similar results
are produced by other potentials.

The rest of the paper is organized as follows. First, we
introduce the setup and make a direct comparison between
the dynamics under the action of the HO and box poten-
tial in Sec. II. Then, in Sec. III we develop an analytical
approximation for the power spectrum in the case of weak
nonlinearity, which makes it possible to explain differences
between the respective power spectra. Afterward, in Sec. IV
we show numerically how the comblike power spectrum de-
pends on the magnitude and sign (defocusing/focusing) of the
nonlinear terms. This is followed in Sec. V by the presentation
of comblike power spectra produced by eleven other HRP
models, which provide a robust confirmation of the genericity
of our results. The paper is concluded, in Sec. VI, by a dis-
cussion of prospects and implications of our findings. Some
technical aspects of numerical methods employed in this work
are presented in the Appendices.

II. ONE-DIMENSIONAL GROSS-PITAEVSKII EQUATIONS
WITH THE HARMONIC POTENTIAL

AND BOX POTENTIALS

Throughout this paper, we use the 1D GPE with the cubic
nonlinearity as the main setup to illustrate the methods and
results. In Sec. V, we describe several other models, related
to the ones addressed here. The scaled form of the GPE, with
time t and coordinate x, is

i∂tψ = − 1
2∂2

x ψ + V (x)ψ + g|ψ |2ψ, (2)

where V (x) is the potential, and g the nonlinearity coefficient,
with g > 0 and g < 0 representing the repulsive and attrac-
tive self-interactions, respectively. This equation conserves
the norm

M =
∫ +∞

−∞
|ψ |2dx, (3)

and energy (Hamiltonian)

H =
∫ +∞

−∞

(
1

2
|∇ψ |2 + V (x)|ψ |2 + g

2
|ψ |4

)
dx, (4)

which includes the quadratic and quartic parts, associated with
the linear and nonlinear terms in Eq. (2), respectively:

H2 =
∫ +∞

−∞

(
1

2
|∇ψ |2 + V (x)|ψ |2

)
dx, (5)

H4 = g

2

∫ +∞

−∞
|ψ |4dx. (6)

We fix the normalization by setting M = 1 in Eq. (3). The
equation will be studied in the full range from the weakly non-
linear regime (|g| � 1) to the strongly nonlinear one (|g| �
1). As said above, the latter case represents the situation in

which the cubic term is large in comparison with the linear
ones, but higher-order nonlinear terms are still negligible.
Normally, such terms do not appear in the GPE, except for
the specially designed configuration, in which the cubic cross-
attraction between two components of a binary BEC is nearly
compensated by the self-repulsion in each component, making
it necessary to consider the quartic self-repulsion, that rep-
resents effects of quantum fluctuations around the respective
mean-field states, thus giving rise to the quantum droplets
[76,77].

The HO and box potentials are our representative exam-
ples, chosen to illustrate the differences between HRP and
non-HRP cases, respectively:

HO : V (x) = 1

2
x2, box :

{
0, for x ∈ (0, L),
∞, elsewhere, (7)

where the coefficient of the HO potential is fixed by scaling to
be 1, L is the size of the box, and the Dirichlet boundary con-
ditions ψ (t, 0) = ψ (t, L) = 0 are implied in the latter case.

The linearized version of Eq. (2) (g = 0) gives rise to the
commonly known eigenvalues En and eigenfunctions fn(x):

HO: En = n + 1

2
, fn(x) = Hn(x)

π1/4
√

2nn!
e−x2/2, (8)

box: En = π2(n + 1)2

2L2
, fn(x) =

√
2

L
sin

π (n + 1)x

L
, (9)

where n � 0 is the number of the bound state, and Hn(x)
are Hermite polynomials. We fix L = π/

√
2 for the box, to

facilitate the comparison of power spectra produced by the
two models. The fact that the HO potential belongs to the class
of HRPs is determined by its commonly known equidistant
energy spectrum (8), while the quadratic spectrum (9) clearly
indicates that the box potential belongs to the non-HRP class.
It admits some resonances among its modes, but much fewer
than enabled by the equidistant spectrum.

In both cases, the sets of eigenstates fn(x) are used to
rewrite the solution to Eq. (2) in terms of complex mode
amplitudes αn(t ), defined so that

ψ (t, x) =
∞∑

n=0

αn(t ) fn(x)e−iEnt . (10)

The power spectrum of each amplitude was computed as

ân(ω) ≡ F[|αn(t )|2], (11)

where F stands for the Fourier transform. The spectra are the
main targets that we address, aiming to observe the effect of
the potential in the underlying GPE, as motivated by Fig. 1.
To produce ân(ω), we solve Eq. (2) numerically, using the
schemes outlined in Appendix A, and then identify amplitudes
αn(t ) as per a truncated version of Eq. (10).

As initial conditions we use waves prepared with random
phases and amplitudes, in the form of

αn(0) =
{
AneiPn for n � N ,

AneiPn e−β(n−N ) for n > N ,
(12)

where An and Pn are random numbers uniformly distributed
in intervals [0,1] and [0, 2π ), respectively, N is the number
of significantly excited modes, and β > 0 determines the sup-
pression of higher modes. The value of M is not fixed by
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N and β in Eq. (12). For this reason, the set of initial am-
plitudes αn(0) is scaled to satisfy the normalization, M = 1.
We use input (12) because the exponential suppression of
the higher modes typically occurs in configurations arising
in the course of the dynamical evolution. Each realization of
input (12) features a different content of modes and phases,
yielding an adequate form of generic (“natural”) initial states.
Therefore, they provide an appropriate arena for formulating
generic results. This approach brings in a broader perspective
in comparison with focusing on special solutions, such as
single solitons. In this regard, our simulations may actually be
understood as the evolution of configurations given by super-
positions of a large number of dark solitons, corresponding to
notches in the pattern (the superposition also including other
ingredients), as Fig. 2 suggests.

Random initial conditions similar to those defined by
Eq. (12) are used in studies of the wave turbulence [78], with
the aim to produce a generic dynamical picture, rather than
focusing on specific solutions. In particular, the 1D NLSE in
a very broad box with periodic boundary conditions was used
to study the dynamics of random waves in integrable equa-
tions [79–81] (implementing the concept of the “integrable
turbulence” introduced by Zakharov [82]), the formation of
rogue waves [83–85], etc. Initial conditions of the same type
have been also used in the context of the 2D NLSE with a
truncated HO potential in connection with experiments on
the light propagation in multimode optical fibers [86–90],
and in general, in the studies of optical wave turbulence
[91]. Thus, our use of random initial configurations in the
presence of trapping potentials follows the general frame-
work adopted for the studies of spatially confined random
waves.

A detailed visualization of the evolution of random waves
in the HO and box potentials is produced, respectively, in the
left and right columns of Fig. 2. In both cases, the evolution
is affected by the nonlinearity and broad wavelength spectrum
of the initial excitation (g = 250, N = 20, β = 1).

Proceeding with the analysis, we first dwell on the case
of the HO potential. In this case, profile |ψ (x)| is initially
localized at the center of the domain, exhibiting many notches.
At the initial stage of the subsequent evolution, the profile
performs a sequence of alternating expansion-compression
cycles under the action of the HO potential [Fig. 2(Ia)], and
then relaxes to a spread state [Fig. 2(Ib)] that keeps a nearly
constant envelope in time, together with a large number of
notches shuttling from side to side, resembling a gas of dark
solitons [92]. The relaxation process may be observed in
Fig. 2(Ic) in the evolution of the energy terms H2 and H4,
defined as per Eqs. (5) and (6). Their ratio, starting from
H4/H2 ≈ 2.2 [inset in Fig. 2(Ic)], initially oscillates with large
amplitudes corresponding to expansion and compression of
the profile. After t ≈ 80 the energy exchanges significantly
subside, with the energies oscillating around nearly constant
values in the course of the subsequent evolution, with the
ratio H4/H2 
 0.42, which is essentially larger than in the
weakly nonlinear regime (H4/H2 � 1). The power spectrum
associated with this evolution scenario features, in Fig. 2(Ie),
a comblike shape similar to that exhibited above in Fig. 1(a).
While one might assume that this shape originates from the
initial expansion-compression stage, the simulations are long

enough to guarantee the completion of the system’s relaxation
in the course of 20% of the total simulation time, while the
established stage of the evolution covers the remaining 80%
of the time. Moreover, omitting the initial relaxation stage
in the computation of the power spectrum, its shape prac-
tically does not change. The same happens if one performs
extremely long simulations, which also reveal the establish-
ment of a comblike structure, see (Appendix C). As concerns
the propagation of dark solitons in the profile, Figs. 2(Ia) and
2(Ib) exhibit their relatively smooth trajectories at both stages
of the evolution, the expansion-compression and established
ones.

In the case of the box potential, Fig. 2(II) shows that the
random-phase-and-amplitude input (12) fills the box from the
beginning, remaining in this state at all times. We have also
explored the case where the random-phase-and-amplitude
input is localized at the center of the box. In that case, fol-
lowing the initial expansion, the profile remains in the spread
state, without featuring expansion-compression cycles. In the
course of the evolution, the energies again keep the ratio
H4/H2 
 0.42 . Taking close-by values of this ratio in the
cases of the HO and box potentials is necessary, once the
objective is to compare similar nonlinear regimes. In spite
of the proximity of the ratio H4/H2 
 0.42 in both cases,
the action of the box potential leads to the emergence of a
continuous (ergodic) power spectrum in Fig. 2, in contrast
with its comb-shaped counterpart for the HO potential. It is
also worthy to note a significant difference in the range of
excited frequencies in the respective power spectra. We stress
that the difference from the case of the HO potential is not a
mere consequence of the mismatch in the box size, because we
have set L = π/

√
2 above precisely with the purpose to match

the linear energy spectra of both systems [(En)HO = n + 1/2
and (En)box = (n + 1)2], and, as we show in the next section,
this value of L provides matching of positions of the excited
frequencies in the power spectra of both systems. The ergod-
icity in case of the box-shaped potential has been previously
observed in Ref. [27] for initial conditions that expand from
the center, in agreement with our inference that there is no
essential difference from the long-time evolution initialized by
the input filling the entire domain. Similar to the HO potential,
it is observed that dark solitons propagate throughout the box,
but they do not follow smooth trajectories even in its interior,
because of multiple collisions between them, and shapes of
individual solitons are identified less clearly than in the case
of the HO potential

We have also tested the presence of ergodicity in the case
of non-HRPs whose generically shaped spectra of energy
eigenvalues do not admit resonances. For instance, the 1D
quartic potential, V (x) = x4/2, is a non-HRP one, as shown
by lowest eigenvalues numerically computed with accuracy
�En ∼ 10−4:

E0 = 0.5302, E1 = 1.8998, E2 = 3.7278,

E3 = 5.8224, E4 = 8.1309, E5 = 10.6192,

E6 = 13.2642, E7 = 16.0493, E8 = 18.9615.

(13)

In this case, the input provided by random waves gives
rise to an initial expansion-compression stage before
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FIG. 2. The evolution of 1D defocusing random waves under the action of the HO (left column, labeled I) and box-shaped potentials of
size L = π/

√
2 (right column, labeled II), for a large nonlinearity coefficient g = 250 in Eq. (2). From top to bottom: the initial stage of the

spatiotemporal evolution (a); the evolution at an advanced stage (b); the temporal evolution of the quadratic (5) and quartic (6) parts of the
energy (c); four snapshots illustrating the shape of the profile in the course of the evolution (d); and the power spectrum of the lowest-mode’s
amplitude, α0(t ) (e), with higher modes displaying similar shapes. The initial conditions are random waves prepared as per Eq. (12) with
N = 20 and β = 1. Both cases, corresponding to the HO and box potentials, keep the ratio H4/H2 
 0.42 at the established stage of the
evolution.

relaxing to a spread state, apparently similar to the dynam-
ical scenario observed above under the action of the HO
potential, but the power spectrum is ergodic in the present
case, see Fig. 1(c), like in the case of the box potential, cf.
Fig. 2(IIe), in agreement with the general picture outlined
above.

III. THE ANALYTICAL DESCRIPTION IN THE WEAKLY
NONLINEAR REGIME

In this section, we aim to provide an analytical form of
the power spectrum in the weakly nonlinear regime, with
|g| � 1 in Eq. (2), in which the difference in the emergence
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of comblike or ergodic spectra in HRPs and non-HRPs can
be understood explicitly. To do that, we again address the
1D GPE with the HO and box potentials, which generate, as
mentioned above, the following commonly known equidistant
and quadratic spectra:

HO: En = n + 1

2
; box: En = π2

2L2
(n + 1)2. (14)

First, we are going to demonstrate that both potentials pro-
duce, in the case of weak nonlinearity, a comblike power
spectrum composed of “slender” peaks. After that, we show
how the eigenvalues determine interactions between the
eigenmodes, and how the equidistant eigenvalues in the case
of the HO potential arrange the interactions in a way that
helps to preserve the comblike spectrum as the nonlinearity
strengthens. However, we demonstrate that the deviation from
the equidistant structure of the spectrum in the case of the
box potential is responsible for erasing the comblike spectral
shape, already for moderately weak nonlinearity. The exten-
sion of the analysis to generic HRPs subject to condition (1) is
presented in Appendix B, where we show that our arguments
developed for the HO potential apply to generic HRPs as
well, safeguarding the preservation of the comblike power
spectra. The arguments are independent of the sign of g, thus
being valid for both the defocusing and focusing signs of the
nonlinearity. For this reason, g means |g| in this section.

A. Slender comblike spectrum

For our analysis, it is useful to rewrite the 1D GPE (2) as a
system of equations for mode amplitudes αn. To do that, one
has to insert ψ (t, x), written in the form of expansion (10),
in Eq. (2), and project the result onto eigenmodes fn(x). This
results in a system of ordinary differential equations for the
evolution of the amplitudes,

i
dαn

dt
= g

∞∑
m=0

∞∑
i=0

∞∑
j=0

Cnmi j ᾱmαiα je
i�nmi j t , (15)

where the bar stands for the complex conjugate,

�nmi j ≡ En + Em − Ei − Ej (16)

are the resulting frequencies of the four-wave interaction, and
with the respective couplings constants,

Cnmi j =
∫ +∞

−∞
fn(x) fm(x) fi(x) f j (x)dx. (17)

Expressions (15)–(17) are valid for any trapping potential,
including the HO and box ones, the distinction being in the
values of �nmi j and Cnmi j , when one inserts specific eigenval-
ues En and eigenmodes fn(x) into the expressions.

Using Eq. (15), we aim to demonstrate, first, that the
structure of the power spectrum is quite simple for the weak
nonlinearity (g � 1). The equations give rise to two con-
stituents of the evolution, as seen in Fig. 3. On the one
hand, there are frequencies ∼g and amplitudes ∼1, which
are associated with resonances. On the other hand, there
are contributions with small amplitude ∼ g corresponding to
frequencies associated with nonresonant interactions. The fre-
quencies of the latter type are precursors of the characteristic

FIG. 3. The evolution of αn (a) and power spectrum of α0|2
(b) governed by the 1D GPE with the HO potential and defocus-
ing sign of the nonlinearity. In panel (a) two constituents of the
evolution are observed: long-time modulations and small-amplitude
oscillations, which are associated with resonant and nonresonant
interactions, respectively. In panel (b) the effect of these terms on
the power spectrum of |α0|2 is observed. Vertical yellow lines mark
our analytic prediction, W2k = 2k, for the location of the excited
frequencies in the case of the weak nonlinearity [see Eq. (19)], which
demonstrates very accurate agreement, up to a slight shift originating
from nonlinear corrections. These numerical results were produced
for g = 1, to comprise the slow and fast constituents in the evolution
of αn in the framework of the same plot. The picture demonstrates
that the analytical prediction, originally obtained for g � 1, works
very well in this case too.

spikes in the comblike spectrum which exist in the case of
strong nonlinearity, as shown in the next section. In view of
their relevance to the analysis, we introduce them by means
of the following.

Definition. Wk with k ∈ Z represent all different values of
�nmi j with n, m, i, j ∈ N, defined by Eq. (16). and arranged
in the increasing order,

. . . < Wk−1 < Wk < Wk+1 < . . . with k ∈ Z. (18)

When �nmi j take the same value for different sets of the
indices, there is single Wk associated with that value (for
instance, �nnnn = 0 for any n, hence there is single k for which
Wk = 0).

For generic systems, eigenvalues En are irrational numbers,
hence frequencies Wk may form sets which are denser than
the underlying sets of eigenvalues En. As one proceeds to
stronger nonlinearity, further combinational harmonics arise,
filling in frequency axis still denser and leading to the emer-
gence of generic continuous power spectra. The situation is
much more subtle for systems with integer eigenvalues En,
as is the case for the HO and box potentials, since Wk are
then integers too. In this case, further analysis is required to
identify the shape of the power spectra, which arises from
the effect of the right-hand side (RHS) of Eq. (15) on the
evolution of αn. In the present context, two key ingredients
are prefactor g and the complex exponential, which is an
oscillatory term with frequency �nmi j that vanishes in the
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resonant case, �nmi j = 0. When g is very small, the evolution
splits in components corresponding to the natural timescales,
t ∼ O(1), O(1/g), etc. [93,94]. For t ∼ O(1), αn remain con-
stant up to nonlinear contributions of orders ∼g and higher.
We focus on the contributions of order g because they dom-
inate in this regime. On the one hand, resonant terms with
�nmi j = 0 generate contributions ∼ gt (i.e., secular terms in
terms of the “naive expansion” in powers of g), which induce
substantial modulations in αn at times t ∼ O(1/g) (see the
slow evolution of |α(t )| in Fig. 3). Therefore, such long-time
modulations excite frequencies ∼g in the power spectrum. On
the other hand, nonresonant terms, with �nmi j �= 0, oscillate
with frequencies �nmi j (including corrections ∼g) and am-
plitudes ∼g (see small oscillations of |α(t )| in Fig. 3). The
latter terms excite frequencies �nmi j in the power spectrum
of αn (with corrections ∼g), and have amplitudes ∼g. From
here, we conclude that the structure of the power spectrum in
the weakly nonlinear regime includes two kinds of excitation
frequencies: those determined by Wk , and the frequencies
forming a continuum in a small region of width ∼g around
the origin. When the nonlinearity strength grows, frequencies
produced as combinations from these two sets will emerge,
being responsible for the broadening of the sharp peaks lo-
cated at various values of Wk .

From the previous discussion, one can deduce the condi-
tion to display the comblike power spectrum in the regime of
weak nonlinearity. This is just the condition that Wk must be
equidistant because the spectrum is tightly localized around
Wk . The 1D GPE with the HO and box potentials precisely
satisfy this property because they give rise to

W2k = 2k (19)

and W2k = π2k/L2, respectively. This means that both poten-
tials give rise to a “slender” version of the comblike power
spectrum in the case of very weak nonlinearity. The expres-
sions for W2k follow from Eqs. (14) and (16),

�nmi j = (n + m − i − j) with n, m, i, j ∈ N, (20)

�nmi j = π2

2L2
[(n + 1)2 + (m + 1)2 − (i + 1)2 − ( j + 1)2],

(21)

in the case of the HO and box potential, respectively. To
make the structure of expression (21) more transparent, we set
m = i − 1, j = n − 1, which yields �nmi j = π2(n − i)/L2, so
that any integer is generated at times π2/L2. We use index
2k in Eq. (19), instead of k, to highlight the absence of
interactions between three modes with odd numbers and an
even one, and vice versa, for parity reasons [the respective
couplings Cnmi j vanish according to Eq. (17), hence W2k+1 are
not present in the power spectrum]. To ensure a meaningful
comparison between the HO and box potentials, we choose,
as said above, L = π/

√
2. Then, the spike positions (W2k)

in the power spectrum are the same for the two cases in the
weakly nonlinear regime. By means of such identification of
the frequency scales, a meaningful comparison is possible
between the HO and box-shaped potentials also for strong
nonlinearity.

B. Departing from the weakly nonlinear regime

It has been demonstrated above that the 1D GPE with
the HO or box potentials display a comblike power spectrum
for very weak nonlinearity. However, as Figs. 1 and 2 show,
this shape of the spectrum is not preserved in the case of
the box-shaped potential, turning into a generic ergodic spec-
trum with the increase of the nonlinearity strength. Here, we
aim to explain why, nevertheless, the HO potential preserves
the comblike shape of the power spectrum even for strong
nonlinearity. We demonstrate that the key difference is due
to the linear and quadratic eigenvalue spectra (14) of these
systems. This is because the eigenvalues determine, through
the frequency combinations �nmi j , which modes are involved
in the four-wave interactions, and then different structures
of �nmi j in Eqs. (20) and (21) produce different predictions
for the excitation of frequencies Wk . We show that, through
this mechanism, equidistant eigenvalues produce a strong sup-
pression of large frequencies, while a large range of them
are excited in case of the quadratic eigenvalue spectrum in
Eq. (14).

To demonstrate this, one has to estimate the contribution
of the kth frequency Wk to the nth mode αn. For that purpose,
one gathers all terms oscillating with frequency Wk on the
RHS of Eq. (15), writing the system of equations as

i
dαn

dt
= g

∞∑
k=−∞

Sn(k)eiWkt , (22)

Sn(k) ≡
∞∑

m=0

∞∑
i=0

∞∑
j=0︸ ︷︷ ︸

�nmi j=Wk

Cnmi j ᾱmαiα j . (23)

The “sources” Sn(k) defined by Eq. (23) determine the contri-
bution of the kth frequency Wk to the nth mode αn. Numerical
computations using values of αn extracted from our simu-
lations reveal that Sn(k) decay with |k| considerably faster
for the HO potential than the for its box-shaped counterpart,
as Fig. 4 shows (except for a few values of k as, explained
below). This picture is confirmed analytically in Appendix B
showing that the amplitudes Sn(k) decay exponentially in the
former case,

|Sn(k)HO| < e−β|k−n|Pn,k, (24)

while they exhibit a much slower decay for the box-shaped
potential,

|Sn(k)box| < e−β
√

|k−(n+1)2|Dn,k, (25)

where Pn,k and Dn,k are polynomials in n and k, and β is a
positive constant. To derive these results, we have used a “phe-
nomenological” analytical constraint for αn that captures the
qualitative structure revealed by our simulations, see Fig. 4(c),

|αn| < p(s)
n e−βnAn, (26)

where β > 0 is the same constant as in Eqs. (24) and (25),
p(s)

n is a polynomial of degree s � 0, while An is a random
variable uniformly distributed in the interval of [0,1].

Below, we explain that the difference between the HO and
box potentials in the decay of |Sn(k)| with k has an impact on
the structure of the power spectrum in the cases of weak and
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FIG. 4. The dependence of amplitude S0(k) on k in the cases of
the HO and box potentials, as produced by the numerical solutions
initialized by input (12) with random phases and amplitudes, for
N = 5 and β = 1. (a) S0(k), associated with the initial state, when
αn feature the exponential decay ∼e−n in both systems. (b) The same
amplitudes after the relaxation of the systems, when αn demonstrate
a stronger suppression with n in the box (∼e−0.36n) than in the case of
the HO potential (∼n−3e−0.02n), while S0(k) still decay faster in the
latter case. (c) Values of |αn| used in panels (a) and (b).

moderate nonlinearities, but, prior to that, we should clarify
where this difference comes from. One might conjecture that
it is associated with the couplings Cnmi j , but the actual reason
is the difference between the equidistant (8) and quadratic (9)
energy spectra, together with the rapid decay of αn (26). As
we show in Appendix B, for HRPs satisfying condition (1),
such as the HO potential, and αn given by Eq. (26), Sn(k)
decays exponentially for large |k|, independent of whether
Cnmi j decay, remain constant, or grow with the increase of
the indices, while the quadratic spectrum, such as the one
corresponding to the box potential, features a much slower
decay. The key point is in the restriction on the indices nec-
essary to get �nmi j = Wk in Eq. (23). Namely, fixing k, the
modes involved in the interactions that generate frequency

Wk differ for the spectra (20) and (21). In the former case,
large k requires at least one high-order mode involved, while
in the latter case the quadratic eigenvalues make it possible to
achieve large k easier, using low-order modes in most cases.

Thus, the exponential decay of high modes gives rise to the
difference in the magnitude of Sn(k). The following examples
illustrate this picture (Example I), and also explain the strong
decay of some amplitudes Sn(k) observed in the box in Fig. 4
(Example II).

Example I. Frequency W35 contributes to α0 via several
combinations of modes {n, m, i, j} in Eq. (23). For the sake of
simplicity we use the following expressions in this example:

αn = e−n, and Cnmi j = 1, (27)

while the conclusion is the same for other choices of αn and
Cnmi j , as explained in Appendix B. We focus on the largest
contributions to S0(35), which involves the lowest possible
modes, {0, 35, 0, 0} in the case of the HO spectrum (20),
or {0, 5, 0, 0} in the case of the box spectrum (21). Then, it
follows from Eq. (23) that the contribution of this interaction
in the case of the HO potential, ᾱ35α0α0 = e−35, is many
orders of magnitude smaller than the one in the case of the box
potential, ᾱ5α0α0 = e−5, because they, respectively, involve
modes m = 35 and m = 5 to generate the same frequency Wk .

Example II. Reproducing the previous example, but with
frequency W38 instead of W35, one finds that the largest
contribution to S0(38) in the box, (ᾱ20α1α19 = e−40), is close
to its counterpart in the case of the HO potential (ᾱ38α0α0 =
e−38). This difference from the common situation (see Fig. 4)
happens because there are no relatively low-order modes that
satisfy condition (21) for special combinations of (n, k). This
is the explanation behind the strong suppression of a few
amplitudes S0(k) in the box observed in Fig. 4. No essential
contribution from these amplitudes is expected in the subse-
quent description of the population of the power spectrum
because of their low presence and small values.

For weak nonlinearity, the difference in the decay of am-
plitudes Sn(k) corresponding to the HO and box potentials
has an impact on the power spectrum because they determine
the excitation of frequencies Wk . The strong suppression of
Sn(k) in the HO case is translated into strong suppression of
high frequencies Wk (rapid decay of peaks in the comblike
power spectrum), while the much slower suppression of Sn(k)
in the case of the box potential facilitates excitation of higher
frequencies (observed as spectral peaks at higher frequencies).
In the regime of moderate nonlinearity, amplitudes Sn(k) have
an even stronger influence on the shape of the power spectrum,
as we aim to explain now. In this regime, the evolution of αn

no longer features solely two motions contributed to by reso-
nances (�nmi j = 0) and oscillations with frequencies Wk , like
in Fig. 3(a), as subdominant oscillatory terms start to appear
as relevant ones. Thereby, the equidistant structure of Wk is
no longer sufficient to maintain the comblike spectrum. Sub-
dominant components emerge from the combination of the
resonant and nonresonant terms, as mentioned above. Namely,
these combined terms act as sources driving the generation of
subdominant components (similar to the usual principle that,
in any perturbative expansion, higher-order terms are sourced
by lower-order ones). Frequencies of the terms that emerge
in this way result from combinations of Wk and those ∼g

034204-8



OBSTRUCTION TO ERGODICITY IN NONLINEAR … PHYSICAL REVIEW E 108, 034204 (2023)

around the origin. They produce contributions in the power
spectrum that slightly deviate from Wk , broadening in this
way the “slender” spikes in the power spectrum in the weak-
nonlinearity regime. This set of subdominant contributions is
naturally extended to higher orders in g, producing more and
more frequencies in the power spectrum which are originally
sourced by Sn(k). Therefore, the behavior of these amplitudes
determines how the power spectrum is populated when the
system departs from the weakly nonlinear regime. In the case
of the box potential, we have demonstrated above that Sn(k)
slowly decay with |k| [see Eq. (25)], thus giving rise to a
broad range of high frequencies Wk , and triggering the rise of
a large number of high-frequency subdominant peaks, which
dress the basic power spectrum with a complicated structure.
In this way, the comblike spectral shape, which persists in the
weakly nonlinear regime, quickly gets destroyed, a spectral
tail of high frequencies arises, and individual peaks broaden
considerably, absorbing multiple combinational contributions
arising from already excited peaks. In the case of the HO
potential, higher-order contributions are, of course, produced
as well, but the exponential suppression of high-frequencies
Wk , as seen in Eq. (24), ensures that a majority of subdomi-
nant terms are suppressed as well. This mechanism drastically
reduces the number of significant subdominant contributions
the power spectrum receives, preventing its “wild” population
and protecting its comblike structure. Note that, while our
analysis is performed in the framework of the weakly non-
linear regime, the picture produced by it correctly captures
the shapes of the power spectra for the strong nonlinearity, as
observed in Figs. 1 and 2: a disordered distribution of many
spikes in the case of the box-shaped potential, and the nearly
equidistant array of spikes in the HO case, confined to the
low-frequency range.

Before concluding the analysis of the weakly nonlinear
regime, we aim to highlight differences between the present
analysis and works on quasiperiodic solutions and FPU recur-
rences in the 2D GPE with the HO potential. In both cases, the
modal decomposition (15) has been used, but Refs. [67,69,70]
focused on resonant interactions, namely, long-time dynam-
ics at |g| � 1, exploiting the specific structure of Cnmi j and
neglecting nonresonant interactions. However, our analysis
considers both resonant and nonresonant interactions, while
the specific form of Cnmi j for each system was not used. It was
done with the purpose of getting a description of the power
spectrum of HRPs in the weakly nonlinear regime, that helps
to guide the intuition for moderate values of |g|. It is worth
mentioning that analytic solutions obtained in Refs. [67,69]
are not generic among the class of HRPs, as they rely on
a special structure of Cnmi j [71,72], although they have a
significant presence in the class of NLSEs [67,69,72,75,95].
However, a part of the study of FPU recurrences performed in
[70] relied on less restrictive property of Cnmi j , leaving open
the possibility that this kind of dynamics is generic for NLSEs
with HRPs.

IV. NUMERICAL RESULTS IN THE FULLY
NONLINEAR REGIME

Having explained the emergence of the comblike power
spectra for weak nonlinearity, it is natural to explore how the

picture changes toward strong nonlinearity. Specifically, it is
relevant to find out how the structure gradually deviates from
the above prediction for the weakly nonlinear regime with
the increase of |g|, and how it depends on the sign of the
nonlinearity, self-defocusing (g > 0) or focusing (g < 0).

Figure 5 provides answers to these questions. One observes
how the comblike spectrum evolves away from the “slender”
version as the nonlinearity strength grows, for the 1D GPEs
with the box and HO potentials. The comparison between
these potentials demonstrates that the main predictions of the
weakly nonlinear analysis developed above still hold quali-
tatively in the fully nonlinear regime. The power spectrum
for the box potential transits from the comblike shape to an
ergodic one, which includes a conspicuous high-frequency
component. However, the spectrum corresponding to the HO
potential still keeps a comblike spectral shape for large values
of |g|. This contrast between the different potentials reflects
the fact that the equidistant linear energy spectrum (1) plays a
central role in the strongly nonlinear regime too. Nevertheless,
these results are not explained by proximity to the linear
regime. Indeed, while the “slender” power spectra exist at
small g in both cases of the HO and box potentials, extending
them to a comparable level of the nonlinearity, characterized
by the ratio H4/H2 of the energy terms, see Eqs. (5) and (6),
the GPE with the HO potential still maintains a comblike
spectrum, while its counterpart with the box potential dis-
plays an ergodic spectral distribution, totally different from
the weakly nonlinear regime.

For the case of the HO potential in the GPE with focusing
and defocusing nonlinearities, Fig. 5 shows two characteristic
effects involving spikes of the comblike spectra. The first is
a gradual deviation from locations Wk , that were predicted
in the weak-nonlinearity regime, toward smaller (larger) fre-
quencies for the defocusing (focusing) sign of the nonlinearity
(in agreement with the usual definitions of the self-defocusing
and focusing), while keeping their nearly equidistant struc-
ture. The second effect, observed with the growth of |g|, is that
the spectral spikes get wider, and at some point they start to
overlap with each other, compromising the comblike shape.
The magnitude of |g| at which this happens depends on the
sign of the nonlinearity. In the case of the self-attraction, the
transition happens at much lower values of |g|. This trend can
be easily explained too, noting that the focusing nonlinearity
enhances the interaction and mixing between different modes,
while the defocusing suppresses the interaction.

Note that the above analysis is presented for the non-
linearity magnitude, g, treated as the control parameter. An
alternative way to quantify the strength of the nonlinearity is,
as mentioned above, to use the ratio between the quadratic and
quartic energies, |H4|/H2. We observe that, with the increase
of |g|, the self-focusing GPE rapidly accumulates energy in
the nonlinear terms, which is translated into larger values of
|H4|/H2, in comparison to the defocusing case, which requires
much higher values of g to reach the same ratio.

The transition from the comblike power spectrum to ergod-
icity in the case of very strong nonlinearity is not surprising.
What is nontrivial in these results, is the great impact the
equidistant structure of the linear spectrum on the nonlinear
regime and the persistence of the nonergodic spectrum even
for strong nonlinearity.
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FIG. 5. The power spectrum produced by the defocusing 1D GPE with the box-shaped potential (a)–(d), and by the defocusing and focusing
[(e)–(h) and (i)–(l), respectively] 1D GPE with the HO potential. The computations of the spectra for increasing values of the nonlinearity
strength, |g|, are performed with random-wave initial conditions. The initial data are the same for all plots in the case of the HO potential.
Vertical yellow lines mark the location of W2k , see Eq. (19).

V. OTHER NONLINEAR SCHRÖDINGER EQUATIONS
WITH HRPS (HIGHLY RESONANT POTENTIALS)

In the above analysis, we addressed the 1D GPE with the
HO potential as the guiding example to present the charac-
teristic features of HRPs and observe how their resonance
structure hinders the onset of the ergodicity. Here, we proceed
to demonstrate that this effect is generic for other resonant
potentials, which cover a wide range of interesting models.
To this end, we have explored the dynamics of NLSEs with
different nonlinearities, including HRPs in different spatial
dimensions, a two-component NLSE, and even a relativistic
wave equation. Below, we present detailed results for these
equations. In Fig. 6, one can see that all of them display comb-
like power spectra, confirming the genericity of the principles
formulated above. Actually, these findings imply that the form
of the nonlinearities plays a secondary role, as it determines
the values of g at which comblike spectra transit to ergodic
ones, but not the overall presence of the effect.

A. The quintic 1D NLSE with the HO potential

A natural modification of the original 1D GPE with the HO
potential is to replace the cubic nonlinear term by the quintic
one. The equation has the form

i∂tψ = − 1
2∂xxψ + 1

2 x2ψ + g|ψ |4ψ, (28)

keeping the equidistant spectrum, En = n + 1/2. This modifi-
cation provides a new setting because the cubic 1D NLSE in
the free space is integrable, while the quintic one is not, and
gives rise to 1D Townes solitons and critical collapse [96].
This, in particular, rules out the integrability of the underlying
equation in the free space as a reason for the emergence of

comblike power spectra. With t replaced by the propagation
distance, z, Eq. (28) is a natural model for a planar waveguide
in optics, where the purely quintic nonlinearity may be real-
ized in colloidal suspensions of metallic nanoparticles [97].

B. D-dimensional cubic and quintic NLSEs
with the HO potential

It is also natural to explore the existence of comblike power
spectra in higher dimensions (here we restrict the considera-
tion to the case of spherical symmetry). We did that for the
cubic and quintic NLSEs with the HO potential:

i∂tψ = 1

2

(
−∂rr − D − 1

r
∂r + r2

)
ψ + g|ψ |p−1ψ, (29)

where r ∈ [0,∞) is the radial coordinate, D = 2, 3, ... is the
spatial dimension, and p = 3 or 5 is the power of the nonlinear
term. For any combination of these parameters and g > 0
(self-repulsion, otherwise the multidimensional NLSE gives
rise to the collapse [98]), Eq. (29) has the commonly known
equidistant linear energy spectrum of the multidimensional
HO, En = 2n + d/2.

C. Anharmonic potentials

Another way to test the robustness of our findings is by
modification of the trapping potential, keeping its equidistant
spectral structure. Some special 1D potentials which maintain
this property can be found in Ref. [99]:

V (1)(x) = x2

2
+ s2 − 1

8x2
, (30)

V (2)(x) = x2

2
+ 3

x2

4x4 + 3

(2x2 + 3)2
+ 4

3
, (31)
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FIG. 6. Comblike power spectra produced by the 1D, 2D, and
3D GPEs (a)–(c), by the 1D, 2D, and 3D quintic NLSEs with the
HO potential (d)–(f), by the 1D NLSE with potentials V (1), V (2),
V (3), V (4) defined by Eqs. (30)–(33) [panels (g)–(j), respectively], by
the two-component NLSE (37) (k), and by the relativistic real wave
equation (38) (l).

V (3)(x) = x2

2
+ 8x2 − 4

(2x2 + 1)2
+ 2

3
, (32)

V (4)(x) = x2

2
+ 8

(8x6 + 12x4 + 18x2 − 9)

(4x4 + 12x2 + 3)2
+ 2, (33)

where s > 1 is a constant, x ∈ (0,∞) for the first two po-
tentials, and x ∈ (−∞,∞) for the last two. In particular,
potential V (1)(x) in Eq. (30) represents the so-called “su-
perselection”, viz., the interaction of a particle, confined by

the HO potential and carrying a permanent dipole electric
moment, with an electric charge placed at x = 0 [100], while
V (2)(x) is a modified version of the same potential, in the
case when the quasi-1D (cigar-shaped) trap is embedded in
a partly screening host medium. Moreover, the 1D GPE with
potential V (1)(x) is identical to the radial reduction of the
D-dimensional NLSE with the HO potential and nonlinear
term rD−1|ψ |2ψ (see Appendix D for the derivation). In any
case, this equation is truly different from Eqs. (2) and (29),
constituting a new element for our study of HRPs. Potentials
V (3)(x) and V (4)(x) do not have a straightforward physical
interpretation, but they provide additional relevant realizations
of equidistant spectra.

The energy eigenvalues are fully equidistant for V (1) and
V (2),

E (1)
n = 2n + 1 + s

2
, E (2)

n = 2n + 23

6
, (34)

with n � 0. However, for V (3) and V (4) there is a gap between
the ground-state eigenvalue and ones corresponding to the
excited states, which form equidistant arrays (“towers”):

E (3)
0 = − 5

6 , E (3)
n�1 = n + 7

6 , (35)

E (4)
0 = − 3

2 , E (4)
n�1 = n + 5

2 . (36)

D. A two-component NLSE system

Another possibility [58,101–104] to realize the comblike
(nonergodic) power spectra is offered by a two-component 1D
NLSE,

i∂t u = −1

2
∂xxu + x2

2
u + cv + gu|u|2u,

i∂tv = −1

2
∂xxv + x2

2
v + cu + gv|v|2v, (37)

where gu, gv , and c are constants. The linear version of the
system decouples into two single-component equations for
ψ+ = u + v and ψ− = u − v, which gives rise to two “tow-
ers” of equidistant energy eigenvalues, E (±)

n = n + 1
2 ± c.

E. A wave equation in anti-de Sitter spacetime

Our considerations of the comblike spectra are based on the
equidistant energy spectrum (1), and depend little on peculiar-
ities of the NLSEs. We have further tested the validity of the
principles formulated here for the case of a relativistic wave
equation whose normal-mode frequencies also fit condition
(1). This choice is motivated by the connection between the
GPE and the following equation for a real scalar field φ in the
anti-de Sitter spacetime [95,98,105]:

∂ttφ = cot2 x ∂x(tan2 x ∂xφ) + gφ3, (38)

which is subject to boundary condition φ(t, π/2) = 0, where
x ∈ [0, π/2) is the radial coordinate. This equation gives rise
to an equidistant spectrum, En = 2n + 3.

VI. DISCUSSION

Our analysis has revealed that NLSEs with HRPs (highly
resonant potentials) pose a barrier to the emergence of
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ergodic power spectra in weakly and strongly nonlinear
regimes alike. While usually the consideration of nonergodic
dynamics is restricted to small deformations of integrable
equations [8–12,15–18,22–24], our focus has been on mech-
anisms that do not directly rely on proximity to integrability.
The potentials in question, namely, the ones with equidistant
linear spectra of energy eigenvalues [in particular, the HO
(harmonic-oscillator) potential], produce a strong impact on
the power spectra of the full nonlinear system, which remain
concentrated in comblike arrays of spikes. This pattern is
captured by our analytical consideration for weak nonlinear-
ity, performed in Sec. III, and numerical simulations of the
strongly nonlinear regime in Sec. IV. These spectra are in
clear contrast with the continuous ones produced by generic
potentials, and resemble quasidiscrete spectra associated with
integrable dynamics.

While the difference between the HRPs and generic poten-
tials without any resonances is obvious, the difference is more
subtle when comparing HRPs to potentials that feature some
resonances in their spectra, but the energy levels do not fit
the rigid pattern defined by Eq. (1). In the case of generic po-
tentials, normal-mode frequencies are incommensurate, and
combinational frequencies created by nonlinearities quickly
populate the real line, creating a generic continuum power
spectrum. For that reason, much of our study has been fo-
cused on the peculiar but physically motivated case of the
infinitely deep box potential. In that case, the linear normal-
mode frequencies and all of their combinations are integers,
which, however, does not preclude the emergence of the con-
tinuum power spectrum at a finite nonlinearity strength, in
contrast to what is seen in the case of the HO and other
HRPs with linear energy spectra in the form of Eq. (1). The
analytical consideration carried out in Sec. III, together with
numerical experiments reported in Secs. IV and V, make
it clear that a central role is played by the spectrum of
linear energy eigenvalues, even in the case of strong non-
linearity. We have seen, in the weakly nonlinear regime,
how they determine the interactions between the modes in
the system, which translates into the structure of the power
spectrum. Equidistant energy eigenvalues, like those in the
case of the HO potential, distribute the interactions in such
a special way that a reduced set of frequencies dominate in
the power spectrum, providing strong suppression of high
frequencies and ensuring the protection of the nonergodic
comblike power spectra in the regime of stronger nonlinearity.
However, the quadratic energy eigenvalues produced by the
box-shaped potential do not provide for the suppression of
higher frequencies, and give rise to truly continuous ergodic
spectra. This analysis is extended to a broad class of HRPs
in Appendix B, leading to the same conclusion. Further, we
have made use of simulations to study the dependence of
the comblike power spectrum on the nonlinearity strength,
and tested the genericity of our conclusions, checking them
for NLSEs with various HRPs. Random waves were used as
initial conditions to capture the evolution of a wide range of
inputs. Our numerical results corroborates that the analysis
developed in the weak-nonlinearity limit correctly forecasts
the qualitative shape of the power spectra in the strongly
nonlinear regime as well. We also inspected the distinction
between the cases of focusing and defocusing nonlinearities,

concluding that the comblike power spectra degrade faster
with the growth of the nonlinearity strength in the former
case.

In general, linear features tend to get rapidly overwhelmed
by nonlinear effects when the system departs from the weakly
nonlinear regime, although some models for 1D random
waves demonstrate regimes where dynamical features of weak
and strong nonlinearities coexist [106] (i.e., random waves
and coherent modes, such as solitons, exist in both regimes).
HRPs admit similar coexistence between the features of weak
and strong nonlinearity: while solitons (and other essentially
nonlinear modes) are involved in the dynamics, it is still
heavily influenced by the weak-nonlinearity features, such
as the structure of the spectrum of energy eigenvalues. As a
result, the comblike power spectra, which are directly asso-
ciated with weakly nonlinear dynamics, persist for stronger
nonlinearity.

After producing the basic results with the help of the guid-
ing example of the 1D GPE with the HO potential, we have
demonstrated that the same mechanism of the obstruction
to ergodicity is maintained by generic HRPs. To do that, in
addition to the analytical description developed in Sec. III
and Appendix B, we have explored several NLSEs with this
class of potentials. We observed comblike power spectra in
the presence of different nonlinear terms, different potentials
(belonging to the HRP class), different spatial dimensions,
and in the two-component GPE as well. The presence of
the multidimensional models in the class of highly resonant
NLSEs, such as the 2D and 3D GPEs, and the quintic NLSE
with the HO potential, are noteworthy findings. This is in con-
trast to studies of nonergodic dynamics that rely on proximity
to integrability, as a vast majority of integrable equations are
one-dimensional. In this work, we have studied the obstruc-
tion to ergodicity in the multidimensional equations under the
assumption of the spherical symmetry. It would be interesting
to lift this condition, addressing fully multidimensional spec-
tra for states carrying angular momentum.

The presence of the 2D-GPE with the HO in the class
of HRPs suggests a potential connection between our results
and experiments on wave thermalization in multimode optical
fibers, a topic of many ongoing experiments [86–90,107,108].
Light propagation in graded-index multimode fibers, studied
in these experiments, is modeled by the finite-mode version
of the 2D-GPE with the HO potential [86–90]. In this setup,
Refs. [87,90] have studied the role played by structural disor-
der (addition of a random term to the HO) on the dynamics of
weakly interacting random waves. Rapid thermalization has
been observed in the presence of disorder, while the thermal-
ize was hindered in the absence of this element (i.e., in the
case of the pure HO potential). The thermalization is com-
monly explained in terms of the wave-turbulence theory, and
no hindrances were expected when the experiments started.
It is plausible that the anomaly pointed out in Refs. [87,90]
may be caused by the influence of the equidistant energy
eigenvalues inherent to the model that governs the observed
dynamics, agreeing in this way with our inference that the
specific structure of eigenvalues (in this case, produced by
the 2D NLSE with the HO potential) may account for
deviations from the ordinary principles of nonequilibrium
dynamics. It would be interesting to investigate whether the
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phenomenology of the effective nonergodicity observed in
Refs. [87,90] is generic for other models with HRPs.

Finally, our study suggests an extension of the concept
of quasi-integrability, identified in the form of quasidiscrete
power spectra in the 1D GPE with the HO potential and
self-defocusing cubic nonlinearity in Ref. [49]. In that context,
the case of self-focusing remained unexplored till now. We
have tackled it here too, demonstrating the presence of the
comblike power spectra in this case as well, although they
degrade faster with the growth of the nonlinearity strength.
We have provided an analytical description of this effect in
the regime of weak nonlinearity, while previously reported
results were purely numerical. Finally, we have broadened the
understanding of the quasi-integrability by showing that its
characteristic quasidiscrete power spectrum, produced by the
evolution of random-wave initial conditions, is shared by a
large class of the nonlinear models including HRPs. Thus, our
results imply that the 1D GPE with the HO potential is not
exceptional in this regard, although it is worthwhile to men-
tion the large range of values of the strength of the defocusing
nonlinearity for which this physically relevant model pro-
duces well-defined comblike power spectra. While we have
mostly focused on NLSEs, our weakly nonlinear analytics
suggests that the obstruction-to-ergodicity mechanism should
be present in equations of other types, such as nonlinear wave
equations. We have briefly demonstrated the latter possibility
by presenting the comblike power spectrum generated by the
highly resonant real wave equation (38).
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APPENDIX A: NUMERICAL METHODS

Numerical simulations of NLSEs have been performed
using two schemes. One is based on a pseudo-spectral de-
composition of the spatial coordinate similar to that used in
Refs. [80,83,109] and the fourth-order Runge-Kutta (4RK)
method to advance in time. When the spatial coordinate is
unbounded, x ∈ (−∞,∞), such as in the case of the 1D GPE
with the HO potential, we truncate the domain to a finite
one x ∈ [−Rmax, Rmax] with Rmax large enough to guarantee
that |ψ (t,±Rmax)| is exponentially suppressed. This interval
is discretized into N points of the form xn = Rmax( 2n

N − 1)
with n = 0, 1, ..., N − 1. The goal of this procedure is to
compute the second derivative on the RHS of the equation by
using the Fast Fourier transform (FFT), see Ref. [110] for a
deep description. For this purpose, we decompose function
ψ (t j, xn) at time t j over the truncated set of the lowest N/2

Fourier modes propagating to the left and to the right,

ψ (t j, xn) ≈
N/2−1∑

k=0

β
(−)
k e−i π

Rmax
k(xn+Rmax ) (A1)

+
N/2∑
k=1

β
(+)
k ei π

Rmax
k(xn+Rmax ), (A2)

where β
(±)
k are the Fourier amplitudes at time t j . We apply

the FFT to ψ (t j, xn) to compute the amplitudes, and use the
inverse FFT to compute the second derivative,

∂xxψ (t j, xn) ≈
N/2−1∑

k=1

−
(

π

Rmax
k

)2

β
(−)
k e−i π

Rmax
k(xn+Rmax ) (A3)

+
N/2∑
k=1

−
(

π

Rmax
k

)2

β
(+)
k ei π

Rmax
k(xn+Rmax ). (A4)

Note that the boundary conditions |ψ (t j,±Rmax)| � 1 require
that β

(−)
0 ≈ 0 and β

(+)
k ≈ −β

(−)
k . We use these conditions as

a quality check in our simulations. Terms on the RHS of
the equation that do not involve differentiation are computed
using ψ (t j, xn).

Our second scheme to simulate NLSEs is similar to that
employed in Refs. [49,98]. It truncates the spatial domain
to x ∈ [−Rmax, Rmax] as well, and discretizes it to xn =
Rmax( 2n

N − 1) with n = 0, 1, ..., N . We use, in this case, the
finite-difference method to compute spatial derivatives like in
Refs. [49,98], while the 6RK algorithm is used to advance in
time. The two schemes have shown an excellent agreement,
conserving the norm M (3) and energy H (4), with maximum
deviations at the level of the numerical precision ∼10−13 for
the first scheme, and ∼10−13 for M, ∼10−8 for H in the
second scheme in the HO, while ∼10−9 for M, ∼10−5 for H in
the box. The codes have been implemented in C + +, running
parallel computations on a GPU to speed up the simulation.
The number of points that we used varies depending on the
initial data and the setup—typically, N ranges from 213 to
217 in the case of the HO potential, and from 211 to 213 in
the case of the box potential. It is relevant to mention that
the same results can be produced by dint of the split-step
integration method implemented in the usual numerical shell,
cf. Ref. [111].

APPENDIX B: THE DECAY OF Sn(k)

We show here that amplitudes

Sn(k) ≡
∞∑

m=0

∞∑
i=0

∞∑
j=0︸ ︷︷ ︸

�nmi j=Wk

Cnmi j ᾱmαiα j (B1)

are strongly suppressed at large |n − k| in highly resonant
systems, with spectra

En = an + b with n ∈ N, a, b ∈ R, (B2)

for configurations of αn that actually occur in the course of
the evolution (with an exponential suppression at large n).
First, Fig. 7 visually illustrates the fact that the suppression
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FIG. 7. Comparison between amplitudes S0(k) for the linear
En = n + 1 and quadratic En = (n + 1)2 spectra of the energy eigen-
values. In each plot, we have used the same values of αn and Cnmi j for
both sets of eigenvalues, as per Eqs. (B4) and (B5). The difference
between the plots is the power of Cnmi j , r = 3, 1.5, 0, −1, from top
to bottom.

of Sn(k) at large |n − k| depends very little on the couplings
Cnmi j , irrespective of the decay or growth with the variation
of the indices, but, in contrast, it strongly depends on the
equidistant relation of eigenvalues (B2). In each plots of Fig. 7
we have numerically calculated the values of Sn(k), using the
same set of Cnmi j and αn but two different choices of eigen-
values, equidistant En = n + 1 and quadratic En = (n + 1)2

ones. This may seem as a minor difference because En only
affects the computation of expression (B1) through

�nmi j = En + Em − Ei − Ej, (B3)

to restrict the interactions to frequency Wk . However, it leads
to a dramatic difference between the behavior of Sn(k) at
moderate and large values of |n − k| for the equidistant and

quadratic energy eigenvalues. As we observe in all plots of
Fig. 7, in the equidistant case these amplitudes rapidly decay
with the increase of |n − k| (resembling an exponential de-
cay), while this does not happen in the quadratic case. For
those specific plots we have used

αn = (n + 1)2e−nAneiPn , (B4)

Cnmi j = (n + m + i + j + 1)r, (B5)

where An, and Pn are random variables uniformly distributed
on [0,1] and [0, 2π ), respectively, while power r gave the
opportunity to find out if the coefficients decay (r < 0), re-
main constant (r = 0), or grow (r > 0) with the variation of
the indices. Note that expression (B4) captures the qualitative
behavior of αn in our numerical simulation, as explained in
Sec. III. Other choices from this class of conditions lead to
the same conclusion. For Cnmi j we have used the power law in
Eq. (B5) because they exhibit, at most, a polynomial growth
with the increase of the indices in all physically relevant sys-
tems we are aware of. For instance, the D-dimensional GPE
with the HO potential has asymptotic values Cnnnn ∼ n

D
2 −2

for large n [98], and similar asymptotics have been found for
relativistic wave equations [112–114]. Other choices of Cnmi j

in this class lead to the same conclusion as well.
Next, we aim to show that the exponential decay of Sn(k)

for the highly resonant systems (B2) may be derived analyti-
cally, arriving at the result

|Sn(k)| < e−β|n−k|Pn,k, (B6)

with β > 0, where Pn,k is a polynomial in n and k that depends
on the detailed form of αn and Cnmi j . To derive this bound,
we use an estimate for the exponential decay of αn at large
n, which is what actually happens in our simulations, and an
arbitrary polynomial p(s)

n in n of degree s > 0 to bound differ-
ent values of αn. Thus, this estimate takes the form of |αn| <

p(s)
n e−βn where β > 0 is not specified and appears in Eq. (B6),

as we show below. For the couplings, we are going to use
an estimate based on an arbitrary polynomial q(r)

n in n of de-
gree r > 0 for each index, |Cnmi j | < Q(r)

nmi j ≡ q(r)
n q(r)

m q(r)
i q(r)

j .
This estimate comes from the observation that the couplings
have a polynomial growth at most for large values of the in-
dices, as mentioned above. An estimate admitting each index
to have a different power may be used, but it can be covered by
the present choice, simply setting r equal to the largest power.
Plugging the estimates for αn and Cnmi j into the expressions
for Sn(k) (B1), we obtain

|Sn(k)| =
∣∣∣∣ ∞∑
m=0

∞∑
i=0

∞∑
j=0︸ ︷︷ ︸

n+m−i− j=k

Cnmi j ᾱmαiα j

∣∣∣∣

<

∞∑
m=0

∞∑
i=0

∞∑
j=0︸ ︷︷ ︸

n+m−i− j=k

|Cnmi j ||ᾱm||αi||α j |

<

∞∑
m=0

∞∑
i=0

∞∑
j=0︸ ︷︷ ︸

n+m−i− j=k

Q(r)
nmi j p(s)

m p(s)
i p(s)

j e−β(m+i+ j). (B7)
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The constraint on the indices, n + m − i − j = k, may be
used to remove the summation in j. Two cases must be distin-
guished, viz., k < n and k � n, to guarantee that j � 0.

Case k < n: Substituting j = n + m − k − i one gets

|Sn(k)| < eβ(k−n)
∞∑

m=0

e−2βm p(s)
m

×
n−k+m∑

i=0

Q(r)
nmi(n−k+m−i) p(s)

i p(s)
(n−k+m−i). (B8)

We know that the sum
∑M

i=1 ia with a � 0 is a polynomial of
degree a + 1 in M [115]. Then, the summation in index i is
a polynomial n, m, and k, denoted by Fn,m,k . We use now that∑∞

m=0 e−2βm(m + 1)b with b ∈ R and β > 0 is a finite number
to get

|Sn(k)| < eβ(k−n)
∞∑

m=0

e−2βm p(s)
m Fn,m,k < Pn,keβ(k−n), (B9)

where Pn,k is a polynomial in n and k respectively.
Case k � n: In this case one has to be careful with the

ranges of m and i to guarantee that j � 0. Taking this into
account, the expression for Sn(k) is

|Sn(k)| < eβ(k−n)
∞∑

m=k−n

e−2βm p(s)
m

×
n−k+m∑

i=0

Q(r)
nmi(n−k+m−i) p(s)

i p(s)
(n−k+m−i)

= eβN
∞∑

M=0

e−2βM p(s)
M+N

M∑
i=0

Q(r)
n(M+N )i(M−i) p(s)

i p(s)
(M−i),

(B10)

where we have made the following changes, N = n − k and
M = m + N , to remove the dependence of the lowest value of
m on k − n. Note that these changes flipped the sign in the first
exponential. The resulting expression is similar to the one for
the case of k < n, and we proceed using the same properties
to conclude that

|Sn(k)| < eβ(n−k)Pn,k, (B11)

where in this case Pn,k is a polynomial in n and k. The com-
bination of Eqs. (B9) for k < n and (B11) for k � n results in
Eq. (B6).

One may also derive an estimate similar to Eq. (B1) for
case of the box potential, but the quadratic eigenvalues (9)
make this process a bit more involved than in the case of
the equidistant eigenvalues. The difficulties appear in the con-
straint imposed on the indices (B3),

k = (n + 1)2 + (m + 1)2 − (i + 1)2 − ( j + 1)2. (B12)

Using the above-mentioned estimates |αn| < p(s)
n e−βn, and

|Cnmi j | < q(r)
n q(r)

k q(r)
i q(r)

j one may see that

|Sn(k)| < Dn,ke−β
√

|k−(n+1)2|, (B13)

where Dn,k is a polynomial in n and k, and β is again the
exponent of |αn|. Note that in this case the suppression of

frequencies is much weaker than for the equidistant energy
spectrum. This estimate comes from assessing the domi-
nant contribution of N ≡ k − (n + 1)2 in |Sn(k)| according to
Eq. (B1),

|Cnmi j ||ᾱm||αi||α j | < Q(r)
nmi j p(s)

m p(s)
i p(s)

j e−β(m+i+ j). (B14)

The key part of this expression is the exp[−β(m + i + j)],
which must be studied in two parts. Case N � 0: We use the
relation (B12) between the indices, to obtain

m =
√

k − (n + 1)2 + (i + 1)2 + ( j + 1)2 − 1. (B15)

Plugging this expression in the exponent one arrives to the
following expression:

−β(m + i + j) = − β(
√

N + (i + 1)2 + ( j + 1)2 − 1)

− β(i + j). (B16)

As i, j � 0, the first term is directly bounded by −β
√

N ,
getting ∑

i=0

∑
j=0

Q(r)
nmi j p(s)

m p(s)
i p(s)

j e−β(m+i+ j)

� e−β
√

N
∑
i=0

∑
j=0

Q(r)
nmi j p(s)

m p(s)
i p(s)

j ce−β(i+ j)

� Dn,ke−β
√

N , (B17)

where Dn,k is a polynomial in n, k, and we have used the
following properties to reach the last expression. First, we
used constant c large enough to bound the independent term
in the exponent. We also used the fact that

∑∞
i=0 e−βi(i + 1)b

with b ∈ R and β > 0 takes a finite value to bound the sums in
the intermediate expression independently of the upper limit.
Finally, we used a polynomial Dn,k of high enough degree to
bound the terms involving n and k.

Case N < 0: We use j instead of m in this case,

j =
√

−N + (m + 1)2 − (i + 1)2 − 1. (B18)

We define I = i + 1 and M = (m + 1)2 − N to write the ex-
ponent in the following form:

−β(m + i + j) = −β(
√

M − I2 + I ) + 2β − βm. (B19)

To guarantee that j � 0 index I take the integer values in
[1,

√
M − 1]. Because of the symmetry i ↔ j we just need

to consider the values of I in [1,
√

M/2], namely, i from 0 to
j. In this interval, we are going to obtain an upper bound for
the first term on the RHS of Eq. (B19). Adding and subtracting
β
√

M yields

− β(
√

M − I2 + I ) = −β
√

M + β(
√

M − I −
√

M − I2)

�
I∈[0,

√
M/2]

−β
√

M − (2 −
√

2)I. (B20)

The later inequality is obtained by showing that the first
derivative of the LHS is negative in [0,

√
M/2), the second

derivative is positive in the same interval, and the RHS and
LHS coincide at the edges of the interval. A final step is
−β

√
M < −β

√|N | because m � 0. From this point one re-
peats the same argument as before to bound the sums in m
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and i obtaining the estimate (B13) for |Sn(k)| in the case of
the box potential.

APPENDIX C: POWER SPECTRUM FROM
LONGER-TIME EVOLUTION

We demonstrate that the comblike structure of the power
spectrum is present at times longer than those used in the main
text. To do so, we have simulated the initial data presented
in Fig. 2(I) for a total time of tmax = 104, much larger than
the time used before tmax = 500. The results are presented in
Fig. 8. No significant difference is appreciated with respect to
Fig. 2 in the global shape of the profile and the evolution of the
energies in this new scale. We also observe that the comblike
structure of the power spectrum is present as illustrated by
Fig. 8(c). For tmax = 104 the amplitude of the spectrum is
smaller than for tmax = 500 (both spikes and valleys). This
effect does not have impact on the comblike structure, it is
just a matter of improvement in the resolution of frequencies
(�ω = 2π/tmax) which allows to discern now (tmax = 104)
slightly different frequencies interpreted as a single one before
(tmax = 500). Note that both spikes and valleys in the power
spectrum are affected by the same effect Fig. 8(d). Further-
more, one may observe in Fig. 8(e) the agreement between
the power spectrum calculated from the first and the last 500
units of time (without adjustable parameters), indicating no
change in the governing dynamics. Figure 9 also confirms
the presence of the comblike power spectrum displayed by
the quintic 1D-NLSE with the HO potential (28) at different
timescales.

These results suggest the presence of the comblike power
spectrum at times larger than tmax ∼ 104. Dynamics acting at
very large timescales may be present, and in such a case, most
of the effects on the power spectrum should be concentrated at
small frequencies (ω proportional to the inverse of the scale)
or slowly get present as tmax grows. For instance, it is expected
that for generic wave systems the exponential suppression of
high-modes αn is gradually replaced by a power-law at very
long times [116–118]. In that case, the specific values of the
couplings between modes Cnmi j in Eq. (15) should play an
important role in the preservation or erosion of any structure
in the power spectrum.

APPENDIX D: EIGENSTATES

We collect here results for the Schrödinger equations in-
troduced in the main text. The results for the 1D Schrödinger
equation with the HO and box potentials are provided above
in Eqs. (8) and (9).

Schrödinger equation (29) with the HO potential in D
dimensions:

En = 2n + D

2
, (D1)

fn(r) =
√

n!
(D/2)

πd/2
(n + D/2)
L( D−2

2 )
n (r2)e−r2/2, (D2)

where L(α)
n are the generalized Laguerre polynomials.

FIG. 8. Long-time evolution (tmax = 104) of the initial data
shown in Fig. 2(I). From top to bottom: four snap-shots illustrating
the shape of the profile in the course of the evolution (a); temporal
evolution of the quadratic (5) and quartic (6) energies (b); power
spectrum of the lowest-mode’s amplitude calculated in the window
of time [0, 104] (c); comparison of the power spectra calculated in the
windows of time [0, 500] and [0, 104] (d); comparison of the power
spectra calculated in the windows of time [0, 500] and [9500, 104]
(e).

1D Schrödinger equation with the “superselection” poten-
tial V (1)(x) (30):

En = 2n + δ

2
, (D3)

fn(x) =
√

n!
(δ/2)

πδ/2
(n + δ/2)
L( δ−2

2 )
n (r2)e−x2/2, (D4)
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FIG. 9. Comparison between the power spectra of the lowest-
mode’s amplitude calculated in the window of time [0, 500] [the one
shown in Fig. 6(d)] and a larger window [0, 5000] displayed by the
quintic 1D NLSE with the HO potential (28).

where δ = 2 + √
1 + 4s and L(α)

n (x) are the generalized La-
guerre polynomials.

We also show here how to derive the 1D-GPE with po-
tential V (1), Eq. (30), from the dimensional reduction of the
following D-dimensional NLSE with the HO potential:

i∂tψ = 1

2

(
−∂rr − D − 1

r
∂r + r2

)
ψ + grD−1|ψ |2ψ, (D5)

with r ∈ [0,∞), and the nonlinear term has the factor rD−1.
First, one has to plug the change ψ (t, x) = r

1−D
2 ψ̃ (t, r) into

the equation to get rid of the first derivative in the radial
Laplacian. Then, one cancels factor r

1−D
2 on the RHS and LHS

to get

i∂t ψ̃ = −1

2
∂rrψ̃ +

(
r2

2
+ D2 − 4D + 3

8r2

)
ψ̃ + g|ψ̃ |2ψ̃,

(D6)

which is the 1D-GPE with the anharmonic potential V (1) (30)
on the half-line.

1D-Schrödinger equation with potential V (2)(x) (31):

En = 2n + 23

6
, (D7)

fn(x)= 2n+1/2n!

π1/4
√

(2n + 5)(2n + 1)(2n)!
e−x2/2 (D8)

×
(

3(1 + 2x2)

(3 + 2x2)
L( 1

2 )
n (x2)−2(n + 1)L(− 1

2 )
n+1 (x2)

)
, (D9)

where L(α)
n (x) are the generalized Laguerre polynomials.

1D-Schrödinger equation with potential V (3)(x) (32):

E0 = −5

6
, En�1 = n + 7

6
, (D10)

f0(x) =
√

2

π
1
4

e− x2

2

1 + 2x2
, (D11)

fn�1(x) = 1

π1/4
√

2n(n + 2)(n − 1)!
e−x2/2 (D12)

×
(

4x

(1 + 2x2)
Hn−1(x) + Hn(x)

)
, (D13)

where Hn(x) are the Hermite polynomials.
1D-Schrödinger equation with potential V (4)(x) (33):

E0 = −3

2
, En�1 = n + 5

2
, (D14)

f0(x) = 2
√

6

π
1
4

e− x2

2

3 + 12x2 + 4x4
, (D15)

fn�1(x) = 1

π1/4
√

2n(n + 4)(n − 1)!
e− x2

2 (D16)

×
(

8x(3 + 2x2)

(3 + 12x2 + 4x4)
Hn−1(x) + Hn(x)

)
,

(D17)

where Hn(x) are the Hermite polynomials.
Two-component 1D Schrödinger equation (37): Using

transformation ψ+ = u + v and ψ− = u − v, the equa-
tion produces two “towers” of eigenvalues,

E (±)
n = n + 1

2 ± c, (D18)

and the same eigenfunctions as above:

f (±)
n (x) = 1

π1/4
√

2nn!
Hn(x)e− x2

2 . (D19)

A wave equation in the anti-de Sitter space (38):

En = 2n + 3, (D20)

fn(x) = 2
√

n!(n + 2)!



(
n + 3

2

) cos3(x), P( 1
2 , 3

2 )(cos 2x), (D21)

where P( 1
2 , 3

2 ) are Jacobi polynomials.
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