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Kink-inhomogeneity interaction in the sine-Gordon model
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In the present study the interaction of a sine-Gordon kink with a localized inhomogeneity is considered. In the
absence of dissipation, the inhomogeneity considered is found to impose a potential energy barrier. The motion of
the kink for near-critical values of velocities separating transmission from barrier reflection is studied. Moreover,
the existence and stability properties of the kink at the relevant saddle point are examined and its dynamics is
found to be accurately captured by effective low-dimensional models. In the case where there is dissipation in the
system, below the threshold value of the current, a stable kink is found to exist in the immediate vicinity of the
barrier. The effective particle motion of the kink is investigated obtaining very good agreement with the result of
the original field model. Both one and two degree-of-freedom settings are examined with the latter being more
efficient than the former in capturing the details of the kink motion.
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I. INTRODUCTION

The sine-Gordon (sG) model originally appeared in the
description of surfaces of constant negative curvature em-
bedded in three-dimensional space. This equation constitutes
the Gauss-Codazzi integrability condition of the surface [1].
Primarily, the model was introduced to physics in the context
of the studies on crystal dislocations [2]. Since then, it has
found many applications in describing a variety of physical
systems [3,4].

One of the prototypical examples showcasing the relevance
of the sG model concerns its application to quasi-one-
dimensional ferromagnetic materials with an easy plane
anisotropy and their behavior in an external magnetic field
[5]. Experimental studies of this system confirm the main
theoretical predictions [6–8]. Also, the relevant system has
been successfully leveraged to describe ferroelectrics [9–12].
Moreover, the orientation angle of the molecules in liq-
uid crystals has been argued to satisfy an overdamped and
externally driven sine-Gordon equation [13]. An additional
example where the sG model (especially in its damped-driven
variant) has been shown to be experimentally accessible con-
cerns an array of coupled torsion pendula; see for a relatively
recent demonstration the experiments in Ref. [14].

Arguably, the most widespread application of the sG model
concerns the description of a device called the Josephson
junction that emerged as a result of the so-called Josephson
effect [15]. Predictions of this work found experimental con-
firmation a year later [16]. Josephson junctions (JJs) have
been thoroughly studied over the years [17,18] and have found
numerous practical applications [19]. In order to obtain the
most realistic description of the JJs, additional terms were in-
troduced describing the dissipation due to tunneling of normal
electrons across the barrier, the dissipation caused by the flow
of normal electrons parallel to the barrier and moreover the
bias current [18]. Additionally, in the context of condensed
matter physics, the presence of inhomogeneities in the form

of “impurities” is a fairly common feature. More concretely,
in the JJ setting, the typical inhomogeneities are microshorts
which are local regions of high Josephson current [3,20,21].
The effect of modulation of the thickness of a dielectric
layer separating the two superconducting electrodes has been
described in many different ways [22–24]. Another way in
which explicitly position-dependent functions enter the sine-
Gordon model is presented in the works [25–27]. The latter
possibility has been motivated by the widespread relevance of
PT -symmetric systems in optical, as well as more generally
in dispersive wave systems [28].

A considerable volume of work has also focused on the
effect of shape deformation of the junction on its properties
[29–34]. In this approach, some modifications of the junction
shape are proposed in order to obtain its desired properties.
In particular, the influence of the curvature on the dynamics
of the gauge invariant phase difference between two super-
conducting electrodes that comprise the JJ was studied in
Refs. [35,36]. The equation that describes this system was ob-
tained on the basis of field dynamics governed by Maxwell’s
equations in the insulator and London’s equations in su-
perconducting electrodes with Ginzburg-Landau current of
Cooper pairs. The description in this case agrees with the
same result obtained on a purely geometrical background as a
consequence of the geometrical reduction of the sine-Gordon
model to a lower-dimensional curved subspace [37].

In the present work, we focus on describing the interaction
of a kinklike effective particle in the sG model with inhomo-
geneities for initial velocities close to the critical velocity. This
choice of initial conditions can render the interaction time
significantly longer close to this critical point which highlights
all aspects of the interaction. Our interest lies in systematically
describing this interaction via a low-dimensional, effective-
particle approach, both for the Hamiltonian (conservative)
but also for the dissipative partial differential equation (PDE)
setting. In addition to exploring the relevant PDE dynamics,
emphasis is placed on effective, low-dimensional descriptions
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of the solitary wave in the corresponding energy landscape.
In Sec. II we will describe the field model to be studied. We
determine the shape of the kink both in the absence and in
the presence of dissipation and external forcing in the system.
This section also examines the linear stability of the solutions.
Section III is devoted to effective descriptions of different di-
mensionalities (one- and two-degree of freedom approaches)
and the limits of their applicability, as well as the comparison
between them, as well as with the original PDE. The last
section contains our conclusions and a number of proposed
directions for possible future study.

In light of our consideration of heterogeneous variants of
the sine-Gordon model, it is relevant to highlight that consid-
erable modeling and computation effort has also been invested
in the consideration of periodic heterogeneities in the form
of discrete sG models; see, e.g., also the relevant chapter
within [4]. Some of the important aspects along these lines
that have been considered include the oscillation frequency
of the discrete kink in the famous (from dislocation theory)
Peierls-Nabarro potential [38], as well as the spontaneous
emission of radiation from a propagating discrete sine-Gordon
kink [39].

II. SYSTEM DESCRIPTION

In the present article, in line with the above discussion, we
study the perturbed sine-Gordon model of the form:

∂2
t φ + α∂tφ − ∂x(F (x)∂xφ) + sin φ = −�, (1)

where the function F (x) represents the inhomogeneity. More
specifically, our motivation for considering this type of modi-
fication stems from the need to take into account the curvature
in the description of the long Josephson junction. The detailed
physical considerations leading to this effective equation are
presented in the earlier works in Refs. [35,36]. The same
equation can be obtained from the mathematical procedure
of projecting the sine-Gordon equation defined in a flat
three-dimensional space into a one-dimensional subspace,
nontrivially embedded in the initial space [37]. In the above
equation α is the dissipation coefficient while � represents
a constant external forcing. In the context of a Josephson
junction, the constant � is interpreted as a bias current. In the
absence of dissipation and external forcing, the total energy
is conserved. For later convenience, we separate the function
F (x) into a part describing the unperturbed system and a term
describing its disturbance g,

F (x) = 1 + εg(x). (2)

The parameter ε controls the magnitude of the perturbation.
We will assume that this parameter is small.

A. The nondissipative case with α = 0 and � = 0

First, we will focus on describing the simplified case, i.e.,
one in which the constants α and � are equal to zero. Although
the energy of a free kink in a homogeneous system (featuring
distinct asymptotic equilibria) corresponds to a minimum of
energy described by the formula

E =
∫ +∞

−∞
dx

[
1

2
(∂tφ)2 + 1

2
(∂xφ)2 + (1 − cos φ)

]
, (3)

it can be further lowered in the presence of inhomogeneity.
The total energy of the arbitrary field configuration in a het-
erogeneous system is of the form

EH =
∫ +∞

−∞
dx

[
1

2
(∂tφ)2 + 1

2
F (x)(∂xφ)2 + (1 − cos φ)

]
.

(4)

We describe the process of interaction of the kink with ad-
mixture present in the system. In this section, the function
g is taken in the form g(x) = tanh(x) − tanh(x − L). In this
formula, L defines the width of the inhomogeneity.

It is relevant here to briefly discuss the method with
which these profiles are obtained. We have utilized a Newton-
Raphson iteration which, through its quadratic convergence,
has ensured the rapid identification of the relevant kink pro-
files. The steady-state problem is discretized by means of
centered finite differences (of second order) and the accuracy
of the findings has been ensured by means of discretizations
of different spacing �x. It should be added that as part of the
Newton-Raphson procedure, we also construct the Jacobian
evaluated at the kink profile. This, on convergence, provides
us with the linearization matrix of the relevant problem that
will be used for the numerical identification of the eigenfre-
quencies ω discussed in more detail in what follows.

The deformation of the kink profile as a function of ε

is evident in Fig. 1 showcasing the widening of the kink
as ε is increased. From a more quantitative perspective, the
deformation of the kink profile for small ε and the stability
of this configuration can be examined in the framework of
a linearized approximation. To begin with, we assume that
the field φ is a slightly perturbed kink solution of the model
(1) [with α = 0 and � = 0]. We insert the decomposition
φ(t, x) = φ0(x) + ψ (t, x) into Eq. (1) obtaining, up to linear
terms in the ψ correction, the equation

∂2
t ψ − ∂x[F (x)∂xψ] + (cos φ0)ψ = 0. (5)

At this point we emphasize that φ0(x) can be decomposed
into static kink φK of the sine-Gordon model and a time-
independent correction χ depending also on the geometry
of the system, i.e., φ0(x) = φK (x) + χ (x). This is intended
to capture the steady-state solution of the perturbed (in the
presence of the inhomogeneity) problem. In particular, for
small values of the parameter ε, the correction χ (x) can be
calculated from the following equation:

−∂x[F (x)∂xχ ] + (cos φK )χ = ε∂x[g(x)∂φK ]. (6)

This equation describes the time-independent deformation,
which is uniquely determined by the function describing the
inhomogeneity and the analytical form of the underlying so-
lution. The solutions of Eq. (6) for different values of ε are
presented in Fig. 2. It is clear that the relevant contributions
are antisymmetric along the (former) direction of the transla-
tional invariance of the homogeneous model kink and, upon
addition to the homogeneous static kink, they modify its ef-
fective width. Moreover, the profiles of the static (numerically
exact up to a prescribed tolerance) solutions φ0(x) obtained
from the perturbed sine-Gordon model (1) are compared with
the function φK (x) + χ (x), where φK (x) is a static kink so-
lution of the sine-Gordon model in the homogeneous case.
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FIG. 1. Profiles of static solutions for different values of ε (left figure) and, for a better visualization, gradients of static configurations
(right figure). In all cases, the size of the inhomogeneity is L = 10. The inhomogeneity in the figures is located between the vertical lines for
x = 0 and x = L.

The figure shows that, even for ε = 1, there is little difference
between the solution derived from Eq. (6) and the numerical
solution derived from the field model (1).

On the other hand, Eq. (5) contains information about the
time-dependent perturbation of the underlying solution. We
then adopt a particular form of the time dependence of the
function ψ , i.e., ψ (t, x) = eiωtv(x). This standard approach
allows us to examine the spectral stability of the underlying
configuration φ0,

−∂x[F (x) ∂xv(x)] + (cos φ0) v(x) = λv(x), (7)

where λ = ω2. By abbreviating the left-hand side of the last
equation L̂ v(x) we obtain the eigenequation for the lineariza-
tion operator L̂,

L̂ v(x) = λv(x) . (8)

The spectrum of the operator L̂ obtained from Eq. (8) consists
of a continuous spectrum and a discrete negative value (see
Fig. 3). The latter eigenvalue pertains to the previously van-
ishing eigenfrequency (of the homogeneous limit) associated
with the translational invariance of the homogeneous problem.
In the present case, the negative associated squared eigenfre-
quency corresponds to a real eigenvalue illustrating that the
relevant static configuration corresponds to an unstable equi-
librium, more specifically a saddle point of the (undamped,
nondriven) Hamiltonian limit of the system. This, in turn,

represents a potential energy maximum of the effective energy
landscape, whose energy we expect to separate between the
transmission dynamics (for energies higher than that of this
configuration) and the reflection features (for energies below
those of this maximum).

B. The case with dissipation and external
forcing α �= 0 and � �= 0

For � �= 0, similarly as in the previous case, during in-
teraction with the inhomogeneity the kink may or may not
go over the barrier. The reflection in this case is much more
interesting than for � = 0. The physical cause is the presence
of a constant force pressing the particle against the potential
barrier. For this reason, after the bounce, as we will see in
the dynamical simulations below, the kink is again pushed
towards the barrier. The presence of dissipation makes sub-
sequent reflections smaller and smaller, until finally the kink
stops at a certain distance from the barrier. The form of this
resulting static configuration is specified by the equation

−∂x[F (x)∂xφ0] + sin φ0 = −�. (9)

In this equation, the bias current must be less than the thresh-
old value. The current threshold value separates the current
values for which kink is stopped before the barrier from the
values for which kink overcomes the barrier.

FIG. 2. On the left panel, the χ (x) value determined from Eq. (6) is shown for different values of ε. On the right panel, the solid line shows
the sum of the kink ansatz φK (x) and χ (x) value for different ε, while the dashed line is the corresponding static solution as determined from
Netwon’s method.
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FIG. 3. Squared eigenfrequencies λ = ω2 calculated for the quasistatic configuration depending on the value of ε for L = 10. See also the
discussion in the text.

The stability of this configuration is tested in the stan-
dard way, i.e., we linearize according to: φ(t, x) = φ0(x) +
ψ (t, x). The equilibrium configuration itself can be roughly
described, as before, by the sum of the free kink and the
deformation φ0(x) = φK (x) + χ (x), with the latter now being
characterized in addition to the inhomogeneity, also by the
bias current. The deformation satisfies the equation

−∂x[F (x)∂xχ ] + (cos φK )χ = ε∂x[g(x)∂φK ] − �. (10)

The left Fig. 4 shows the form of the correction describing
the kink deformation coming from inhomogeneities. The right
figure once again compares the static configuration obtained
from the field model (9) and the configuration obtained as
the sum of the kink solution of the homogeneous model (for
ε = 0) and the correction derived from the inhomogeneity χ .
The very good agreement between the two results for different
values of ε shows that the splitting of the configuration φ0 into
the correction χ and the kink of the free model φK provides
an accurate description of the static configuration.

On the other hand, to explore the state’s spectral stabil-
ity, we use the linearization decomposition ψ (t, x) = eiωtv(x)
which, in turn, leads to the eigenvalue problem:

L̂ v(x) = −∂x[F (x) ∂xv(x)] + (cos φ0) v(x) = λv(x) . (11)

The quantity λ appearing in this equation is related to the
eigenfrequency ω as follows λ = ω(ω − iα) (see Fig. 5), and
therefore

ψ (t, x) = e− 1
2 αt e±i�tv(x), (12)

where � =
√

λ − α2

4 . As long as the condition λ > α2/4 is
satisfied, then one can observe damped oscillations around
φ0(x), i.e., the relevant fixed point is a stable spiral. On the
other hand, when α2/4 � λ > 0 one can observe overdamped
behavior of the perturbations

ψ (t, x) = e− 1
2 αt e±κtv(x), (13)

where κ =
√

α2

4 − λ. In this case, the relevant fixed point
corresponds to a stable node. As we will see below, in this
damped-driven case, the system does possess a stable at-
tractor; however, in reconciling with the Hamiltonian picture
above, this is not the sole stationary state of the system.
Indeed, the former saddle point of the Hamiltonian case typ-
ically breaks up (in the presence of damping and driving)
through a saddle-node bifurcation into a persistent unstable
configuration and an emergent stable one (per the above dis-
cussion). We will iterate on this point further through our
effective description in what follows.

III. EFFECTIVE DESCRIPTION OF THE
KINK-INHOMOGENITY INTERACTION

A. Approximations based on one degree of freedom

Having described the statics of the kink in the presence of
the inhomogeneity, we now turn to the corresponding model
dynamics in what follows. In this subsection, we will ob-
tain an approximate description of the field system based on

FIG. 4. In the left panel, the χ (x) value determined from Eq. (10) for different values of ε is shown. In the right panel, the solid line shows
the sum of the kink ansatz φK (x) and χ (x) value for different ε, while the dashed line is the corresponding static solution determined from
original field model. In each case α = 0.01, while bias current is equal to 0.0045, 0.0093, and 0.017, respectively, for ε = 0.1, 0.3, and 1.0.
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FIG. 5. Dependence of λR = ω2 on ε for the static kink solution in the damped-driven sG model, where λR is the real part of λ [see under
Eq. (11)]. The graph regards the case of α = 0.01 and � = 0.001 for each ε.

three approximation methods. The first method is based on
a conservative Lagrangian of the system (i.e., an effectively
variational method). The second method involves projecting
the field equation onto the zero mode of the kink solution
(the so-called translational mode, associated with the relevant
invariance in the homogeneous limit), while the third one is
based on a nonconservative Lagrangian. The last two methods
allow the construction of an effective model even if there is
a dissipation in the field equation, while the first is solely
applicable in the realm of conservative (Lagrangian or Hamil-
tonian) systems.

1. The construction based on a conservative Lagrangian

We start from the variation of the Lagrangian density

LFSG = LSG + Lε = LSG − 1
2εg(x)(∂xφ)2, (14)

where Lε describes the inhomogeneity present in the system
and LSG is the Lagrangian density of the (unperturbed) sine-
Gordon model

LSG = 1
2 (∂tφ)2 − 1

2 (∂xφ)2 − (1 − cos φ). (15)

A recent discussion of such variational methods for the sG
model, including in higher-dimensional settings can be found,
e.g., in Ref. [40].

The reduction of the original PDE to a model with one
degree of freedom is based on the use of the kink ansatz with
the position of the kink used as a collective variable,

φk (t, x) = 4 arctan ex−x0(t ). (16)

By inserting the kink ansatz into the Lagrangian density (14)
and then integrating with respect to the spatial variable, we
obtain the effective Lagrangian for the variable x0(t ),

LFSG =
∫ +∞

−∞
dx LFSG = LSG + Lε = LSG

− 1

2
ε

∫ +∞

−∞
dxg(x)(∂xφK )2. (17)

The form of the interaction is uniquely determined by the
function g(x). In the case where g(x) = 0 we obtain the
Lagrangian of the free particle (after rescaling by the multi-
plicative constant and eliminating the additive one),

LFSG = LSG = 1
2 ẋ2

0 . (18)

If g is a nontrivial position-dependent function, then the effec-
tive Lagrangian is enriched by a potential energy landscape
describing the interaction of the kink with the existing in-
homogeneity. For example, if the function g consists of unit
step functions g(x) = θ (x) − θ (x − L), then the Lagrangian
assumes the form

LFSG = 1
2 ẋ2

0 − ε[tanh(x0) − tanh(x0 − L)]. (19)

The equation of motion in this case is the following:

ẍ0 = −ε[sech2(x0) − sech2(x0 − L)]. (20)

On the other hand, in the previous section we used the func-
tion g(x) = tanh(x) − tanh(x − L). In this case the effective
Lagrangian reads

LFSG = 1

2
ẋ2

0 − 1

2
ε

{
coth(x0) − x0

sinh2(x0)

−
[

coth(x0 − L) − x0 − L

sinh2(x0 − L)

]}
. (21)

The potential energy landscape is provided by the term after
the (−) sign in Eq. (21) [or similarly in Eq. (19)] and clearly
illustrates the existence of a local maximum corresponding to
the saddle static kink configuration. The equation of motion
for the collective variable is

ẍ0 = ε

[
1 − x0 coth x0

sinh2 x0
− 1 − (x0 − L) coth (x0 − L)

sinh2 (x0 − L)

]
. (22)

The trajectories obtained from the last equation are com-
pared with center-of-mass trajectories following from the field
equation [Eq. (1) with α = 0 and � = 0]. Figure 6 shows a
good agreement between the effective model and the full field
model for small values of ε. The left panel in this figure cor-
responds to ε = 0.01 while the right panel contains results for
ε = 0.05. Each of the panels consists of three figures. The top
figure describes the kink reflecting from the inhomogeneity.
The initial speed in this case u = 0.13 is lower than the
critical velocity. The second figure in this panel represents
the interaction of the kink whose initial speed u = 0.145 is
close to the critical velocity. The bottom figure demonstrates
the kink passing over the barrier for initial speed u = 0.16
exceeding the critical value. Similarly, in the figures of the
right panel, the velocities are smaller u = 0.27, close to the
critical value u = 0.315 and above the critical speed for u =
0.35. The critical velocities for which the agreement takes
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FIG. 6. Comparison of the position of the center of mass of the kink for the solution from the original field model (black line) and the
model with one degree of freedom [red (gray) line]. The figures in the left panel are prepared for ε = 0.01 and velocities (starting from the
top) 0.13, 0.145, and 0.16. In the right panel ε = 0.05 and velocities (from the top) are 0.27, 0.315, and 0.35.

place are approximately limited to 0.25. For larger values of
this parameter, inconsistencies become more significant. The
trajectories corresponding to ε = 0.02 are presented in Fig. 7.
The initial velocities of the kink are, starting from the top,
0.17, 0.21, and 0.25. The right panel shows the course of
these trajectories [represented by the red (gray) line] on the
background of the phase space. The phase diagrams show an
unstable fixed point at the center of the barrier.

The corresponding potential energy landscape representing
the relevant energy maximum can be seen in Fig. 8. In the case
we are considering, the location of the fixed point is x0 = 5.

Regarding the linear stability in the effective particle model,
only one (unstable mode) is naturally present, pertaining to the
formerly translational mode of the homogenous sG. A com-
parison of this mode with the spectrum of linear excitations
of the field model (α = 0, � = 0) can be found in Fig. 9. The
green (light gray) line represents the result obtained from the
model with one degree of freedom, while the points represent
the spectrum of the L̂ operator. Quantitative agreement occurs
only for small values of the ε parameter, yet the qualitative
agreement between the two is clearly evident.

2. The method of projecting onto the zero mode

In addition to the above method of effective theory con-
struction, other approaches are used in the literature. One of
them is the zero mode projection method; see, e.g., a relevant
discussion in Ref. [41]. This method, unlike the standard
method based on the conservative Lagrangian, is based on the

PDE itself and does not hinge on the variational structure of
the problem. As such, it allows for an effective description of
systems containing dissipative terms. With this in mind, we
can construct an effective model for the sine-Gordon model
with dissipation described by Eq. (1) with α �= 0 and � �= 0.
Practically, we insert the kink ansatz

φ(t, x) = 4 arctan eξ (t,x), (23)

into the field equation (1). This substitution results in the
equation

(ξ̈ − ξ ′′ + αξ̇ )∂ξφ + (1 + ξ̇ 2 − ξ ′2) ∂2
ξ φ

= ε(∂x g) ξ ′ ∂ξφ + εg
(
ξ ′′∂ξφ + ξ ′2∂2

ξ φ
) − � . (24)

The dot denotes the derivative with respect to the time vari-
able while the prime denotes the derivative with respect to
the spatial variable. If we want to obtain a model describing
the dynamics of one collective variable, i.e., the variable that
determines the position of the kink, then we take a particular
form of the function ξ = ξ (t, x), i.e.,

ξ (t, x) = x − x0(t ).

With this substitution, Eq. (24) is reduced to a much simpler
form,

(−ẍ0 − αẋ0)∂ξφ + ẋ2
0 ∂2

ξ φ − ε(∂x g) ∂ξφ − εg∂2
ξ φ + � = 0.

(25)

The final step is the projection of the above equation onto
the (former) zero mode, which consists of integration with
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FIG. 7. Comparison of the position of the center of mass of the kink for the solution from the original field model (black line) and the
model with one degree of freedom [red (gray) line]. In the figures on the left ε = 0.02 and velocities are (from the top) u = 0.17, u = 0.21,
and u = 0.25. On the right are the phase diagrams corresponding to the same parameter values. The gray area represents the position of the
inhomogeneity.

the kink ansatz derivative representing the zero mode of the
(former) homogeneous model, i.e.,∫ +∞

−∞
dξ

[
(−ẍ0 − αẋ0)∂ξφ + ẋ2

0 ∂2
ξ φ

− ε(∂x g) ∂ξφ − εg∂2
ξ φ + �

]
∂ξφ = 0. (26)

When performing integration, we must adopt a particular
form of the function g describing the inhomogeneity. In this
part, we assume similarly to the previous one g(x) = tanh x −
tanh(x − L). As a result of the integration, we obtain an

FIG. 8. Graphical representation of the potential represented by
the second term (preceded by a minus sign) of Eq. (21). In the figure,
we assumed ε = 0.1 and L = 10.

effective equation of the form

ẍ0 + αẋ0 + ε

[
x0 coth x0 − 1

sinh2 x0
− (x0 − L) coth(x0 − L) − 1

sinh2(x0 − L)

]

= π

4
�. (27)

Note that after removing the terms containing the coefficients
α and �, the above equation reduces to Eq. (22) and therefore,
in this case, the numerical results are included in Figs. 6 and 7.

FIG. 9. Comparison of the squared eigenfrequencies λ = ω2 ob-
tained from the field model (in case of α = 0, � = 0) with the ones
determined from the effective model with one degree of freedom
[green (light gray) line].
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FIG. 10. Comparison of the position of the center of mass of the kink for the solution from the original field model (black line) and the
model with one degree of freedom (red dashed line). In the figures on the left ε = 0.01 and bias current from the top 0.001 (top row), 0.0015
(second row), then ε = 0.05 and bias current 0.0025 (third row), 0.0035 (fourth row). In each case, the dissipation is equal to 0.01. On the right
are the phase diagrams corresponding to the same parameter values. The gray area represents the position of the inhomogeneity.

On the other hand, if we have dissipation and current present
in the system, then below the critical velocity, we observe
the effect of multiple reflections from an inhomogeneity. The
course of this process is shown in Fig. 10. In these figures, we
assume that the dissipation coefficient is α = 0.01 and that
the bias current � is equal to 0.001 in the top left figure and
0.0015 in the second row of the figure, respectively. In both
figures, ε = 0.01. The initial velocity of the kink in all cases
with dissipation is chosen to be equal to the stationary velocity
obtained in the article [20], i.e., according to the formula:

us = 1√
1 + (

4α
π�

)2
. (28)

Equation (1) at ε = 0 has a solution in the form of a kink mov-
ing with constant velocity only when the dissipation occurring
in the system is exactly balanced by the forcing in the form of
a bias current, i.e., only for stationary velocity us. The initial
condition describing a kink with velocity u > us always, due
to the existence of dissipation, slows down to a value of us. On
the other hand, the initial condition with u < us, as a result of
forcing, accelerates to us, i.e., to the velocity at which there
is a balancing of forcing with dissipation. For this reason, if

the initial velocity takes the value us (for ε �= 0) the velocity
changes are related only to the interaction with the inhomo-
geneity. Note that in both of these cases the kink trajectory
resulting from the field model (solid black line) coincides
with the trajectory obtained from the effective model (dashed
red line). As one can see, in these runs the kink has too-low
velocity to penetrate the barrier hence it bounces back; yet
the presence of constant forcing causes successive returns
toward the barrier. Due to the existence of dissipation in the
system, the amplitude of subsequent reflections is reduced.
From a dynamical systems perspective, this clearly suggests
the existence of a fixed point in the form of a stable spiral,
which is unveiled in the phase portrait illustrated in the right
panel of the figure. The third and fourth rows of the figure il-
lustrate the relevant features for a larger value of the parameter
ε = 0.05 characterizing the inhomogeneity. Respectively, the
corresponding bias currents are � = 0.0025, and � = 0.0035.
It can be seen that in these cases the deviations of the continu-
ous black and dashed red lines are insignificant and therefore
the right panel contains only the phase space of the effective
model. In the phase space presented in the figures of the right
panel, one can identify two fixed points. The point located
on the left side of the barrier, as discussed above, represents
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FIG. 11. Graphical representation of the position (and existence)
of fixed points for different values of bias current [see Eq. (29)].
These are the places where the function f (x0 ) vanishes. In all cases
ε = 0.1.

a stable spiral. The trajectories shown in the figures of the
left panel are represented on the right panel by using red
spirals. The second fixed point is located in the barrier area
(representing the analog or remnant of the fixed point present
in the conservative case) and has the character of a saddle
point. In all panels of Fig. 10, the gray area represents the
position of inhomogeneity or more precisely the area located
between x = 0 and x = L. The stable manifold of the saddle
represents on each side the separatrix between the trajectories
that are transmitted and those that are reflected. The location
of the fixed points can be determined by referring to Eq. (27).
By transferring the bias current to the left side and zeroing out
all derivatives with respect to time to identify the fixed points,
we obtain a function f (x0),

f (x0) ≡ ε

[
x0 coth x0 − 1

sinh2 x0
− (x0 − L) coth(x0 − L) − 1

sinh2(x0 − L)

]

− π

4
� = 0, (29)

whose zeros indicate the desired equilibria. Figure 11 shows
the positions of these points depending on the value of the
current. It can be seen that for currents below the threshold
value, i.e., for 0.003, 0.013, 0.023, and 0.033 there are two
fixed points, a stable one on the left and an unstable one on the
right. Physically, the presence of a stable fixed point is related
to the fact that the kink, not having enough energy to cross
the barrier bounces off it before getting trapped on the stable
spiral fixed point. On the other hand, the constant forcing
presses the kink to move towards the barrier. At the same
time, the kink loses energy due to dissipation which leads to
its eventual stopping. The presence of the second fixed point
can be interpreted as the kink sliding off the barrier and is
an effective remnant of the conservative case with � = 0. For
the threshold value of the bias current, i.e., � = 0.043 only an
unstable point remains. When the value of the current exceeds
the threshold value (e.g., for � = 0.053 and � = 0.063) the
fixed points do not occur. In these cases, the barrier is unable
to stop the kink because the energy provided by the drive is
too high. For negative values of the current, the situation is
symmetrical with respect to the barrier, as long as the kink

moves from the right side toward the left, i.e., the stable point
is on the right side of the barrier while the unstable one is
located on the barrier.

Similarly to Fig. 6, Fig. 12 shows the kink interaction
with the inhomogeneity for two values of ε. The left panel
corresponds to ε = 0.01 while the right one corresponds to
ε = 0.05. Initial speeds are determined by the formula (28).
In all plots, the dissipation coefficient is equal to α = 0.01. In
the left panel the bias current � is equal, respectively, in the
three rows (0.0015, 0.00155, and 0.0016), while in the right
panel it is 0036, 0.00384, and 0.0041. In these two panels the
upper figures show a reflection of the kink from the barrier
(leading to its eventual trapping). The middle figures represent
the interaction of the kink with velocity close to the critical
speed, ultimately in these cases leading to transmission. The
bottom figures show the passage of a kink over a barrier
for speeds above the critical velocity. It can be seen that for
ε = 0.01 the agreement of the prediction of the approximate
equation and the original one is very good while for ε = 0.05
we observe nontrivial discrepancies, which suggest the poten-
tial of the latter scenario for further improvement, as concerns
its theoretical description. Finally, it is worth noting that the
equations of motion in the case of zero mode projection and
the method based on the conservative Lagrangian are identical
for α = 0 and � = 0. This behavior for effective models with
one degree of freedom is not a coincidence. In the Appendix,
we show that in the case without dissipation the two effective
descriptions are equivalent.

3. The method based on nonconservative Lagrangian

Another proposal for obtaining both the original field equa-
tion (containing the dissipation) and the effective equation of
motion for the collective coordinate reduced description is
a method based on the nonconservative Lagrangian density
[26,42]. The field equation in this case can be obtained based
on the standard conservative Lagrangian density L and the
nonconservative contribution R,

∂μ

[
∂L

∂ (∂μφ)

]
− ∂L

∂φ

= lim
φ−→0

(
lim

φ+→φ

{
∂R
∂φ−

− ∂μ

[
∂R

∂ (∂μφ−)

]})
. (30)

In the system we are currently considering, L = LFSG and
R = −αφ−∂tφ+ − �φ−. Here φ− and φ+ are auxiliary fields
with the property that in the so-called physical limit φ− → 0
and φ+ → φ. Equation (30) written above reproduces the
field equation (1) with dissipation. The effective Lagrangian
and the nonconservative potential at the effective level are
obtained by inserting the kink ansatz into the densities and
integrating over the spatial variable

L =
∫ +∞

−∞
L(φK , ∂μφK )dx, R =

∫ +∞

−∞
R(φK±, ∂μφK±)dx.

(31)
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FIG. 12. Comparison of the position of the center of mass of the kink for the solution from the original field model (black line) and the
model with one degree of freedom [red (gray) line]. The left panel contains figures for inhomogeneity ε = 0.01 and bias current with values
(starting from the top) 0.0015, 0.00155, and 0.00165. On the right panel results for ε = 0.05 are presented. Starting from the top the bias
current is 0.0036, 0.00384, and 0.0041. In each case, the disipation was equal to 0.01.

The effective equation has a similar structure to the original
one,

∂t

(
∂L

∂ ẋ0

)
− ∂L

∂x0
= lim

x−→0

{
lim

x+→x0

[
∂R

∂x−
− ∂t

(
∂R

∂ ẋ−

)]}
.

(32)

After substituting the effective quantities into Eq. (32), we get

ẍ0 + ε

[
x0 coth x0 − 1

sinh2 x0
− (x0 − L) coth(x0 − L) − 1

sinh2(x0 − L)

]

= −αẋ0 + π

4
�. (33)

Note that this equation is identical to Eq. (27) and for α = 0
and � = 0 reduces to Eq. (22). Per our previous discussion,
the trajectories in this simplified case have been compared
with the trajectories obtained in the original field model in
Fig. 6, while the case with dissipation (α �= 0 and � �= 0) has
been shown in Figs. 10 and 12.

B. Approximations based on two degrees of freedom

We now turn to representations of the effective solitary
wave dynamics using two degrees of freedom. More specif-
ically, we consider the position of the kink x0(t ) and a
parameter describing its effective inverse width parametrized
by γ (t ) through the ansatz

φK (t, x) = 4 arctan eγ (t )[x−x0(t )]. (34)

Such a functional form is expected to allow us both to better
describe the motional effects of the kink and also to capture
the (potential) excitation of the kink’s vibrational (internal
breathing) mode. We now proceed to provide the associated

details, providing all three of the effective descriptions used
before (one for the Hamiltonian and two for the damped-
driven problem).

1. The construction based on a conservative Lagrangian
(for α = 0 and Γ = 0)

Similarly to the previous section, after integrating the
model Lagrangian (14) over the spatial variable x, we obtain
in this case a sine-Gordon part of the effective Lagrangian of
the form

LSG = 4γ ẋ2
0 + π2

3γ 3
γ̇ 2 − 4

(
γ + 1

γ

)
. (35)

The form of the second part of the effective Lagrangian is
strongly dependent on the shape of the inhomogeneity, i.e.,
on the analytical form of the function g(x). For example, for a
function consisting of a unit step g(x) = θ (x) − θ (x − L) this
part of the Lagrangian is as follows:

Lε = −2εγ {tanh(γ x0) − tanh[γ (x0 − L)]}. (36)

Then the equations of motion in this case (stemming from the
effective Lagrangian L = LSG + Lε) have a relatively compact
form,

ẍ + γ̇

γ
ẋ0 + 1

4
εγ {sech2(γ x0) − sech2[γ (x0 − L)]} = 0,

2π2

3

γ̈

γ
− π2 γ̇ 2

γ 2
− 4γ 2ẋ2 + 4(γ 2 − 1) + 2εγ 2{tanh(γ x0)

− tanh[γ (x0 − L)]} + 2εγ 3{x0sech2(γ x0)

− (x0 − L)sech2[γ (x0 − L)]} = 0. (37)
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FIG. 13. Comparison of the position of the center of mass of the kink for the solution of the original field model (black line) and the model
with two degrees of freedom [red (gray) line] for on the left ε = 0.1 and velocities are (from the top) 0.4, 0.415, and 0.43 and on the right
ε = 0.2 and velocities are (from the top) 0.523, 0.53, and 0.56.

Due to the high complexity and length of the formulas, we
do not give the form of the equations obtained for g(x) =
tanh(x) − tanh(x − L); however, these equations are used
when comparing the effective model with the field model (1).
For completeness of description, the part Lε of the Lagrangian
responsible for the interaction with the inhomogeneity for this
case is given as:

Lε = 8γ εe2γ x0

(e2γ x0 − 1)2(e2γ L − e2γ x0 )2
(e2γ L(e2γ x0 − 1)2 log(e2γ L )

+ 4 sinh(γ L)e2γ (L+x0 ){− cosh(γ L) + cosh[γ (L − 2x0)]

+ log(e2γ x0 ) sinh[γ (L − 2x0)]}). (38)

As before, the effective Lagrangian LFSG consists of two parts,
i.e., the effective Lagrangian of the free sine-Gordon model
(35) and the Lagrangian describing the interaction with inho-
mogeneity (38). This effective Lagrangian is used to obtain
the equations of motion.

The trajectory describing the movement of the center of
mass resulting from Eq. (1) (black line) is compared with the
time dependence of the collective variable x0(t ) [red (gray)
line] in Fig. 13. In the figure, very good agreement between
the effective model and the field model is achieved up to ε

values equal to 0.2. In the figures, the parameter L describing
the width of the inhomogeneity is equal to 10. It is interest-
ing to note that the introduction of a second variable γ (t )
significantly improves the predictions of the effective model
relative to the x0(t ) variable. On the other hand, predictions
about the γ (t ) variable itself are of more limited value. As a

kink approaches the heterogeneity its width becomes suitably
modulated. The changes in thickness gradually disappear with
time at the field-theoretic level, after which the thickness sta-
bilizes at a level characteristic of the stationary kink solution.
Figure 14 compares the thickness of the static kink solution
that follows from the effective model and the corresponding
value derived from the field model. It can be seen that as
ε increases, the model increasingly underestimates the value
of the γ variable, although the relevant deviation is quite

FIG. 14. Fit of γ values depending on the ε determined from
the solution of the original PDE (orange dots) with standard error
calculated by maximum likelihood estimation compared with the γ

determined from a model with two degrees of freedom [green (light
gray) line]. The figure describes the evolution when the inhomogene-
ity is in the form of a combination of hyperbolic tangents. In addition,
α = 0 and � = 0.
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FIG. 15. In the left panel of the figure, the evolution of the γ (t ) variable in the original field model. The right panel of the figure compares
the results of the field model with an effective model with two degrees of freedom. In both cases ε = 0.1.

small and also it is clear that the model captures the nature
of the qualitative trend of the effect of the perturbation of
ε on the parameter γ . Figure 15 compares the oscillations
of the γ variable in the effective model and the oscillations
of the kink thickness as the kink passes through the inho-
mogeneity. The differences here are nontrivial although in
both descriptions (i.e., exact and effective) the nature of the
vibration changes similarly in the area of inhomogeneity. At
the level of Eqs. (37), one can trace this effect in the presence
of terms such as the one ∝ γ 2ẋ2 in the dynamical equation for
the evolution of γ (t ). Indeed, while we observe that the field
dynamics retain γ to a nearly constant value far from the
inhomogeneity, the above mentioned term is “active” in the
reduced model equation leading to oscillatory dynamics of
the kink width. Indeed, this is a point of potential future im-
provement of the reduced model as the latter is not presently
capturing the Lorentz invariance of the homogeneous kink
which would enable it to move with constant speed with-
out inducing a width vibration. Nevertheless, the qualitative
trends of variation of γ (t ) induced by the inhomogeneity are
captured by the two-degree-of-freedom model (superimposed
to the above-mentioned vibration).

Finally, the two-degree-of-freedom effective model natu-
rally reproduces the two modes belonging to the spectrum
of the L̂ operator (see Fig. 16) in the case of the unstable
saddle equilibrium of the Hamiltonian model kink centered at
the impurity region. The first unstable mode (corresponding
to the instability of the kink’s position at the center of the
inhomogeneity) is associated with the x0 variable, i.e., pertains
to the former translational mode, and the oscillating mode
(corresponding to changes in the thickness of the kink) is
associated with the γ variable. This second mode is essentially
connected with the band edge of the continuous part of the
spectrum of the operator L̂. Both modes of the effective model
are represented by green (light gray) lines.

2. The method of projecting onto the zero mode
(for arbitrary α and Γ )

In the case of two degrees of freedom, we insert ξ (t, x) into
Eq. (24) in the form of

ξ (t, x) = γ (t )[x − x0(t )].

This substitution results in the equation

[(
γ̈

γ
+ α

γ̇

γ

)
ξ − (2ẋ0γ̇ + αγ ẋ0 + γ ẍ0)

]
∂ξφK

+
[(

γ̇

γ

)2

ξ 2 − 2ẋ0γ̇ ξ + (γ 2ẋ2
0 − γ 2 + 1)

]
∂2
ξ φK

= εγ (∂x g) ∂ξφK + εγ 2g∂2
ξ φK − �. (39)

The first of the equations of the two-degree-of-freedom effec-
tive model is obtained similarly to the one-degree-of-freedom
model, i.e., by projecting to the (former) zero mode. We mul-
tiply the above equation by the derivative of the kink ansatz
and then perform an integration over the entire domain to
remove the dependence on the spatial variable. In the case
of the second equation, before calculating the integrals, we
additionally multiply the equation by ξ , which changes the
parity of the calculated integrals,

ẍ0 + αẋ0 + γ̇

γ
ẋ0 − 1

8
εγJ = π

4γ
�,

2π2

3

(
γ̈

γ
+ α

γ̇

γ

)
− π2 γ̇ 2

γ 2
− 4γ 2ẋ2

+ 4(γ 2 − 1) − εγI1 − εγ 2I2 = 0. (40)

The integrals appearing in the equations for different forms of
the function g describing the inhomogeneity have the form

J =
∫ +∞

−∞
g(x)(∂ξφK )

(
∂2
ξ φK

)
dξ,

I1 =
∫ +∞

−∞
[∂xg(x)] ξ (∂ξφK )2dξ,

I2 =
∫ +∞

−∞
g(x) ξ (∂ξφK )

(
∂2
ξ φK

)
dξ . (41)

In the simplest case where the function g consists of step func-
tions, i.e., g(x) = θ (x) − θ (x − L), the equations of motion
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FIG. 16. Comparison of the determined squared eigenfrequen-
cies λ = ω2 from the linearization Jacobian (in case of α = 0, � = 0)
with those obtained from the model with two degrees of freedom
linearized around the equilibrium state of the latter [green (light gray)
line].

can be converted to the form

ẍ + αẋ0+ γ̇

γ
ẋ0+1

4
εγ {sech2(γ x0) − sech2[γ (x0−L)]}= π

4γ
�,

2π2

3

(
γ̈

γ
+ α

γ̇

γ

)
− π2 γ̇ 2

γ 2
− 4γ 2ẋ2 + 4(γ 2 − 1)

+ 2εγ 2{tanh(γ x0) − tanh[γ (x0 − L)]} + 2εγ 3

× {x0 sech2(γ x0) − (x0 − L)sech2[γ (x0 − L)]} = 0.

(42)

Note that these equations reduce to the system (37) when we
take α and � equal to zero.

3. The method based on nonconservative Lagrangian
(for arbitrary α and Γ )

As we described in the previous sections, Equation (1)
can be obtained using a nonconservative Lagrangian density
through Eq. (30), where R represents the nonconservative
contribution. In the case of an effective model with two de-
grees of freedom, the effective conservative Lagrangian and
the effective nonconservative potential are obtained by inte-
grating over the spatial variable (31). The only difference is
the assumed ansatz, which in the case of two degrees of free-
dom has the form described by Eq. (34). In the model defined
in this way, we have two effective equations of motion,

∂t

(
∂L

∂ ẋ0

)
− ∂L

∂x0
=

[
∂R

∂x−
− ∂t

(
∂R

∂ ẋ−

)]
PL

,

∂t

(
∂L

∂γ̇

)
− ∂L

∂γ
=

[
∂R

∂γ−
−∂t

(
∂R

∂γ̇−

)]
PL

. (43)

In the physical limit (denoted here by PL) the auxiliary vari-
ables x− and γ− disappear, while x+ → x0 and γ+ → γ . On
the other hand, the Lagrangian consists of the sine-Gordon
part (35) and the interaction term, i.e., L = LSG + Lε and

therefore the equations of motion can be written as follows:

ẍ0 + γ̇

γ
ẋ0 − 1

8γ

∂Lε

∂x0
= 1

8γ

[
∂R

∂x−
− ∂t

(
∂R

∂ ẋ−

)]
PL

,

2π2

3

γ̈

γ
− π2 γ̇ 2

γ 2
− 4γ 2ẋ2

0 + 4(γ 2 − 1) − γ 2 ∂Lε

∂γ

= γ 2

[
∂R

∂γ−
− ∂t

(
∂R

∂γ̇−

)]
PL

. (44)

The right-hand sides of these equations we obtain by calcu-
lating the nonconservative potential and its derivatives in the
physical limit,

ẍ0 + γ̇

γ
ẋ0 − 1

8γ

∂Lε

∂x0
= −αẋ0 + π

4γ
�,

2π2

3

γ̈

γ
−π2 γ̇ 2

γ 2
−4γ 2ẋ2

0 +4(γ 2−1)−γ 2 ∂Lε

∂γ
= −2π2

3
α

γ̇

γ
.

(45)

We recall here that the interaction with the inhomogeneity is
described by the following integral:

Lε = −1

2
ε

∫ +∞

−∞
g(x)(∂xφK )2, (46)

where φK denotes the ansatz (34). For example, in the case
of inhomogeneity defined by the unit step functions g(x) =
θ (x) − θ (x − L) we get equations identical to the formulas
(42), obtained previously using the projection approach. A
different situation occurs for inhomogeneities defined by hy-
perbolic tangents g(x) = tanh (x) − tanh (x − L). Naturally,
if in the system there is dissipation, then we can only use
the method based on the nonconservative Lagrangian and
the method of projection onto the zero mode. The results
of the two methods are found to differ slightly as shown in
Fig. 17, favoring the nonconservative Lagrangian method as
more accurate. Figure 17 compares trajectories obtained for
the inhomogeneity of g(x) = tanh(x) − tanh(x − L) using a
method based on a nonconservative Lagrangian for two de-
grees of freedom [red (gray) line] and a zero mode projection
[green (light gray) line]. In all figures, the black line repre-
sents the result obtained from the full field model PDE. The
inhomogeneity in the figures of the left panel corresponds to
ε = 0.05, while for the right panel it is ε = 0.1. We used the
following currents on the left panel, starting from the top,
0.0032, 0.0037, and 0.0042. On the right panel, the currents
are assumed to be (again, starting from the top) 0.005, 0.0054,
and 0.0058. In all figures, the dissipation is assumed to be
α = 0.01. We found that as the parameter ε increases, the
method of projecting onto the zero mode to a higher extent
than the method based on the nonconservative Lagrangian
underestimates the position of the kink.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the behavior of the kink
in the sine-Gordon model in the presence of a localized in-
homogeneity. In the case without dissipation, we focused on
the interaction of the kink with the impurity region at speeds
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FIG. 17. Comparison of the position of the center of mass of the kink for the solution from the original field model (black line) and
models with two degrees of freedom based on projecting onto the zero mode according to (40) [green (light gray) line] and on nonconservative
Lagrangian according to (45) [red (gray) line]. The left panel contains figures for inhomogeneity strength ε = 0.05 and bias current with values
(starting from the top) 0.0032, 0.0037, and 0.0042. On the right panel, results for ε = 0.1 are presented. Starting from the top, the bias current
is 0.005, 0.0054, and 0.0058. In each case, the dissipation was equal to 0.01.

proximal to the critical velocity separating transmission from
reflection. In the immediate vicinity of the relevant critical
point (which we identified as a saddle), we observed the kink
slowing down for an extended time interval at the center of
the inhomogeneity. The process of the kink interaction with
the inhomogeneity was also described within the framework
of effective models with one and two degrees of freedom. As
expected, the description with one collective variable works
well for small values of the perturbation parameter ε. On
the other hand, the inclusion of a second collective variable,
effectively characterizing the width of the coherent structure,
significantly improves the predictions of the effective model
including for somewhat larger values of ε. At the same time,
however, the predictions for the second collective variable
bear some differences in comparison to the field description
albeit in ways that were explained in the associated discus-
sion. In particular, the second collective variable is intended
to identify the occurrence of the interaction, while the re-
duced description also seems to identify a vibrational mode
associated with the edge of the continuous spectrum. A more
refined representation of the relevant mode that yields a close
agreement with the field-theoretic results constitutes a natural
question for future study.

The case of interaction of a kink with an inhomogeneity in
a system with dissipation and external drive presents further
intriguing features in its own right. The passage of the kink
through the barrier or reflection depends on the relationship
between the external forcing and the dissipation. Particularly

interesting here is the process of interaction of the kink with
the barrier for bias currents smaller than the threshold current.
In this case, we observe successive reflections of the kink
from the barrier caused by the bias current pushing it toward
the barrier. Oscillations of the kink position are naturally
damped due to the presence of dissipation in the system. The
shape of the final static configuration can be determined on
the basis of a linearized approximation and reveals a stable
spiral fixed point of the effective description. The reduced
model description of the process of interaction of the kink
with the inhomogeneity below the threshold current leads to
surprisingly consistent results with those from the original
PDE. Moreover, the effective models with two degrees of
freedom (for small ε) correctly approximate the excitation
spectrum obtained on the ground of the linear approxima-
tion (Fig. 16), as well as the associated dynamics. While
both related methods are found to be qualitatively adequate,
the nonconservative Lagrangian approach developed herein is
also found to be highly quantitatively accurate in describing
the kink evolution (for one degree of freedom, the different
approaches developed are found to yield identical results in
suitable limits).

It is also worth noting that in real physical systems we
have to deal with various types of random distortions. The
most common such disturbance is thermal noise. The natural
question then arises regarding the conditions under which the
presence of noise does not significantly change the conclu-
sions of this paper. In the case of thermal noise, the parameter
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that best describes its impact is temperature. In the case of the
processes described in our work, in order for its conclusions
not to be altered, we would have to assume a temperature
low enough so that no thermal creation of kinks or antikinks
occurs during evolution. Moreover, the kink would not be
subject to Brownian movements in a significant way, and the
“phonon dressing” would be negligible. This regime corre-
sponds to the kBT << E regime reported in Refs. [43,44],
where E is the kink energy (kB is Boltzman’s constant); see
also Ref. [3].

This study naturally paves the way for a number of future
possibilities. On the one hand, our focus here was in the inter-
action of sine-Gordon kink with an inhomogeneity. Yet, there
has been a rich literature exploring the resonant interaction of
a φ4 kink with an impurity dating back to Ref. [45] that has re-
cently seen a resurgence of interest in different model variants
and associated phenomenologies [46,47]. Another interesting
direction concerns the exploration of higher-dimensional vari-
ants even of the sine-Gordon variety in order to appreciate
the effects of curvature and impurity geometry on the kink
dynamics; see for some recent examples [40,48]. Such studies
are currently in progress and will be reported in the future.
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APPENDIX: EQUIVALENCE OF THE FIRST TWO
APPROACHES FOR ONE DEGREE OF FREEDOM

REDUCED MODELS

In this section, we will consider a class of Lagrangian
systems, in the absence of dissipation for which we will
demonstrate the equivalence of the first two approaches pre-
sented in the main body of the text for one degree of freedom
effective descriptions for the wave’s center of mass. We as-
sume that stable solutions in the form of solitons are present
in this system. The effective description of the position of the
soliton in this system is specified by the following equation:

∂Leff

∂x0
− d

dt

(
∂Leff

∂ ẋ0

)
= 0. (A1)

Here Leff denotes the effective Lagrangian,

Leff =
∫ +∞

−∞
L(φK , φ̇K , φ′

K )dx. (A2)

As can be seen, it is obtained by integrating the Lagrangian
density of the underlying field theory with respect to the
spatial variable. Here φK = φK [x − x0(t )] denotes the kink
solution and x0(t ) is the collective variable that represents

the position of the kink. We will consider Lagrangians that
contain terms that explicitly break the translational symmetry
of the system. An example Lagrangian of this type has the
form:

L(φK , φ̇K , φ′
K ) = 1

2A(x)φ̇2
K − 1

2F (x)φ′2
K − B(x)V (φK ),

(A3)

where the dot denotes the time derivative and prime denotes
the derivative with respect to space variable x. Here A, B,
and F are arbitrary functions with finite values. In particular,
in previous sections of this work, we considered the cases
for which A = 1 and B = 1. Applying the definition of the
effective Lagrangian (A2) to Eq. (A1) we obtain∫ +∞

−∞

{
∂L
∂x0

− d

dt

(
∂L
∂ ẋ0

)}
dx = 0. (A4)

When calculating the derivatives, we must remember that the
Lagrangian density depends on the x0 variable both through
the field φK , its spatial and time derivatives

∂L
∂x0

= ∂L
∂φK

∂φK

∂x0
+ ∂L

∂φ̇K

∂φ̇K

∂x0
+ ∂L

∂φ′
K

∂φ′
K

∂x0
. (A5)

Next, we will convert the derivatives with respect to the vari-
able describing the position of the kink x0 into derivatives with
respect to the variable ξ = x − x0(t ),

∂L
∂x0

= − ∂L
∂φK

∂φK

∂ξ
− ∂L

∂φ̇K

∂φ̇K

∂ξ
− ∂L

∂φ′
K

∂φ′
K

∂ξ
. (A6)

Similarly, we can calculate the derivative with respect to the
kink velocity, but this time the dependence on the ẋ0 variable
occurs in just one term,

∂L
∂ ẋ0

= ∂L
∂φK

∂φK

∂ ẋ0
+ ∂L

∂φ̇K

∂φ̇K

∂ ẋ0
+ ∂L

∂φ′
K

∂φ′
K

∂ ẋ0
= ∂L

∂φ̇K

∂φ̇K

∂ ẋ0
.

(A7)

The derivative of the field φK with respect to time explicitly
depends in a linear way on the velocity

φ̇K = ∂φK

∂ξ

dξ

dt
= −ẋ0

∂φK

∂ξ
(A8)

and therefore the derivative of φ̇K with respect to velocity is
equal to

∂φ̇K

∂ ẋ0
= −∂φK

∂ξ
. (A9)

The relevant contribution of the derivative of the Lagrangian
with respect to ẋ0 then yields

∂L
∂ ẋ0

= − ∂L
∂φ̇K

∂φ̇K

∂ξ
. (A10)

The obtained derivatives of Lagrangian density with respect
to x0, given by Eq. (A6) and ẋ0, set by Eq. (A10), can be used
in Eq. (A4), yielding

∫ +∞

−∞

{
− ∂L

∂φK

∂φK

∂ξ
− ∂L

∂φ̇K

∂φ̇K

∂ξ
− ∂L

∂φ′
K

∂φ′
K

∂ξ
+ d

dt

(
∂L
∂φ̇K

∂φK

∂ξ

)}
dx = 0. (A11)
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After performing the differentiation with respect to time, we can separate the part that is multiplied by the zero mode and the
other part that we still need to transform∫ +∞

−∞

{
d

dt

(
∂L
∂φ̇K

)
− ∂L

∂φK

}
∂φK

∂ξ
dξ −

∫ +∞

−∞

{
∂L
∂φ′

K

∂φ′
K

∂ξ

}
dx = 0. (A12)

In the second integral, we transfer the derivative with respect to the spatial variable from the second factor to the first one,∫ +∞

−∞

{
∂L
∂φ′

K

∂φ′
K

∂ξ

}
dx =

∫ +∞

−∞

∂

∂x

{
∂L
∂φ′

K

(
∂φK

∂ξ

)}
dx −

∫ +∞

−∞

∂

∂x

(
∂L
∂φ′

K

)
∂φK

∂ξ
dx. (A13)

Since the spatial derivative of φK vanishes at infinity, we can
extract the term that contains multiplication by the zero mode,

∫ +∞

−∞

{
∂L
∂φ′

K

∂φ′
K

∂ξ

}
dx = −

∫ +∞

−∞

∂

∂x

(
∂L
∂φ′

K

)
∂φK

∂ξ
dξ .

(A14)

The integral that is transformed in this way can be reinserted
into Eq. (A12), yielding

∫ +∞

−∞

{
d

dt

(
∂L
∂φ̇K

)
+ ∂

∂x

(
∂L
∂φ′

K

)
− ∂L

∂φK

}
∂φK

∂ξ
dξ = 0.

(A15)

In relativistic notation, the last equation can be written as
follows:∫ +∞

−∞

{
∂μ

(
∂L

∂ (∂μφK )

)
− ∂L

∂φK

}
∂φK

∂ξ
dξ = 0, (A16)

where ∂μ denotes differentiation with respect to space-
time variables xμ = (x0, x1) = (t, x). Note that starting from
Eq. (A1) we obtained Eq. (A16), which defines the method
of projecting onto the zero mode. On the other hand, going
backwards in our calculations from Eq. (A16), we arrive at
the effective Eq. (A1), which means that the method based
on the conservative Lagrangian is equivalent (in the absence
of dissipation) to the method of zero mode projection. Ob-
viously, our considerations apply to the effective model with
one degree of freedom, yet the relevant proof applies for
arbitrary nonlinearity described by V (φ) and arbitrary form
of the heterogeneity in the model.

Finally, let us also notice that naturally, in the case where
α = 0 and � = 0, generally (at the level of field equa-
tions as well as effective equations) the approach based on
the nonconservative Lagrangian is equivalent to the approach
based on the conservative Lagrangian. In this case the non-
conservative contribution R is equal to zero, so Eq. (32)
reduces to Eq. (A1), showing the equivalence of the two
models. Accordingly, in this case, all three approaches are
equivalent.
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variable thickness of the dielectric layer, Phys. Rev. E 101,
052215 (2020).

[25] A. Demirkaya, D. J. Frantzeskakis, P. G. Kevrekidis, A. Saxena,
and A. Stefanov, Effects of parity-time symmetry in nonlinear
Klein-Gordon models and their stationary kinks, Phys. Rev. E
88, 023203 (2013).

[26] P. G. Kevrekidis, Variational method for nonconservative field
theories: Formulation and two PT -symmetric case examples,
Phys. Rev. A 89, 010102(R) (2014).

[27] A. Demirkaya, T. Kapitula, P. Kevrekidis, M. Stanislavova,
and A. Stefanov, On the spectral stability of kinks in some-
symmetric variants of the classical Klein–Gordon field theories,
Stud. Appl. Math. 133, 298 (2014).

[28] V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear
waves in PT -symmetric systems, Rev. Mod. Phys. 88, 035002
(2016).

[29] A. Benabdallah, J. G. Caputo, and A. C. Scott, Exponentially
tapered Josephson flux-flow oscillator, Phys. Rev. B 54, 16139
(1996).

[30] A. Kemp, A. Wallraff, and A. Ustinov, Josephson vortex qubit:
Design, preparation and read-out, Phys. Stat. Sol. (b) 233, 472
(2002).

[31] A. Kemp, A. Wallraff, and A. Ustinov, Testing a state prepara-
tion and read-out protocol for the vortex qubit, Physica C 368,
324 (2002).

[32] D. R. Gulevich and F. V. Kusmartsev, Flux Cloning in Joseph-
son Transmission Lines, Phys. Rev. Lett. 97, 017004 (2006).

[33] J.-G. Caputo and D. Dutykh, Nonlinear waves in networks:
Model reduction for the sine-Gordon equation, Phys. Rev. E 90,
022912 (2014).

[34] R. Monaco, Engineering double-well potentials with variable-
width annular Josephson tunnel junctions, J. Phys.: Condens.
Matter 28, 445702 (2016).

[35] T. Dobrowolski, Curved Josephson junction, Ann. Phys. 327,
1336 (2012).

[36] J. Gatlik and T. Dobrowolski, Modeling kink dynamics in the
sine–Gordon model with position dependent dispersive term,
Physica D 428, 133061 (2021).

[37] T. Dobrowolski, Kink motion in a curved Josephson junction,
Phys. Rev. E 79, 046601 (2009).

[38] R. Boesch and C. R. Willis, Exact determination of the Peierls-
Nabarro frequency, Phys. Rev. B 39, 361 (1989).

[39] R. Boesch, C. R. Willis, and M. El-Batanouny, Spontaneous
emission of radiation from a discrete sine-Gordon kink, Phys.
Rev. B 40, 2284 (1989).

[40] R. Carretero-González et al., Kink–antikink stripe interac-
tions in the two–dimensional sine–Gordon equation, Commun.
Nonlin. Sci. Numer. Simul. 109, 106123 (2022).

[41] C. Elphick, E. Meron, and E. A. Spiegel, Patterns of propagat-
ing pulses, SIAM J. Appl. Math. 50, 490 (1990).

[42] C. R. Galley, Classical Mechanics of Nonconservative Systems,
Phys. Rev. Lett. 110, 174301 (2013).

[43] F. Marchesoni, Solitons in a random field of force: A Langevin
equation approach, Phys. Lett. A 115, 29 (1986).

[44] C. Cattuto, G. Costantini, T. Guidi, and F. Marchesoni, Elastic
strings in solids: Discrete kink diffusion, Phys. Rev. B 63,
094308 (2001).

[45] Z. Fei, Y. S. Kivshar, and L. Vázquez, Resonant kink-impurity
interactions in the φ4 model, Phys. Rev. A 46, 5214 (1992).

[46] C. Adam, K. Oles, T. Romanczukiewicz, and A. Wereszczynski,
Spectral Walls in Soliton Collisions, Phys. Rev. Lett. 122,
241601 (2019).

[47] M. Lizunova, J. Kager, S. de Lange, and J. van Wezel, Emer-
gence of oscillons in kink-impurity interactions, J. Phys. A:
Math. Theor. 54, 315701 (2021).

[48] P. G. Kevrekidis, I. Danaila, J.-G. Caputo, and R. Carretero-
González, Planar and radial kinks in nonlinear Klein-Gordon
models: Existence, stability, and dynamics, Phys. Rev. E 98,
052217 (2018).

034203-17

https://doi.org/10.1007/s10948-018-4884-4
https://doi.org/10.1103/PhysRevA.18.1652
https://doi.org/10.1016/0375-9601(88)90249-6
https://doi.org/10.1016/0038-1098(79)90047-4
https://doi.org/10.1016/0375-9601(90)90139-F
https://doi.org/10.1103/PhysRevE.101.052215
https://doi.org/10.1103/PhysRevE.88.023203
https://doi.org/10.1103/PhysRevA.89.010102
https://doi.org/10.1111/sapm.12053
https://doi.org/10.1103/RevModPhys.88.035002
https://doi.org/10.1103/PhysRevB.54.16139
https://doi.org/10.1002/1521-3951(200210)233:3<472::AID-PSSB472>3.0.CO;2-J
https://doi.org/10.1016/S0921-4534(01)01190-X
https://doi.org/10.1103/PhysRevLett.97.017004
https://doi.org/10.1103/PhysRevE.90.022912
https://doi.org/10.1088/0953-8984/28/44/445702
https://doi.org/10.1016/j.aop.2012.02.003
https://doi.org/10.1016/j.physd.2021.133061
https://doi.org/10.1103/PhysRevE.79.046601
https://doi.org/10.1103/PhysRevB.39.361
https://doi.org/10.1103/PhysRevB.40.2284
https://doi.org/10.1016/j.cnsns.2021.106123
https://doi.org/10.1137/0150029
https://doi.org/10.1103/PhysRevLett.110.174301
https://doi.org/10.1016/0375-9601(86)90102-7
https://doi.org/10.1103/PhysRevB.63.094308
https://doi.org/10.1103/PhysRevA.46.5214
https://doi.org/10.1103/PhysRevLett.122.241601
https://doi.org/10.1088/1751-8121/ac0d36
https://doi.org/10.1103/PhysRevE.98.052217

