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Hierarchy of partially synchronous states in a ring of coupled identical oscillators
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In coupled identical oscillators, complete synchronization has been well formulated; however, partial synchro-
nization still calls for a general theory. In this work, we study the partial synchronization in a ring of N locally
coupled identical oscillators. We first establish the correspondence between partially synchronous states and
conjugacy classes of subgroups of the dihedral group DN . Then we present a systematic method to identify all
partially synchronous dynamics on their synchronous manifolds by reducing a ring of oscillators to short chains
with various boundary conditions. We find that partially synchronous states are organized into a hierarchical
structure and, along a directed path in the structure, upstream partially synchronous states are less synchronous
than downstream ones.
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I. INTRODUCTION

Systems composed of a number of interacting entities are
prevalent in various fields ranging from physics, chemistry,
to biology, and society [1–3]. Examples include neuronal sys-
tems in human beings [4], and ions trapped in an optical lattice
[5]. Synchronization, oscillation quenching, and pattern for-
mation in these systems have been hotspots over the past
several decades [6–8]. Coupled oscillators offer a platform
to investigate the dynamics in these systems. The often-opted
simplest model is a chain of locally coupled identical oscilla-
tors with a periodic boundary condition, or in other words a
ring of identical oscillators.

Synchronization in coupled oscillators refers to the phe-
nomenon in which dynamical properties, such as rhythms,
phases, and state variables, of oscillators are made to be in
unison due to the coupling between them. The complete syn-
chronization among all identical oscillators has already been
well documented [9–14]. Partial synchronization in coupled
identical oscillators, defined as one type of synchrony where
some oscillators are in complete synchronization with each
other and others do not [15], has also been observed and
is thought to be intermediate between the desynchroniza-
tion and the complete synchronization [16–23]. However, to
the best of our knowledge, a systematic theory on partial
synchronization even in a ring of locally coupled identical
oscillators is still not conclusive in that a general classifi-
cation of the partially synchronous states, or an effective
recipe to find out all the partially synchronous states, remains
elusive. Previous works on the related subject of phase-shift
synchrony in networks may shed light on the investigation
of partial synchronization [24–32]. In the phase-shift syn-
chrony, oscillators have identical periodic dynamics except
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for fixed phase shifts for any pair of oscillators [24]. Consid-
ering that the topology of a network strongly constrains the
dynamical behaviors on it, these works use group theory to
predict spatiotemporal patterns required by the spatial sym-
metry of the network. Among these, the H/K theorem behind
phase-shift synchrony classifies the possible spatiotemporal
symmetries of periodic states for symmetric systems [24,25].
For example, Hunter and collaborators focused on a four-
ring reaction-diffusion network to verify the predictions by
the H/K theorem [26]. However, different from phase-shift
synchrony, partial synchronization does not require the same
trajectory for oscillators. How to apply the group theory to
partial synchronization in coupled oscillators is a challenging
problem.

Pattern formation in spatial-temporal systems is a long-
standing subject in nonlinear dynamics and other fields [33].
It is usually believed that pattern formation is due to the exis-
tence of unstable spatial modes. Depending on the instabilities
of corresponding spatial modes, the patterns formed may be
Turing patterns [34,35] or wave propagations [36]. However,
partial synchronization may appear in spatial-temporal sys-
tems as a different type of pattern formation, which may come
by out of constituent modules and does not involve unstable
spatial modes.

In this work, we study the partial synchronization in a
ring of N locally coupled identical oscillators. We first es-
tablish the correspondence between a partially synchronous
state and a subgroup of the dihedral group DN and categorize
partially synchronous states according to conjugacy classes
of subgroups of DN . Then we present a systematic method
to identify all partially synchronous states by reducing a ring
of oscillators to short chains with different types of boundary
conditions. We find that different partially synchronous states
are organized into a hierarchical structure which makes it pos-
sible to compare the degrees of synchronization of different
partially synchronous states.

2470-0045/2023/108(3)/034202(11) 034202-1 ©2023 American Physical Society

https://orcid.org/0000-0002-9728-9001
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.034202&domain=pdf&date_stamp=2023-09-07
https://doi.org/10.1103/PhysRevE.108.034202


MEI ZHANG, YUHE YANG, AND JUNZHONG YANG PHYSICAL REVIEW E 108, 034202 (2023)

II. MODEL AND STATE CLASSIFICATION

We consider a chain of N locally coupled identical oscilla-
tors with a periodic boundary condition, denoted as (N )p. The
equations of motion are

ẋi = F(xi ) + ε[H(xi+1) + H(xi−1) − 2H(xi )], (1)

where xi is the state vector of the ith oscillator (i = 1, · · ·, N)
and the periodic boundary condition implies that x0 ≡ xN and
xN+1 ≡ x1. The function F describes the dynamics of a single
oscillator while H the interaction between oscillators, and the
parameter ε represents the coupling strength.

To begin, we claim that model (1) possesses the symmetry
described by the dihedral group DN of order 2N . Mathe-
matically, the group is represented as DN = 〈σ, τ |σ N = τ 2 =
e, τστ = σ−1〉 with e the identity while σ and τ its two
generators representing, respectively, the elementary rotation
and reflection. For identical oscillators, model (1) is invari-
ant under two types of fundamental operations, the rotation
and the reflection. The rotation on model (1) is defined by
the transformation: xi → xi−k with k ∈ {0, ..., N − 1}, repre-
sented by the element σ k in DN . However, the reflection is
represented by σ kτ in DN , which is the elementary reflection τ

followed by k successive elementary rotations. The reflection
axis of σ kτ depends on the choice of the axis of τ and whether
k and N are even or odd. The elementary rotation σ is fixed
in a counter-clockwise direction. For odd N , if the axis of τ

is the bisector through oscillator N , then the reflection σ kτ

simply refers to the transformation x k
2 +i → x k

2 +N−i for even
k and x k+N

2 +i → x k+N
2 +N−i for odd k, and the reflection axis

is the bisector through oscillator k
2 and k+N

2 , respectively. In
contrast, for even N , if the axis of τ is the bisector through
the midpoint of the edges connecting oscillators 1 and N ,
then the reflection σ kτ describes either x� k

2 �+i+1 → x� k
2 �+N−i

or x� k
2 �+i → x� k

2 �+N−i (�·� stands for the ceil of ·) depending
on k even or odd, with the reflection axis being the bisector
either crossing the midpoint of oscillators � k

2� and � k
2� + 1

or passing through oscillator � k
2�, respectively. Two specific

examples, N = 3 and N = 4, to demonstrate the rotation and
reflection operations, are given in Fig. 7 in the Appendix.

Next we claim that partially synchronous states in model
(1) are represented by subgroups of DN . For any partially
synchronous state in model (1), there exist at least two oscil-
lators in the same state, such as oscillators i and j satisfying
xi(t ) = x j (t ). We further assume that no other oscillators in
between are in synchronization with these two oscillators.
According to model (1), the synchronization between os-
cillators i and j indicates H(xi+1) + H(xi−1) = H(x j+1) +
H(x j−1). The equality gives rise to two possible situations:
(I) xi+1(t ) = x j+1(t ) and xi−1(t ) = x j−1(t ); (II) xi+1(t ) =
x j−1(t ) and xi−1(t ) = x j+1(t ). That is, any two oscillators in
synchronization should be in the same environment. Situation
I leads to a partially synchronous state which is invariant
under the rotation σ k with k = min{|i − j|, N − |i − j|}. In
contrast, situation II leads to a partially synchronous state
with the reflection symmetry. The axis of reflection symmetry
passes oscillator i+ j

2 for even i + j or lying between oscil-
lators i+ j−1

2 and i+ j+1
2 for odd i + j. Therefore, all partially

synchronous states in model (1) are invariant under at least

one elementary operation, either the rotation or the reflection.
If we suppose there is a set whose elements keep a partially
synchronous state invariant, then it can be easily proven that
the set must be a subgroup of DN . So each partially syn-
chronous state in model (1) is represented by at least one
subgroup of DN . In fact, there exist two trivial subgroups of
DN , the set consisting of only the identity and DN itself, the
former accounting for the desynchronous state while the latter
the completely synchronous state. Based on the connection
between the partially synchronous states in model (1) and
subgroups of DN , we can exclude the existence of partially
synchronous states in model (1) if they are not invariant under
the operations of any subgroup of DN , for example the one in
which two oscillators i and j are synchronized whereas all the
others are not when N > 3.

Furthermore, we claim that partially synchronous states
in model (1) are classified by the conjugacy classes of sub-
groups of DN . Consider a ring of four identical oscillators.
The partially synchronous state “ABBA” is represented by
the subgroup 〈στ 〉 while “AABB” is represented by the sub-
group 〈σ 3τ 〉. However, these two partially synchronous states
“ABBA” and “AABB,” differing only in a cyclic change of
their indices, are actually the same in dynamics. Similarly, the
partially synchronous states “ABAB” and “BABA” are also
the same and are represented by the subgroup 〈σ 2〉. Given
that two partially synchronous states are the same if they
only differ from each other in a cyclic change of the oscil-
lator indices, we may claim that each partially synchronous
state is represented by one conjugacy class of subgroups of
dihedral group DN and thus the number of different partially
synchronous states is determined by the number of conjugacy
classes of subgroups of DN . Usually, the conjugacy class is
represented by one representative subgroup within it, such as
〈στ 〉 and 〈σ 2〉 in the above examples. In fact, the subgroups
in the same conjugacy class S of DN are connected by σ kSσ−k

with different k, where the conjugate operation on the regular
N-polygon plays the role of rotating the polygon, which jus-
tifies the correspondence between the partially synchronous
states in a ring of N coupled identical oscillators and the
conjugacy classes of DN .

In Tables I and II, we present the correspondence between
the partially synchronous states and the conjugacy classes
of DN for N = 12 and N = 15, where the trivial subgroups
{e} (for the desynchronous state) and 〈σ 〉 (for the completely
synchronous state) are also included for completeness. Note
that there is an exception 〈σ 4, σ τ 〉 which suggests the par-
tially synchronous state “ABCB.” However, the first and the
third oscillators are actually in the same environment, which
requires “A” to be the same as “C” except for the bista-
bility. In the last row of both tables, we also include the
partially synchronous states to be identified in the following
section through desynchronized short chains with appropriate
boundary conditions.

III. METHODOLOGY AND RESULTS

A. Identifying partially synchronous states

Though conjugacy classes of subgroups in DN help to
classify all possible partially synchronous states for (N )p, they
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TABLE I. Correspondence between the conjugate classes and partially synchronous states for N = 12. In the head column, s.g. stands for
subgroups, c.c. stands for conjugacy classes, and p.s.s. stands for partially synchronous states.

s.g. {e} 〈τ 〉 〈στ 〉 〈σ 6〉 〈σ 6, τ 〉 〈σ 6, σ τ 〉 〈σ 4〉 〈σ 4, τ 〉 〈σ 4, σ τ 〉 〈σ 3〉 〈σ 3, τ 〉 〈σ 2〉 〈σ 2, τ 〉 〈σ 2, σ τ 〉 〈σ 〉 〈σ, τ 〉
〈σ 2τ 〉 〈σ 3τ 〉 〈σ 6, σ 2τ 〉 〈σ 6, σ 3τ 〉 〈σ 4, σ 2τ 〉 〈σ 4, σ 3τ 〉 〈σ 3, σ τ 〉
〈σ 4τ 〉 〈σ 5τ 〉 〈σ 6, σ 4τ 〉 〈σ 6, σ 5τ 〉 〈σ 3, σ 2τ 〉
〈σ 6τ 〉 〈σ 7τ 〉
〈σ 8τ 〉 〈σ 9τ 〉
〈σ 10τ 〉 〈σ 11τ 〉

c.c. {e} 〈τ 〉 〈στ 〉 〈σ 6〉 〈σ 6, τ 〉 〈σ 6, σ τ 〉 〈σ 4〉 〈σ 4, τ 〉 〈σ 4, σ τ 〉 〈σ 3〉 〈σ 3, τ 〉 〈σ 2〉 〈σ 2, τ 〉 〈σ 2, σ τ 〉 〈σ 〉 〈σ, τ 〉
p.s.s. (12)p (7)nf (6)o (6)p (4)nf (3)o (4)p N/A (2)o (3)p (2)h (2)p

∼= (2)nf (1)o
∼= (1)p

∼= (1)h

do not reveal details about the dynamics and the stabilities of
these states. In the following, we propose another effective
recipe to find all partially synchronous states in (N )p. It turns
out that the partially synchronous dynamics in (N )p on their
synchronous manifolds can be identified by categorizing short
chains with end oscillators obeying various types of boundary
conditions.

First, we identify all partially synchronous states repre-
sented by 〈σ m〉 with m the factor of N . If N is a prime number,
then apparently no such partially synchronous state exists.
Otherwise, if m is a proper factor, then the state 〈σ m〉 exists
and is invariant under the rotation operation σ m. Correspond-
ingly, the synchronous manifold is constrained by xi(t ) =
xi+m(t ) with i ∈ {1, · · ·, N}. Substituting these constrains into
model (1), we find that the partially synchronous dynamics on
the synchronous manifold is described by a short ring of m
oscillators (m)p,

ẋi = F(xi ) + ε[H(xi+1) + H(xi−1) − 2H(xi )], (2)

with i ∈ {1, · · ·, m}. If all oscillators in the short chain (m)p

happen to be desynchronized, then the states in the original
(N )p must correspond to the irreducible partially synchronous
state 〈σ m〉. Traditionally, synchronization usually refers to the
unison between time-dependent dynamical behaviors of os-
cillators. Here, we generalize the concept of synchronization
by defining dynamical behaviors to be synchronous ones pro-
vided that the behaviors can be realized on the synchronous
manifold. In this sense, synchronous states can even be time-
independent ones.

The rest of partially synchronous states in (N )p possess
reflection symmetry and they may be singled out by starting
from partially synchronous states 〈σ m〉 with m > 2. For even
m, the subgroups 〈σ m, σ τ 〉 and 〈σ m, τ 〉 are not conjugate

TABLE II. Correspondence between the conjugate classes and
partially synchronous states for N = 15. In the head column, s.g.
stands for subgroups, c.c. stands for conjugacy classes, and p.s.s.
stands for partially synchronous states.

s.g. {e} 〈τ 〉 〈σ 5〉 〈σ 5, τ 〉 〈σ 3〉 〈σ 3, τ 〉 〈σ 〉 〈σ, τ 〉
〈στ 〉 〈σ 5, σ τ 〉 〈σ 3, σ τ 〉
〈σ 2τ 〉 〈σ 5, σ 2τ 〉 〈σ 3, σ 2τ 〉
〈σ 3τ 〉 〈σ 5, σ 3τ 〉
〈σ 4τ 〉 〈σ 5, σ 4τ 〉

c.c. {e} 〈τ 〉 〈σ 5〉 〈σ 5, τ 〉 〈σ 3〉 〈σ 3, τ 〉 〈σ 〉 〈σ, τ 〉
p.s.s. (15)p (8)h (5)p (3)h (3)p (2)h (1)p

∼= (1)h

and, therefore, the related partially synchronous states are
different. For the former, the synchronous manifold is con-
strained by xi(t ) = xm−i+2(t ) with i ∈ {1, · · ·, m

2 + 1} in the
short chain (m)p. Substituting these constrains into Eq. (2),
we have

ẋ1 = F(x1) + 2ε[H(x2) − H(x1)],

ẋi = F(xi ) + ε[H(xi+1) + H(xi−1) − 2H(xi )],

ẋ m
2 +1 = F

(
x m

2 +1
) + 2ε

[
H

(
x m

2

) − H
(
x m

2 +1
)]

. (3)

That is, we get a short chain of m
2 + 1 identical oscillators

with end oscillators 1 and m
2 + 1 subjected to no-flux bound-

ary conditions and we denote the chain by ( m
2 + 1)nf. The

desynchronized ( m
2 + 1)nf then gives rise to the dynamics

of partially synchronous state 〈σ m, σ τ 〉 of (N )p on its syn-
chronous manifold. For the latter, its synchronous manifold
requires xi(t ) = xm−i+1(t ) with i ∈ {1, · · ·, m

2 } and, conse-
quently, Eq. (2) yields a chain of m

2 oscillators with open
boundary conditions, denoted as ( m

2 )o and obeying

ẋ1 = F(x1) + ε[H(x2) − H(x1)],

ẋi = F(xi ) + ε[H(xi+1) + H(xi−1) − 2H(xi )],

ẋ m
2

= F
(
x m

2

) + ε
[
H

(
x m

2 −1
) − H

(
x m

2

)]
. (4)

Similarly, desynchronized ( m
2 )o yields the partially syn-

chronous state 〈σ m, τ 〉 of (N )p.
However, for odd m, the subgroups 〈σ m, τ 〉 and 〈σ m, σ τ 〉

are conjugate and therefore, 〈σ m, τ 〉 and 〈σ m, σ τ 〉 represent
the same states. The synchronous manifold requires xi(t ) =
xm+2−i(t ) with i ∈ {1, · · ·, m+1

2 }, which leads to a chain of m+1
2

oscillators

ẋ1 = F(x1) + 2ε[H(x2) − H(x1)],

ẋi = F(xi ) + ε[H(xi+1) + H(xi−1) − 2H(xi )],

ẋ m+1
2

= F
(
x m+1

2

) + ε
[
H

(
x m−1

2

) − H
(
x m+1

2

)]
. (5)

Note here the end oscillators 1 and m+1
2 obey the no-flux and

the open boundary conditions, respectively. Accordingly, we
classify the chain as the one with hybrid boundary conditions
and denote it as ( m+1

2 )h. Likewise, the desynchronized ( m+1
2 )h

describes the partially synchronous states 〈σ m, τ 〉 ≡ 〈σ m, σ τ 〉
of (N )p.

B. Stability analysis

According to the above recipe, all partially synchronous
dynamics on their synchronous manifolds in model (1) can
be obtained from Eqs. (2)–(5). However, whether these states
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can be realized depends on the transverse stabilities of their
synchronous dynamics. For 〈σ m〉 described by Eq. (2), if we
treat any m adjacent oscillators as a super-oscillator in (N )p,
their transverse stabilities can be analyzed by following the
formulation for the completely synchronous states [9,10]

δẋi = DF(xi )δxi + ε[DH(xi+1)δxi+1

+ DH(xi−1)δxi−1 − 2DH(xi )δxi]

+ δi,1(e−i2πk/l − 1)DH(xm)δxm

+ δi,m(ei2πk/l − 1)DH(x1)δx1, (6)

where i ∈ {1, · · ·, m} and l = N/m. δi,1 and δi,m are the
Kronecker-δ functions while DF and DH are the Jacobians
of the functions F and H. If the largest transverse Lya-
punov exponents � calculated from Eqs. (2) and (6) for all
k ∈ {1, · · ·, l − 1} are negative, then the partially synchronous
state 〈σ m〉 is transversely stable.

For partially synchronous states 〈σ m, τ 〉 and 〈σ m, σ τ 〉 to
be stable, a two-step transverse stability analysis is indis-
pensable. In the first step, 〈σ m, τ 〉 and 〈σ m, σ τ 〉 should be
transversely stable in the chain (m)p, which can be deter-
mined by transversally perturbing the dynamics described by
Eqs. (3)–(5). In the second step, the realizations of 〈σ m, τ 〉
and 〈σ m, σ τ 〉 in (m)p should be transversely stable in the
original (N )p with the largest transverse Lyapunov exponent
determined by Eq. (6).

Now, we present the transverse stability analysis of the
states 〈σ m, τ 〉 and 〈σ m, σ τ 〉 in the first step. For even m > 2,
the subgroups 〈σ m, σ τ 〉 and 〈σ m, τ 〉 are not conjugate and
therefore the related partially synchronous states are different.
For the former (〈σ m, σ τ 〉), the synchronous manifold is con-
strained by xi(t ) = xm−i+2(t ) with i ∈ {1, · · ·, m

2 + 1} in the
short chain (m)p and the dynamics on the synchronous man-
ifold is described by ( m

2 + 1)nf. Then we transversely perturb
the state and let δxi = xi(t ) − xm−i+2(t ) with i ∈ {1, · · ·, m

2 +
1}. Clearly, δx1 = δx m

2 +1 = 0 and the rest of perturbations
evolve as

δẋ2 = DF(x2)δx2 + ε[DH(x3)δx3 − 2DH(x2)δx2],

δẋi = DF(xi )δxi + ε[DH(xi+1)δxi+1 + DH(xi−1)δxi−1 − 2DH(xi )δxi], i ∈
{

3, · · ·, m

2
− 2

}
,

δẋ m
2 −1 = DF

(
x m

2 −1
)
δx m

2 −1 + ε
[
DH

(
x m

2 −2
)
δx m

2 −2 − 2DH
(
x m

2 −1
)
δx m

2 −1
]
. (7)

Together with Eq. (3), the largest transverse Lyapunov exponent � can be calculated. Negative � suggests the state to be
transversely stable in the chain (m)p.

For the latter (〈σ m, τ 〉), the synchronous manifold requires xi(t ) = xm−i+1(t ) with i ∈ {1, · · ·, m
2 }. Then we perturb the

synchronous dynamics and the evolution of disturbances δxi = xi(t ) − xm−i+1(t ) is described by

δẋ1 = DF(x1)δx1 + ε[DH(x2)δx2 − 3DH(x1)δx1],

δẋi = DF(xi )δxi + ε[DH(xi+1)δxi+1 + DH(xi−1)δxi−1 − 2DH(xi )δxi], i ∈
{

2, · · ·, m

2
− 1

}
,

δẋ m
2

= DF
(
x m

2

)
δx m

2
+ ε

[
DH

(
x m

2 −1
)
δx m

2 −1 − 3DH
(
x m

2

)
δx m

2

]
. (8)

Together with Eq. (4), the largest transverse Lyapunov exponent � can be calculated and negative � singles out the state
transversely stable in the chain (m)p.

For odd m, the partially synchronous states 〈σ m, σ τ 〉 and 〈σ m, τ 〉 are the same. The synchronous manifolds for these states
satisfy xi(t ) = xm+2−i(t ) with i ∈ {1, · · ·, m+1

2 } and the transverse disturbances δxi(t ) = xi(t ) − xm+2−i(t ) evolve according to

δẋ2 = DF(x2)δx2 + ε[DH(x3)δx3 − 2DH(x2)δx2],

δẋi = DF(xi )δxi + ε[DH(xi+1)δxi+1 + DH(xi−1)δxi−1 − 2DH(xi )δxi], i ∈
{

3, · · ·, m − 1

2

}
,

δẋ m+1
2

= DF
(
x m+1

2

)
δx m+1

2
+ ε

[
DH

(
x m−1

2

)
δx m−1

2
− 3DH

(
x m+1

2

)
δx m+1

2

]
. (9)

Together with Eq. (5), the largest transverse Lyapunov expo-
nent � can be calculated and negative � distinguishes the
state transversely stable in the chain (m)p.

C. Numerical simulation

1. Lorenz oscillator

To check the above theory, we set N = 6 and set local
dynamics to be the Lorenz oscillator, i.e., F(x) = [σ (y −
x), rx − y − xz, xy − βz] with σ = 10, r = 28, and β = 1.

The coupling function is taken to be H(x) = (y, 0, 0). For this
type of coupling function, complete synchronization is not
possible for large N , and for small N it requires an intermedi-
ate coupling strength. To investigate the partially synchronous
states, we numerically simulate Eq. (1) using the fourth order
Runge-Kutta algorithm with time step 	t = 0.01. The first
four largest Lyapunov exponents of the coupled oscillators
are presented in Figs. 1(a) and 1(b) for the forward and back-
ward continuations, respectively. In the forward (backward)
continuation, the initial conditions of all oscillators for the
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FIG. 1. Simulation of coupled identical Lorenz oscillators with σ = 10, r = 28, β = 1, and N = 6. The first four largest Lyapunov
exponents against the coupling strength ε for the forward continuation in panel (a) and the backward continuation in panel (b); the trajectories
of oscillators in the x-z plane for equilibria “ABABAB” (open symbols) at ε = 5.8 and periodic “ABABAB” (solid symbols) at ε = 12
in panel (c), equilibria “ABAABA” at ε = 12 and periodic “ABAABA” at ε = 13 in panel (d), equilibria “ABACDC” at ε = 20 and periodic
“ABACDC” at ε = 23 in panel (e). The vertical dash lines in panels (a) and (b) denote the boundaries of stability diagrams of different partially
synchronous states “ABABAB,” “ABACDC,” and “ABAABA.” The locations of these dashed lines are numerically obtained by reading the final
states of oscillators in the forward and the backward continuations. The numbers 1–6 in different colors in panels (c–e) indicate the positions
of oscillators 1-6 at an arbitrary instant.

first parameter set are randomly assigned. Then, the coupling
strength is increased (decreased) with 	ε = 0.02 and the final
states of the model are used as initial conditions for the next
coupling strength. By monitoring the dynamics such as the
phase portraits and time series, we can identify three types
of partially synchronous states, “ABABAB,” “ABACDC,” and
“ABAABA,” whose stability regimes are depicted in Figs. 1(a)
and 1(b). As shown, different stable partially synchronous
states may coexist at the same coupling strength. To get more
information on the dynamics of these partially synchronous
states, we consider their trajectories in the x-z plane and
the snapshots of oscillators. Figure 1(c) shows the equilib-
rium “ABABAB” at ε = 5.8 and the periodic “ABABAB”
at ε = 12. As shown, six oscillators organize themselves
into two groups and oscillators in the same group are in
complete synchronization. Furthermore, the state “ABACDC”
contains four different trajectories in Fig. 1(d) and the state
“ABAABA” contains two different trajectories in Fig. 1(e).
Different from the phase-locked states determined by the H/K
theorem where all oscillators are in the same orbit [24,25], the
partially synchronous states in this work may contain different

trajectories and oscillators in the same group are in complete
synchronization.

Moreover, different modules are recognized in building
up the patterns of these partially synchronous states. For
example, the module “AB” in “ABABAB,” and the module
“BACD” in “ABACDC.” For the state “ABAABA,” there
are two modules “ABA” and “AB” at different levels. These
modules form partially synchronous states through the sym-
metrical operations of the rotation and the reflection.

The analysis on the conjugacy classes of subgroups of
D6 gives rise to five possible partially synchronous states in
model (1) with N = 6, 〈σ 2〉 represented by “ABABAB,” 〈σ 3〉
by“ABCABC,” 〈σ 3, τ 〉 by “ABAABA,” 〈τ 〉 by “ABCCBA,”
and 〈στ 〉 by “ABACDC.” The dynamics of these states on
their synchronous manifolds can be determined by investi-
gating the short chains, (2)p, (3)p, (2)h, (3)o, and (4)nf, and
whether they can be realized depends on their transverse
stabilities. In Fig. 2(a), we show the bifurcation diagram of
the short chain (2)p where the largest transverse Lyapunov
exponent � is color-encoded with red (green) denoting � < 0
(� > 0). We define the departure between oscillators as
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FIG. 2. Simulation of coupled identical Lorenz oscillators with
σ = 10, r = 28, β = 1, and N = 6. The bifurcation diagrams for the
chain (2)p in panel (a), (3)p in panel (b), and (2)h in panel (c) with red
(green) denoting the largest transverse Lyapunov exponent � < 0
(� > 0). The departures between oscillator pairs for the chain (2)p

in panel (d), (3)p in panel (e), and (2)h in panel (f).

〈|z1 − z2|〉 with 〈·〉 designating the time average. As shown in
Fig. 2(d), the chain (2)p supports the synchronous state “AA”
(〈|z1 − z2|〉 = 0) and the desynchronous state “AB” (〈|z1 −
z2|〉 
= 0). The former corresponds to the complete synchro-
nization in (6)p while the latter to the state “ABABAB.” As
shown in Figs. 2(a) and 2(d), the state “ABABAB” is sta-
ble for ε ∈ (4.7, 19) while the complete synchronization is
transversely unstable, which are in agreement with Fig. 1. For
the chain (3)p, the bifurcation diagram with color-encoded
� is presented in Fig. 2(b) while 〈|zi − z j |〉 are plotted in
Fig. 2(e). As shown, the desynchronous state “ABC” in (3)p

is transversely stable for ε ∈ (8, 10) though its counterpart
“ABCABC” in (6)p is not observed in Fig. 1. Actually, the
state “ABCABC” in (6)p can be realized by numerically sim-
ulating model (1) with appropriate initial conditions. For the
state “ABAABA” in (6)p, its dynamics on the synchronous
manifold is described by the desynchronous state “AB” in the
chain (2)h. As shown in Figs. 2(c) and 2(f), the state “AB’
is transversely stable for ε ∈ (10, 30). However, the two-step
stability of 〈σ 3, τ 〉 requires further transverse stability of the
state “AAB” in (3)p, which is satisfied for ε ∈ (10, 18) as
shown in Figs. 2(b) and 2(e). Combining these two stability
regimes together, we know that the state “ABAABA” in the
chain (6)p is transversely stable for ε ∈ (10, 18), which is
consistent with Fig. 1.

Figures 3(a) and 3(d) show the results for the short chain
(3)o. The desynchronous state “ABC” is transversely unstable
and, correspondingly, the partially synchronous state “ABC-
CBA” (〈στ 〉) in (6)p can not be realized. In contrast, the
partially synchronous state “ABA” in (3)o is transversely sta-
ble for ε ∈ (10, 18), which refers to the state “ABAABA” in
the chain (6)p. For the short chain (4)nf where the desyn-
chronous state “BACD” refers to the partially synchronous
state “ABACDC” in (6)p, we present the results for both
forward and backward continuations in Figs. 3(b), 3(e) and
Figs. 3(c), 3(f), respectively. As shown, the state “BACD”
is transversely stable for ε ∈ (19.5, 25) in the forward

FIG. 3. Simulation of coupled identical Lorenz oscillators with
σ = 10, r = 28, β = 1, and N = 6. The bifurcation diagrams for the
chain (3)o in panel (a), (4)nf with forward continuation in panel (b),
and (4)nf with backward continuation in panel (c) with red (green)
denoting the largest transverse Lyapunov exponent � < 0 (� > 0).
The departures between oscillator pairs for the chain (3)o in panel
(d), (4)nf with forward continuation in panel (e), and (4)nf with
backward continuation in panel (f).

continuation while in the backward continuation it is trans-
versely stable for ε ∈ (18, 30). Note that the same partially
synchronous states may allow for different dynamics even at
the same coupling strength. For instance, both the periodic
dynamics in Fig. 3(b) and the chaotic dynamics in Fig. 3(c)
are displayed at ε = 24 for the state “ABACDC.”

2. Rössler oscillator

Now we consider the local dynamics to be the Rössler os-
cillator, i.e., F(x) = [−y − z, x + ay, b + (x − c)z] with a =
0.175, b = 0.4, and c = 8.5. We set N = 6. The coupling
function is taken to be H(x) = (x, y, z), which has been al-
ready investigated in a different way in Ref. [15]. For this
type of coupling function, the complete synchronization may
be reached at around ε > 0.088 for N = 6. Figures 4(a) and
4(b) show the first four largest Lyapunov exponents of the
coupled oscillators for the forward and backward continu-
ations, respectively. In these two bifurcation scenarios, we
may identify four partially synchronous states, “ABCBAC,”
“ABAABA,” “ABABAB,” and “ABACDC,” with their stabil-
ity regimes being depicted in Figs. 4(a) and 4(b). Compared
with the case of Lorenz oscillators, there exist large parameter
regimes which do not support partially synchronous states.
The trajectories of these partially synchronous states and the
corresponding snapshots of oscillators are presented in the
rest of Fig. 4. Interestingly, for certain partially synchronous
states, all oscillators share a same trajectory on which oscil-
lators keep a fixed phase difference between them, for which
the H/K theorem might be applied. For example, the state
“ABCBAC” at ε = 0.0052 in Fig. 4(c) has adjacent oscillators
with phase differences of T/3 on a period-3 trajectory with
the period being T , while the state “ABABAB” at ε = 0.021
in Fig. 4(e) has adjacent oscillators with phase differences of
T/2 on a period-2 trajectory. However, for other two partially
synchronous states, oscillators organize themselves into two

034202-6



HIERARCHY OF PARTIALLY SYNCHRONOUS STATES IN … PHYSICAL REVIEW E 108, 034202 (2023)

0.08

FIG. 4. Simulation of coupled identical Rössler oscillators with a = 0.175, b = 0.4, c = 8.5, and N = 6. The first four largest Lyapunov
exponents against the coupling strength ε for the forward continuation in panel (a) and the backward continuation in panel (b); The trajectories
of oscillators in the x-y plane for “ABCABC” at ε = 0.0052 in panel (c), “ABAABA” at ε = 0.0075 in panel (d), “ABABAB” at ε = 0.021
in panel (e), and “ABACDC” at ε = 0.09 in panel (f). The vertical dashed lines in panel (a, b) denote the boundaries of stability regimes of
different partially synchronous states “ABCABC,” “ABAABA,” “ABABAB,” and “ABACDC.” The numbers 1–6 in different colors in panels
(c–f) indicate the positions of oscillators 1–6 at an arbitrary instant.

groups and each group of oscillators share a same trajectory.
Figure 4(d) shows the state “ABAABA” at ε = 0.021. As
shown, there are two groups of oscillators falling onto two
different period-3 trajectories, one group consisting of four
oscillators in the complete synchronization while the other
consisting of only two synchronized oscillators. Figure 4(f)
shows the state “ABACDC” at ε = 0.09 where four oscilla-
tors fall onto one period-2 trajectory and two others onto the
other period-2 trajectory. Note that in the state “ABACDC,”
each group of oscillators are further partitioned into two sub-
groups which have phase differences of T/2 on the period-2
trajectories.

Following the above protocol, the stabilities of possible
partially synchronous states can be investigated by analyzing
the transverse stability of the dynamics on the short chains,
(2)p, (3)p, (2)h, (3)o, and (4)nf. Figure 5(a) shows 〈|z1 − z2|〉
against ε in the forward continuation where the largest trans-
verse Lyapunov exponent � is color-encoded with red (green)
denoting � < 0 (� > 0). As shown, the desynchronous state
“AB” (〈|z1 − z2|〉 
= 0), denoting the state “ABABAB,” is
transversely stable in the range ε ∈ (0.019, 0.027), which
is compatible with Fig. 4. Similarly, we can identify the
state “ABCBAC” with all 〈|zi − z j |〉 being nonzero in (3)o

[Fig. 5(b)], the state “ABAABA” with nonzero 〈|z1 − z2|〉
in (2)h [Fig. 5(c)], the state “ABCCBA” with all 〈|zi − z j |〉

being nonzero in (3)o [Fig. 5(d)], and the state “ABACDC”
with nonzero 〈|z1 − z3|〉 and 〈|z1 − z4|〉 in (4)nf [Fig. 5(e)].
In comparison with Fig. 4, we find that the analyses on the
transverse stabilities of the dynamics on the short chains pro-
vide more accurate information on the stability regimes of
partially synchronous states, for example the existence of sta-
ble “ABCABC” at around ε ∈ (0.022, 0.025) [see Fig. 5(b)]
and stable “ABCCBA” at large ε [see Fig. 5(d)], which are not
observed in Fig. 4.

D. Hierarchy of partially synchronous states

The recipe proposed above suggests a hierarchical orga-
nization of partially synchronous states in (N )p, which is
essentially the inclusion relation among subgroups of DN .
Take the partially synchronous states 〈σ m〉 and 〈σ m, τ 〉 as an
example. The inclusion relation 〈σ m〉 ⊂ 〈σ m, τ 〉 indicates that
we may obtain 〈σ m, τ 〉 by enforcing extra reflection symmetry
to the state 〈σ m〉. Likewise, 〈σ m, τ 〉 may give rise to 〈σ m/2, τ 〉
for even m due to 〈σ m〉 ⊂ 〈σ m/2, τ 〉. Using the inclusion re-
lations among subgroups of DN as directed links, partially
synchronous states of (N )p organize themselves into a hier-
archical network. In Fig. 6, we draw the hierarchical networks
for N = 12 and N = 15, where the nodes refer to the partially
synchronous states (conjugacy classes) and the directed links
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FIG. 5. Simulation of coupled identical Rössler oscillators with a = 0.175, b = 0.4, c = 8.5, and N = 6. The departures between oscillator
pairs, 〈|zi − z j |〉, for the chain (2)p in panel (a), (3)p in panel (b), (2)h in panel (c), (3)o in panel (d), and (4)nf in panel (e).

show the inclusion relations between states. We include the
desynchronous state {e}, as well as the complete synchronous
state 〈σ 〉, in the network. For clarity, the direct inclusion rela-
tion between two conjugacy classes is not shown if there exist
paths between them with the path length larger than 1. The
short chains with distinct boundary conditions, which repre-
sent the dynamics of the corresponding partially synchronous
states on their synchronous manifolds, are also included as
the subscripts. Calibrating the degree of synchronization for
partially synchronous states as the maximum number of os-
cillators in the same synchronous cluster, the hierarchical
network clearly shows that downstream partially synchronous
states are more synchronous than the upstream ones. Ad-
ditionally, due to the correspondence between the partially
synchronous states and desynchronized short chains, it is ob-
vious that, along directed paths, chains describing partially
synchronous states get shorter and shorter. In other words,
downstream short chains with various boundary conditions
can be obtained from upstream chains after suitable symme-
try considerations. Take, for example, the path 〈σ 6〉(6)p

→
〈σ 6, τ 〉(4)nf

→ 〈σ 3, τ 〉(2)h
in Fig. 6(a). In the chain (6)p, the

state “ABCDEF” represents the dynamics of the partially syn-
chronous state 〈σ 6〉 on its synchronous manifold, “ABCDCB”
the synchronous dynamics of 〈σ 6, τ 〉(4)nf

, and “ABBABB”

the synchronous dynamics of 〈σ 3, τ 〉(2)h
. Actually, it is these

downstream short chains that act as the modules in the pattern
formation of partially synchronous states.

IV. CONCLUSIONS

In this work, we have proposed a general theory on the
partially synchronous states in a ring of locally coupled iden-
tical oscillators. We related a partially synchronous state to
a subgroup of the dihedral group DN and classified partially
synchronous states with conjugacy classes of the subgroups
of DN . We then provided a recipe to search for all possible
partially synchronous dynamics by reducing a ring of oscil-
lators to shorter chains of oscillators with different boundary
conditions and presented a two-step transverse stability anal-
ysis on their dynamics on the synchronous manifold. Based
on the theory, we found that the partially synchronous states
organized themselves into a hierarchical network, which sug-
gests the existence of modules in the pattern of partially
synchronous states. Along directed paths in the network, down
stream partially synchronous states are more synchronous
than upstream ones. In addition, researchers always focused
on coupled oscillators with periodic boundary conditions
while chains of oscillators with other boundary conditions
such as open or no-flux boundary conditions are seldom
investigated [37]. However, as shown in this work, partial
synchronization on a ring of coupled oscillators can be illus-
trated by investigating the dynamics on chains of oscillators,
which also means that the partial synchronization in chains
of identical oscillators with different boundary conditions can
be solved by mapping them back to a ring of oscillators.
The relation between the dynamics on a ring of oscillators
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FIG. 6. The hierarchy of conjugate classes of subgroups of the dihedral groups and corresponding partially synchronous states for (a) N =
12 and (b) N = 15. The symbol ∼= denotes that two related conjugate classes, e.g., 〈σ 2〉(2)p

and 〈σ 2, τ 〉(2)nf
, correspond to the same partially

synchronous states. The arrow indicates that for any subgroup H in a conjugate class at the arrow tail, there exits a subgroup K in the conjugate
class at the arrow head, which satisfies that H is contained in K . Meanwhile, it also indicates that the partial synchronization states at the arrow
head are special cases of those at the arrow tail. Arrows with dashed lines explicitly distinguish connections from the partial synchronous states
corresponding to conjugated classes of subgroups without the elementary reflection τ to the partial synchronous states corresponding to those
with τ .

and on chains of oscillators is worth investigating in the
future.

To be noted, the theory developed in this work applies to
a model possessing the symmetry described by the dihedral
group DN and, therefore, cannot be exploited to classify par-
tially synchronous states in complex networks. Nevertheless,
the theory may be generalized to a ring of nonlocally coupled
identical oscillators which also possessing DN symmetry. In a
ring of nonlocally coupled oscillators, the connection between
partially synchronous states and the conjugacy classes of sub-
groups of DN is the same. However, to search for all possible
partially synchronous states and to investigate their transverse
stabilities, Eqs. (3)–(9) have to be modified accordingly to be
in more complicated form.
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APPENDIX: BRIEFS ON THE DIHEDRAL GROUP DN

The dihedral group DN (N � 3) of order 2N is often called
the group of symmetries of a regular N-polygon, which arises
frequently in arts and nature. For example, Mercedes-Benz’s
logo has D3 as a symmetry group and snowflakes have D6

symmetry. The group DN consists of 2N elements: e, σ, · · ·,

σ N−1, τ, στ, · · ·, σ N−1τ . The element σ k (k ∈ {0, · · ·,
N − 1}) refers to a 2kπ/N in-plane rotation about the center,
and σ 0 ≡ σ N is the identity e. The element σ kτ refers to a
reflection with respect to an in-plane axis through the center.
For a regular N-polygon, there are N reflection axes. For
odd N , each reflection axis connects the midpoint of one
side to the opposite vertex. For even N , N/2 reflection axes
connect the midpoints of opposite sides and the other N/2
reflection axes connect opposite vertices. Once the reflection
axis L of τ is specified, the reflection axis of σ kτ can be
acquired by rotating L through 2kπ/N for odd N or kπ/N
for even N . The actions of DN on regular N-polygons with
N = 3 and N = 4 are demonstrated in Figs. 7(a) and 7(b),
respectively. For example, for the square denoted by its four
vertices [x1, x2, x3, x4], the action of σ on the square yields
[x4, x1, x2, x3], the reflection τ gives rise to [x4, x3, x2, x1],
and the combined operation στ produces [x1, x4, x3, x2]. All
elements of DN can be expressed as successive operations of
σ or τ in some form, therefore σ and τ are called the two
generators of DN . In this regard, the dihedral group DN is
represented as DN = 〈σ, τ |σ N = τ 2 = e, τστ = σ−1〉.

If a subset S of DN is itself a group under the operation
of DN , then S is called a subgroup of DN . Obviously, the
subset {e} and DN are two trivial subgroups of DN . Besides,
there are three types of nontrivial subgroups of DN . The first
type contains only rotation elements, which is the subgroup
of the cyclic group 〈σ 〉, and therefore is represented as 〈σ m〉
with m being a proper factor of N . The second type contains
only reflection elements except for the identity, and likewise
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FIG. 7. The rotation and reflection operations on regular N-polygons for (a) N = 3, an equilateral triangle and (b) N = 4, a square.
Although the labels of the reflection axes in red dashed lines are combinations of successive reflection and rotation operations, the reflection
axes themselves are not supposed to be transformed through the elementary rotation from a particular reflection axis as the labels indicate.

is represented as 〈σ kτ 〉 with 0 � k � N − 1. The third type
contains not only rotation elements but also reflection ones,
and so is represented as 〈σ m, σ kτ 〉 with m being a proper
factor of N and 0 � k � m − 1.

The three types of subgroups may be organized into con-
jugacy classes of subgroups. Two subgroups S1 and S2 are
conjugate if there exists one element g ∈ DN such that S1 =
gS2g−1 with g−1 being the inverse of g. Usually, the conju-
gacy class may be represented by one representative subgroup

within it, such as S1 in the above example. It is clearly that
subgroups 〈σ m〉 with different m are not conjugate and the
conjugacy class 〈σ m〉 contains only one subgroup. Observing
that σ kτσ−k = σ 2kτ , subgroups 〈σ kτ 〉 are readily shown to
belong to the same conjugacy class 〈τ 〉 for odd N while
two different conjugacy classes 〈τ 〉 and 〈στ 〉 for even N .
Similarly, subgroups 〈σ m, σ kτ 〉 can be classified into different
conjugacy classes, 〈σ m, τ 〉 and 〈σ m, σ τ 〉, according to the
odevity of m.
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