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L-based numerical linked cluster expansion for square lattice models
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We introduce a numerical linked cluster expansion for square-lattice models whose building block is an
L-shape cluster. For the spin-1/2 models studied in this work, we find that this expansion exhibits a similar
or better convergence of the bare sums than that of the (larger) square-shaped clusters and can be used with
resummation techniques (like the site- and bond-based expansions) to obtain results at even lower temperatures.
We compare the performance of weak- and strong-embedding versions of this expansion in various spin-1/2
models and show that the strong-embedding version is preferable because of its convergence properties and
lower computational cost. Finally, we show that the expansion based on the L-shape cluster can be naturally used
to study properties of lattice models that smoothly connect the square and triangular lattice geometries.
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I. INTRODUCTION

Strongly correlated quantum lattice models play an im-
portant role in our understanding of unusual properties of
materials, such as insulating behaviors in regimes that would
be metallic in the absence of interactions, magnetism, and
(possibly) high-temperature superconductivity [1–5]. They
are challenging to study analytically because of the absence
of small parameters to carry out perturbative expansions and
because strong correlations and quantum fluctuations preclude
the development of reliable mean-field field theory descrip-
tions. They are also challenging to study computationally
using full exact diagonalization calculations because the size
of the Hilbert space grows exponentially with the number
of lattice sites. A wide range of computational approaches
has been developed to overcome the latter challenge, such as
quantum Monte Carlo (QMC) techniques [6–9], whose appli-
cability is limited by the sign problem [10–12]; the density
matrix renormalization group technique [13–15], most effi-
cient for spin chains; and series expansions methods [16,17],
just to name a few.

Series expansion methods generally contain a small param-
eter, e.g., for the commonly used high-temperature expansions
the small parameter is the inverse temperature [16,17]. Conse-
quently, high-temperature expansions fail to converge at low
temperatures. This failure is independent of the nature of the
low-temperature state, which, e.g., could exhibit short-range
correlations or a slow build-up of correlations as the tem-
perature is lowered. In order to overcome this limitation of
high-temperature expansions, as well as potentially similar
limitations of other expansions involving small parameters
of the Hamiltonian, in Refs. [18–20] it was shown that one
can use numerical linked cluster expansions (NLCEs). NLCEs
allow one to compute the expectation values of extensive
observables per site in the thermodynamic limit adding contri-
butions from increasingly large connected clusters. No small
parameter is assumed a priori when carrying out NLCEs,
but they only converge when the correlations in the system
are smaller or of the same order as the sizes of the clusters

considered. At a fixed temperature when the cluster sizes
exceed the correlation length, NLCE results have been shown
to converge to the thermodynamic limit ones exponentially
fast as the size of the clusters considered is increased [21].

NLCEs have been used to study a wide range of lattice
models in thermal equilibrium to understand properties of
materials [22–35] and of ultracold gases in optical lattices
[36–41]. They have also been used to study entanglement
[42–47], thermodynamic properties of disordered systems
[48,49], observables after equilibration following quantum
quenches [50–56], and quantum dynamics [57–63]. Two im-
portant characteristics of NLCEs that have been explored and
successfully used in the various applications mentioned above
are the freedom to carry out the expansions using different
building blocks, as well as the fact that one can use resumma-
tion techniques to extend the convergence of NLCEs beyond
that provided by the bare sums, namely to regimes in which
the extent of the correlations exceeds the largest clusters con-
sidered.

In this work, we introduce a numerical linked cluster ex-
pansion for square-lattice models whose building block is an
L-shape cluster. The number of clusters (the number of sites
in each cluster) at each order of the L-based NLCE increases
more slowly (more rapidly) than for the site- and bond-based
expansions. Consequently, in the “L expansion” one can in-
clude clusters with more sites than those that can be included
in the “site” and “bond” expansions. On the other hand, the
number of clusters (the number of sites in each cluster) at each
order of the L expansion increases more rapidly (more slowly)
than for the square-based expansion. Consequently, in the
L expansion one can include more clusters than those that
can be included in the “square expansion.” The site, bond,
and square expansions for the square lattice were introduced
and used to study thermodynamic properties of spin-1/2 mod-
els in thermal equilibrium, in Ref. [19]. Remarkably, for the
spin-1/2 models considered here, the L expansion exhibits a
convergence of the bare sums that is either similar or faster
than that of the square expansion. They both converge at
lower temperatures than the site and bond expansions. In
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FIG. 1. Lattice geometry studied in this work. The diagonal
bonds allow us to study models that smoothly connect the square
and triangular lattices.

addition, for the L expansion one can use resummation tech-
niques to extend the convergence beyond that of the bare
sums. This is something that, so far, has been consistently
achieved only in the context of the site- and bond-based
expansions. We compare the performance of weak- and
strong-embedding versions of the L expansion and show that
the strong-embedding version is the better choice because
of its convergence properties and lower computational cost.
Finally, we show that the L expansion can be used to study
properties of lattice models that smoothly connect the square
and triangular lattice geometries.

The presentation is organized as follows. In Sec. II, we
introduce the spin-1/2 model Hamiltonians studied in this
work. A short summary of NLCEs, the resummation tech-
niques used, as well as the observables that we study and how
we gauge the convergence of the NLCE results is provided in
Sec. III. The L expansion is introduced in Sec. IV. The numer-
ical results obtained for spin-1/2 Ising, XX, and Heisenberg
models are reported in Secs. V, VI, and VII, respectively. A
summary of our results is presented in Sec. VIII.

II. MODEL HAMILTONIANS

We consider three translationally invariant spin-1/2
Hamiltonians in an infinite square lattice (see Fig. 1). The first
one is the Ising model in a transverse field,

Ĥ = J
∑
〈i,j〉

Ŝz
i Ŝz

j + g
∑

i

Ŝx
i , (1)

where Ŝz
i (Ŝx

i ) are the z (x) spin- 1
2 operators at site i, 〈i, j〉

denotes pairs of nearest neighbors sites in the lattice, and we
set J = 1 as our energy scale. For g = 0, the Hamiltonian in
Eq. (1) is that of the classical Ising model, which is exactly
solvable [64] and whose solution we will use to quantify the
convergence of the L expansion. The classical Ising model
develops long-range order below a critical temperature Tc ≈
0.57. For g �= 0, the Hamiltonian in Eq. (1) is that of the

FIG. 2. Sketch of the phase diagram, on the T -g plane, for
the transverse-field Ising model in the square lattice. In the phase
diagram, Tc ≈ 0.57 and gc ≈ 0.76.

quantum transverse-field Ising model, which is not exactly
solvable but has been studied in detail using numerical simu-
lations. At zero temperature, this model exhibits two extended
phases, an ordered phase for g < gc ≈ 0.76 and a disordered
phase for fields g > gc [65,66]. For fields below the critical
field gc, the transverse field Ising model develops long-range
order below a critical temperature that depends on the value of
g [67]. A sketch of the phase diagram for this model is shown
in Fig. 2.

The other two models that we study are the XX (also re-
ferred to sometimes as XY) and Heisenberg models

Ĥ = J
∑
〈i,j〉

(
Ŝx

i Ŝx
j + Ŝy

i Ŝy
j + �Ŝz

i Ŝz
j

)
, (2)

where � = 0 corresponds to the XX model and � = 1 corre-
sponds to the Heisenberg model. As for the Ising case, we
set J = 1 to be our energy scale. The XX model has U (1)
symmetry and the Heisenberg model has SU (2) symmetry. As
a result, because of the Mermin-Wagner theorem, these mod-
els only develop long-range order at zero temperature. The
XX model exhibits a Berezinskii-Kosterlitz-Thouless (BKT)
transition [68,69] at TKT ≈ 0.343 [70–72], below which the
system exhibits power-law decaying correlations. The XX
and Heisenberg models in the square lattice are not exactly
solvable, but they can be efficiently simulated using QMC
techniques because they are not frustrated and, hence, do not
suffer from the sign problem. Consequently, their properties
can be computed with high accuracy.

In addition to studying the spin-1/2 transverse-field Ising,
XX, and Heisenberg models in the square lattice geometry,
we study the thermodynamic properties of those models as
they transition between the square and triangular lattice ge-
ometries. This can be done by adding bonds along one of the
diagonals of the square lattice, as shown in Fig. 1. We label
the strength of the interactions along those bonds as JD. For
JD = 0 we have the square lattice geometry, while for JD = J
we have the triangular lattice geometry. For JD → ∞, our
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model Hamiltonians become those of disconnected chains,
so studying JD > J (which we do not do here) allows one
to explore the dimensional crossover between the triangular
lattice and disconnected spin-1/2 chains.

III. A SHORT SUMMARY OF NLCES

In NLCEs (see Ref. [73] for a pedagogical introduction)
extensive observables per lattice site O/N , in an arbitrary
lattice with N sites, can be computed as the sum over the con-
tributions from the connected clusters that can be embedded
on the lattice:

O/N =
∑

c

L(c) × WO(c), (3)

where L(c) is the embedding factor, which counts the number
of ways per site that cluster c can be embedded on the lattice,
and WO(c) denotes the weight of observable O in cluster c.
The weights in Eq. (3) are calculated using the inclusion-
exclusion principle:

WO(c) = O(c) −
∑
s⊂c

WO(s), (4)

with WO(c) = O(c) for the smallest cluster. This recursive
relation ensures that the weight of cluster c includes only
the contribution to the observable arising from correlations
between all the sites in the particular geometry of cluster c.
The expectation value O(c) of an observable for cluster c,
with a many-body density-matrix operator ρ̂c, is calculated
using full exact diagonalization:

O(c) = Tr(Ô ρ̂c). (5)

The latter is the bottleneck of the NLCE computations,
because the sizes of the matrices involved in the full ex-
act diagonalization calculations—which we carry out using
LAPACK—scale exponentially with the sizes of the clusters
considered. Identifying all clusters that give the same ex-
pectation value O(c), which we call topologically equivalent
clusters, significantly reduces the computational cost of eval-
uating the sum in Eq. (3).

The convergence of the series in Eq. (3) is automatically
guaranteed for lattices with a finite number of sites N . When
all subclusters are included, using the relation in Eq. (4) and
reordering the terms, one gets O(c) [73]. However, to obtain
the thermodynamic limit (N → ∞) result, which is the limit
of interest to describe the properties of materials, the series
must be truncated after including a finite number of terms. The
truncated sum is expected to provide an accurate prediction
for the thermodynamic limit result when the extent of the
connected correlations involved for the given observable is
smaller than, or of the same order as, the sizes of the clusters
included in the sum. In that regime, one expects the weights
WO(c) to decrease rapidly with increasing the size of the clus-
ters. In fact, an exponential convergence has been observed in
unordered phases in thermal equilibrium [21].

A. Building blocks

A striking flexibility of NLCEs is that, for any given lattice
geometry, one can use different building blocks to carry out

different expansions. For the square lattice, in Ref. [19] it
was shown that one can use bonds, sites, and corner-sharing
squares as building blocks for NLCEs to study thermal equi-
librium properties of spin models. More recently, a rectangle
expansion was used to study quantum dynamics [62,63]. The
number of clusters in the bond and site expansions grows
very rapidly with the number of bonds and sites, respectively,
in the clusters. As a result, because of the large number of
clusters, the series for spin-1/2 models needs to be truncated
at cluster sizes that are smaller than those that can be fully
diagonalized in current computers. On the other hand, the
square or rectangle expansions exhibit a number of clusters
that grows slowly with the number of sites in the clusters.
This results in a number of clusters that is not too large for
the cluster sizes that can be fully diagonalized for spin-1/2
models in current computers. In this case, the limit in the
number of terms in the expansion is set by the largest clusters
that one can diagonalize. As we will show, each expansion
has its advantages and disadvantages, which are associated to
(i) the convergence of the bare sums and (ii) the possibility of
using resummation techniques.

B. Resummations

Beyond the regime in which the truncated bare sums
converge, one can use resummation techniques to make pre-
dictions in regimes in which the extent of the correlations
exceeds the cluster sizes. The two most commonly used
resummation techniques are Wynn’s and Euler algorithms
[18–20].

To implement resummation techniques, one needs to group
together the contributions of all clusters that share a particular
property, e.g., that have n sites, or n bonds, or n squares,

Sn =
∑
{cn

�}
L

(
cn
�

) × WO
(
cn
�

)
. (6)

Using those partial sums, one can rewrite the truncated sums
for Eq. (3) as

Ol/N =
l∑

n=1

Sn. (7)

The resummation algorithms utilize the finite sequence {Ol}
to predict the result for Ol→∞, i.e., for the observable in the
thermodynamic limit.

In the Wynn’s (ε) resummation algorithm [18–20], ε (k)
n is

defined as

ε (k)
n = ε

(k−2)
n+1 + 1

ε
(k−1)
n+1 − ε

(k−1)
n

,

with ε (−1)
n = 0, ε (0)

n = On, (8)

where k denotes the number of Wynn resummation “cycles.”
Only even entries ε (2k′ )

n (with k′ an integer) are expected
to converge to the thermodynamic limit result. The new
sequence generated after two cycles has two fewer terms, lim-
iting the maximum possible number of cycles. The estimate
after 2k′ cycles is given by

Wynnk′ (O/N ) = ε2k′
lmax−2k′ . (9)
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where we call k′ the Wynn resummation “order,” and lmax

is the largest value of l for our sequence {Ol}. One can see
that the larger the value of lmax the higher the order at which
Wynn’s resummation algorithm can be carried out; hence, the
better the chance of extending the NLCE convergence beyond
that of the bare sums.

Another resummation scheme that can accelerate the con-
vergence of alternating series, i.e., series in which the partial
sums Sn alternate signs, is the Euler transformation. With this
algorithm, the thermodynamic limit result is obtained using
the formula

Eulerk (O/N ) =
lmax−k∑

n=0

Sn + (−1)lmax−k+1
k∑

n=0

1

2n+1
T lmax

k,n ,

where T lmax
k,n =

n∑
j=0

(
n

j

)
Slmax−k+n− j+1. (10)

To improve the outcome of the Euler transformation, one can
vary k as needed.

By comparing the results of different resummation tech-
niques and orders one can gauge whether they are providing
meaningful results.

C. Observables and convergence

We study systems that are in thermal equilibrium at finite
temperature and that are described by the Hamiltonians in
Sec. II. For those systems, we carry out calculations in the
grand-canonical ensemble at zero chemical potential, namely,
given Ĥ and a temperature T , the many-body density matrix
is taken to be

ρ̂ = 1

Z
exp

(
− Ĥ

kBT

)
, (11)

where

Z = Tr

[
exp

(
− Ĥ

kBT

)]
. (12)

In what follows, we set the Boltzmann constant kB = 1.
We report results for a set of three extensive observables.

The total energy per site is

E = 1

N
Tr[Ĥ ρ̂], (13)

the specific heat per site is

Cv = 1

N

Tr(Ĥ2ρ̂ ) − [Tr(Ĥ ρ̂ )]2

T 2
, (14)

and the entropy per site is

S = − 1

N
Tr(ρ̂ ln ρ̂ ) = 1

N
ln Z + E

T
. (15)

To study the convergence of the truncated bare sums for an ob-
servable O in general, we calculate the normalized difference,

�l (O) =
∣∣∣∣Olmax − Ol

Olmax

∣∣∣∣. (16)

If the lth normalized difference �l (O) reaches machine pre-
cision, then we conclude that the NLCE result for the lth and

FIG. 3. Clusters that appear in the first three orders of the
L expansion.

higher orders has converged to the thermodynamic limit result
(within machine precision). For models for which an exact
result for O is known, we replace Olmax in Eq. (16) by the
exact result.

IV. L EXPANSION

In this section we introduce the L expansion, whose build-
ing block is an L-shape cluster. We find that, for the spin-1/2
models studied here, such an expansion shares the advantages
of the square-based NLCE over the site- and bond-based ones,
because the bare sums in the L expansion exhibit a signifi-
cantly better convergence at lower temperatures than the bare
sums of the site and bond expansions (the convergence of
the L expansion is also better in most cases considered than
that of the square expansion). The L expansion also shares
the advantages of the site- and bond-based NLCEs over the
square-based one, because resummation techniques can be
used to significantly extend convergence to temperatures that
are lower than those accessible via the bare sums of any of the
expansions considered.

The clusters appearing in the first three orders of the
L expansion are shown, along with their embedding factors,
in Fig. 3. The first, and smallest, cluster of the L expansion,
which is the same as for the other expansions mentioned, is
the single site. This cluster determines the infinite-temperature
value of various observables, such as the entropy, and consti-
tutes the zeroth order of the L expansion. The second cluster
is the building block of our expansion, an L-shape cluster.
There is only one such cluster per site in the square lattice.
This cluster constitutes the first order of the L expansion. The
second order includes two clusters in which the L building
blocks share a site. As for the corner-sharing square expan-
sion previously mentioned, larger clusters are constructed by
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FIG. 4. (a) A cluster with four Ls that only appears in the weak-
embedding L expansion. (b) A cluster with five Ls that appears both
in the weak-embedding and strong-embedding L expansions.

adding building block clusters that share sites (not bonds) with
previously constructed clusters. Note that the two clusters in
the third order of the expansion have different values of L(c),
c = 3 can be embedded only one way per site while c = 4 has
L(c = 4) = 2 as the two L blocks can be arranged horizontally
or vertically.

The order of the L expansion can be defined to be the num-
ber of L building blocks starting, as mentioned before, from
the zeroth order for the single site. As more L building blocks
are added, one can choose to carry out “weak-embedding”
and “strong-embedding” versions of the L expansion. Those
versions parallel the bond and site expansions, respectively.
In the site expansion, all possible bonds are placed between
existing sites, e.g., in such an expansion there cannot be an
open square cluster (namely, a cluster with four sites forming
a square and only 3 bonds), which is a valid cluster in the bond
expansion [19]. Similarly, in the strong-embedding L expan-
sion, all possible L building blocks must be placed between
existing sites. In other words, a cluster with three sites making
an L without being linked by bonds can only exist in a weak-
embedding version. An example of a cluster with four Ls that
is only present in the weak-embedding L expansion is shown
in Fig. 4(a). The cluster with five Ls shown in Fig. 4(b) then
appears both in the weak- and strong-embedding expansions.
Consequently, the number of clusters increases more slowly
in the strong-embedding L expansion and those clusters end
up being more “compact” than those of the weak-embedding
L expansion.

The total number of clusters in the weak- and strong-
embedding versions of the L expansion are shown in the third
column of Tables I and II, respectively, as functions of the
number of Ls in the clusters—the first column in those tables.
By the total number of clusters we mean the sum of L(c) for
all clusters with any given number of Ls. In order to reduce
the computational cost of the numerical calculations, we start
by finding the clusters that are related by lattice symmetries,
e.g., the last cluster in Fig. 3, which gives the same contri-
bution to thermodynamic quantities as the one with the two
Ls arranged vertically. Only one needs to be diagonalized.
As a second step, we find all clusters that are not related by
lattice symmetries but whose Hamiltonians are the same, we
refer to those clusters as topologically equivalent clusters and
only diagonalize one of them. The second columns in Tables I
and II show the number of topologically inequivalent clusters
for the weak- and strong-embedding versions of the L expan-
sion, respectively.

TABLE I. Total number of clusters (third column) and the
number of topological distinct clusters (second column) in the weak-
embedding L expansion versus the number of Ls in the clusters (first
column).

No. Ls No. topological clusters Total number of clusters

0 1 1
1 1 1
2 2 3
3 6 11
4 19 44
5 68 186
6 256 814
7 1018 3652
8 4162 16 689
9 17 423 77 359
10 74 073 362 671

Comparing the number of topologically distinct clusters
for the L expansion, in Tables I and II, and the number of
topologically distinct clusters for the bond, site, and square
expansions reported in Ref. [19], one can see that, at any given
order, the L expansion contains significantly fewer topologi-
cally distinct clusters than the bond and site expansions, and
significantly more than the square expansion. In addition, the
number of orders that can be calculated for the L expansion
is larger than for the square expansion. Hence, resummation
techniques are more likely to improve the convergence of the
L expansion than that of the square expansion [19,74]. We
show results that indicate that the L expansion provides a
“sweet spot” for NLCE calculations in the square lattice.

The L expansion also makes possible something that none
of the previously mentioned expansions for the square lattice
do. If one adds a bond along the diagonal of each L building
block, then, by changing the strength JD of that bond between
0 and J , one can study models that smoothly connect the
square (JD = 0) and triangular (JD = J) lattice geometries
(see Fig. 5). In fact, for JD = J , the resulting weak-embedding
L expansion is nothing but the corner-sharing triangle expan-
sion introduced in Ref. [19] for the triangular lattice. This can

TABLE II. Total number of clusters (third column) and
the number of topological distinct clusters (second column) in the
strong-embedding L expansion versus the number of Ls in the
clusters (first column).

No. L’s No. topological clusters Total number of clusters

0 1 1
1 1 1
2 2 3
3 6 11
4 18 41
5 61 153
6 202 573
7 700 2162
8 2429 8238
9 8608 31 696
10 30 734 122 986

034126-5



MAHMOUD ABDELSHAFY AND MARCOS RIGOL PHYSICAL REVIEW E 108, 034126 (2023)

FIG. 5. The same clusters as in Fig. 4 after adding a bond (dashed
blue) along the diagonal of each L building block. When all the bonds
have an identical strength, the resulting lattice geometry is that of the
triangular lattice.

be seen by comparing the numbers of clusters in Table I to
those reported in Ref. [19] for the triangle expansion (after
correcting for an incorrect factor of 3 in the table in the latter
reference). The strong-embedding L expansion is then a new
expansion that, for JD = J , can be used to study models in the
triangular lattice.

V. ISING MODELS

In this section, we use the L expansion for Ising models to
explore how our observables of interest behave in the square
lattice as the temperature is changed. We also study how some
of those observables behave as one transitions between the
square and the triangular lattice by changing the strength JD

of the diagonal bonds, and as one transitions between the clas-
sical and quantum regimes by making g �= 0. When available,
we compare our numerical results to exact analytical results.
All the calculations are done in the grand-canonical ensemble
at zero chemical potential, using the density operator written
in Eq. (11).

A. Ising model

On a square lattice, the Ising model [g = 0 in Eq. (1)] was
solved by Onsager in 1944 [64]. As mentioned in Sec. II, this
model exhibits a phase transition between a disordered phase
at T > Tc and an ordered phase at T < T c. In Fig. 6, we show
results of the strong-embedding L expansion for the energy
vs temperature, obtained using clusters with up to 8, 9, and
10 Ls, as well as the exact analytical result. The NLCE
results are indistinguishable from the exact ones, signaling
convergence, at temperatures T � 0.2 and T � 0.8. At those
temperatures, both below and above Tc, we find that the
accuracy of the strong-embedding L expansion increases ex-
ponentially with the order of the expansion. This is shown, at
two temperatures (one above and one below Tc), by the filled
symbols in the inset in Fig. 6. The main panel in Fig. 6 also
shows that, with increasing the order of the strong-embedding
L expansion, the temperatures over which the NLCE and the
exact results agree, i.e., over which the NLCE converges,
approach Tc for temperatures both below and above Tc. For
a model with an unknown finite-temperature phase transition,
such a behavior could be used as a way to identify the critical
region in which the phase transition occurs.

We find that the weak-embedding L expansion exhibits
a behavior that is similar to that of the strong-embedding
L expansion above Tc (see open symbols for T = 1.5 in

0111.0
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-0.5
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0 2 4 6 8 10
l
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10-4

10-2

1

Δ l(E
)

T = 0.1
T = 1.5

FIG. 6. Energy per site vs T for the strong-embedding L ex-
pansion, with up to 8, 9, and 10 Ls, and the exact energy for the
square lattice Ising model. (inset) Normalized difference between
the energy obtained using the strong-embedding (filled symbols) and
weak-embedding (empty symbols) L expansions and the exact result
plotted as functions of the order of the L expansion. We show results
for two temperatures, one above and one below Tc.

the inset in Fig. 6). Below Tc, like the bond and site ex-
pansions, the results from the weak-embedding L expansion
become increasingly different from the exact ones as the
order of the expansion increases (see open symbols for
T = 0.1 in the inset in Fig. 6). This behavior of the
weak-embedding L expansion, together with the fact that it
is computationally more costly than the strong-embedding
L expansion because it has many more clusters, makes the
strong-embedding L expansion our expansion of choice for
the Ising model in the calculations that follow. That said, we
should mention at T > Tc and sufficiently away from Tc, we
do find that the weak-embedding L expansion is slightly more
accurate than the strong-embedding L expansion. This can be
seen at T = 1.5 in the inset in Fig. 6 if one compares the errors
at the highest orders of both expansions.

In Fig. 7, we compare the strong-embedding L expansion
and exact results for the specific heat. Like for the energy in
Fig. 6, the strong-embedding L expansion for Cv converges
at both sides of Tc, which is marked by the divergence of the
exact result. Figure 7 also shows that the region over which
the strong-embedding L expansion converges improves with
increasing the order of the expansion. In Fig. 7, we also plot
results for Cv obtained in Ref. [19] using the square expansion.
They too converge at low and high temperatures, but not as
close to Tc as the strong-embedding L expansion does. In the
inset in Fig. 7, we compare results for the strong-embedding
L expansion and the site expansion with the exact results for
T > Tc, which is the only regime in which the site expan-
sion converges. They are all similar, though the results for
the site expansion follow the exact results to slightly lower
temperatures than those of the L expansion. Overall, one can
conclude from the results in Fig. 7 that for the Ising model the
strong-embedding L expansion is a better choice than the site
expansion because the L expansion converges below Tc, and
than the square expansion because the L expansion converges
over a wider range of temperatures.
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FIG. 7. Specific heat (Cv) vs T for the strong-embedding
L expansion with up to 9 and 10 Ls, the square expansion from
Ref. [19] with up to 4 and 5 squares, and the exact result for the
square lattice Ising model. The divergence in the exact result marks
Tc. Inset: Results for the strong-embedding L expansion for T > Tc,
compared to those of the site expansion with up to 15 and 16 sites
[19], and with the exact result.

Like on the square lattice, the Ising model is exactly solv-
able on the triangular lattice [75–77]. For an antiferromagnetic
coupling (J > 0), our case of interest here, the triangular
lattice Ising model does not develop long-range order at any
temperature. This is a consequence of geometric frustration
and results in a massive degeneracy of the ground state, which
exhibits an entropy per site S ≈ 0.323 and power-law decay-
ing spin correlations [75].

As mentioned in Sec. II, we can study a model that
smoothly connects the Ising model on the square and triangu-
lar lattice geometries, via adding a diagonal bond of strength
JD to each square in the square lattice and carrying out an
L expansion. So long as JD < J , such a model will still order,
because the diagonal bond is weaker and cannot prevent anti-
ferromagnetic order, but it orders below a critical temperature
that decreases as JD approaches J . Consequently, the ground
state of that model is nondegenerate so long as JD < J . In
Fig. 8, we show the entropy per site as a function of the
temperature for different values of JD, as obtained using the
strong-embedding L expansion with up to 9 (thin continuous
lines) and 10 (thick lines) Ls. In Fig. 8, we also show the exact
results for the square and triangular lattice geometries. At the
lowest temperatures, the entropy can be seen to vanish for all
values of JD < J and to be nonzero for JD = J . The numerical
results for the entropy of the square lattice Ising model agree
with the exact results away from Tc, as seen before for the
energy and the specific heat. Remarkably, because of the lack
of long-range order, the numerical results for the triangular
lattice Ising model are very close to the exact ones at all
temperatures, and exhibit a slightly larger entropy at T = 0.
In the inset in Fig. 8, we show that the difference between
the low-temperature results for the entropy predicted by the
strong-embedding L expansion and the exact results is con-
sistent with a 1/l decrease with increasing the order l of the
L expansion (the straight line shows 1/l behavior).
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T
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0.2

0.4

0.6

S

Exact Square
JD=0.5
JD=0

0.01 0.1 1 10
T
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0.2

0.4

0.6

S

Exact Triangle
JD=1
JD=0.9

1 10l

0.1

∆ l(S
)

T=0.01

FIG. 8. Entropy per site (S) for the strong-embedding
L expansion as a function of the temperature for different
values of the strength of diagonal bonds JD. The thin and thick lines
show results for up to 9 and 10 Ls, respectively. Exact results are
reported for the square, i.e., JD = 0, and triangular, i.e., JD = 1,
lattices. (inset) Normalized difference between the entropy obtained
for the triangular lattice using the L expansion and the exact result at
T = 0.01 plotted as a function of the order of the L expansion. The
straight line is a guide to the eye and shows 1/ł behavior.

B. Transverse-field Ising model

To investigate whether the observed convergence below Tc

for the classical Ising model is extended to quantum models
with finite-temperature phase transitions, we study the trans-
verse field Ising model in the square lattice. This model is
described by the Hamiltonian in Eq. (1) with g �= 0. A sketch
of its phase diagram is shown in Fig. 2.

In Fig. 9, we show the highest three orders of the strong-
embedding L expansion for the energy vs temperature for
different values of the transverse field strength g. We note
that the highest order of the L expansion that we are able to
calculate for this model is the lowest of all models considered

-0.4

-0.2

0

E

5 L
6 L
7 L

0.01 0.1 1 10
T

-0.8

-0.6

-0.4

-0.2

0

E

0.1 1 10
T

2.0 = g1.0 = g

5.1 = g5.0 = g

)b()a(

)c( )d(

FIG. 9. Energy E vs T for TFIM on the square lattice with
(a) g = 0.1, (b) g = 0.2, (c) g = 0.5, and (d) g = 1.5. The highest
three orders of the L expansion computed are shown in each panel.
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in this work. It is lower than for the classical Ising model,
which is diagonal in the computational basis, because we need
to diagonalize the Hamiltonian of the transverse field model
in each cluster. It is lower than for the XX and Heisenberg
models, which we study in the next sections, because of the
absence of U (1) symmetry. Namely, the total z magnetization
is not conserved in the transverse field Ising model, so it
cannot be used to block diagonalize the Hamiltonian as we
do for the XX and Heisenberg models.

The convergence above and below Tc observed in the
classical Ising model also occurs after introducing quantum
fluctuations through a transverse field of strength g = 0.1
[see Fig. 9(a)]. Increasing the strength of the transverse field
beyond g = 0.1, see results for g = 0.2 in Fig. 9(b), we find
that higher orders of the L expansion are needed for the bare
sums to converge in the scale of the plots. As g approaches gc,
we find that the convergence is lost at the lowest temperatures
for the orders of the L expansion that we are able to calculate
[see Fig. 9(c) for g = 0.5]. Still, one can see that the results for
the energy converge well below T = 1, which is where one
expects high-temperature expansions to diverge. For g > gc,
as the field increases beyond the critical region, the NLCEs
begin to converge at all temperatures [see Fig. 9(d) for g =
1.5]. This is expected as the system becomes disordered. For
models with moderate to strong fields, which are in many
instances of relevance to understanding experimental results,
NLCEs can provide very accurate results independently of
whether there is or not frustration in paramagnetic phases.

The addition of a transverse field to the Ising model in
the triangular lattice lifts the massive degeneracy of the
ground state present in the classical case. The quantum
fluctuations introduced by the field pick a symmetry-broken
(bond-ordered) ground state through an “order-from-
criticality” mechanism [78,79]. This phase persists up to
a critical field gc ≈ 0.42, after which the ground state is
paramagnetic [80]. In the bond-ordered phase, increasing
the temperature results in two BKT transitions that bound
a BKT phase [79,80]. In Fig. 10, we show results for the
entropy of the transverse field Ising model in the triangular
lattice as one increases the strength of the field g, and the
model departs from the classical g = 0 limit. At the weakest
(g = 0.1) field shown, the entropy follows the classical result
at high and intermediate temperatures and then departs at
low temperatures showing indications that it vanishes at the
lowest temperatures. As expected, increasing the strength
of the field results in a departure from the classical result
occurring at higher temperatures. For g > gc, we find that
increasing g beyond the critical region close to gc results in
convergence of the NLCE results at all temperatures. Like
in Fig. 9, the results in Fig. 10 show that NLCEs are an
excellent choice when it comes to obtaining accurate results
for thermodynamic properties of quantum lattice models in
the presence of magnetic fields at low temperatures.

VI. XX MODEL

As mentioned in Sec. II, in the square lattice the XX model
does not exhibit long-range order at nonzero temperatures,
and develops quasi-long-range order at temperatures below
the BKT transition temperature TKT ≈ 0.343. In Fig. 11(a),

0.01 0.1 1 10
T

0
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0.2

0.3

0.4

0.5

0.6

S Exact Ising
g = 0
g = 0.1
g = 0.3
g = 0.5
g = 1

FIG. 10. Entropy S vs T for the transverse field Ising model
in the triangular lattice. We show results obtained with the strong-
embedding L expansion with up to 9 (thin lines) and 10 (thick lines)
Ls for g = 0, and up to 6 (thin lines) and 7 (thick lines) Ls for g = 0.1,
0.3, 0.5, and 1. Exact results are reported for the classical Ising model
(g = 0).

we show NLCE results for the energy plotted as a function
of the temperature. We compare results obtained using the
site expansion with up to 14 and 15 sites, with results for
the weak- and strong-embedding L expansions with up to 7
and 8 Ls. The results for the two orders of the site expansion
agree with each other at temperatures T � 0.6, while those
for the L expansions agree with each other at T � 0.4, i.e.,
the bare sums of the L expansion converge at lower temper-
atures (T � TKT) than those of the site expansion. We also
find that the temperatures at which the last two orders of
the strong-embedding L expansion start to agree with each
other are slightly lower than those for the weak-embedding
L expansion.

In Fig. 11(b), we show NLCE results for the specific heat
for the same orders of the expansions as those for the en-
ergy in Fig. 11(a). The NLCE results for the specific heat
parallel those for the energy, with the different orders of the
L expansions agreeing with each other at lower temper-
atures than those for the site expansion, and with the
strong-embedding L expansion converging at a slightly lower
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FIG. 11. (a) Energy and (b) specific heat vs T for the XX model
in the square lattice. We show results for the weak- (w) and strong-
(s) embedding L expansions with up to 7 and 8 Ls, as well as for the
site expansion with up to 14 and 15 sites.
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FIG. 12. Strong-embedding L expansion results for the entropy
of the XX model as a function of the temperature obtained from
different values of JD, namely, as one transitions between the square,
i.e., JD = 0, and the triangular, i.e., JD = 1, lattices. The thin and
thick lines show results for up to 7 and 8 Ls, respectively.

temperature than the weak-embedding L expansion. Given the
lower computational cost of the strong-embedding L expan-
sion, the results in Fig. 11 make this expansion the expansion
of choice to study this model, and the Heisenberg model in the
next section.

Two general comments to be made at this point are that:
(i) As expected [19], in Fig. 11 one can see that the NLCE
results for the energy converge to lower temperatures than
those for the specific heat and, in general, than for more
complicated observables. (ii) Because of the presence of the
BKT transition, and similarly for the Ising model because of
the presence of the order-to-disorder phase transition, resum-
mation techniques do not allow one to significantly extend the
region of convergence of the NLCE results beyond those of
the bare sums. Hence, we postpone the use of resummation
techniques to the next section on the Heisenberg model.

We close this section on the XX model exploring the transi-
tion between the square and the triangular lattice geometries.
In the triangular lattice, the antiferromagnetic XX model is
frustrated. The ground state exhibits a twofold degeneracy
and, at finite temperature, the model exhibits two transitions, a
BKT transition and an Ising transition [81,82]. In Fig. 12, we
plot the entropy as a function of the temperature for different
strengths JD of the diagonal bonds. As for the Ising model,
in Fig. 8, in Fig. 12 we can see a hallmark of frustration. At
low temperatures, the entropy in the triangular lattice is higher
than in the square lattice. Namely, as a result of frustration,
more states are accessible in the former geometry at low
temperatures, and Fig. 12 shows how the entropy increases for
T < 1 as JD departs from 0. One can also see in Fig. 12 that,
since at any given temperature frustration shortens the range
of the correlations, the NLCE results for the entropy converge
at lower temperatures as JD increases from 0 to 1.

VII. HEISENBERG MODEL

The ground state of the antiferromagnetic Heisenberg
model on the square lattice is known to exhibit long-range

0.1 1 10
T

-0.6

-0.4

-0.2

0

E

QMC 100x100
14 sites
15 sites
4 squares
5 squares
7 L
8 L

0.1 1

-0.6

Wynn4 L

Wynn2

Euler5 L

FIG. 13. Energy E vs temperature T for the antiferromagnetic
Heisenberg model on the square lattice. We compare the results
obtained from the bare sums for the site, the square, and the strong-
embedding L expansion (as per the legend), with QMC results for
a lattice with 100 × 100 sites. (inset) Comparison between the
highest order (4) of the Wynn resummation for the strong-embedding
L expansion (Wynn4 L), the highest order (2) of the Wynn resumma-
tion for the square expansion (Wynn2 �), Euler5 for the L expansion
[see Eq. (10)], and the QMC results.

antiferromagnetic correlations [83,84]. This model does not
exhibit a finite temperature transition, but antiferromagnetic
correlations are known to grow rapidly as T decreases below
T = 1. Because of the latter behavior, the bare sums are not
expected to converge up to temperatures as low as for the
XX model. However, due to the absence of a phase transi-
tion, resummation techniques can provide insights into the
behavior of thermodynamic quantities at significantly lower
temperatures than those at which the bare sums converge.

In Fig. 13, we show results obtained for the energy of
the Heisenberg model as a function of the temperature using
the bare sums of the site, square, and the strong-embedding
L expansions. The NLCE results are compared to QMC re-
sults obtained using the SSE technique [19,85], which can be
thought of as being the exact results at those temperatures.
Despite having substantially different number of clusters and
orders included in the expansion, the results for the square
and the strong-embedding L expansions are qualitatively sim-
ilar. They converge to lower temperatures than those of the
site expansion. When converged, i.e., when in agreement,
all the NLCE results agree with the QMC ones. At the
scale of the plot, the two orders of the strong-embedding
L expansion overlap with each other and with the QMC results
at temperatures T � 0.6. The inset in Fig. 13 shows that order
4 of Wynn’s resummation for the the L expansion produces
energies that are close to the QMC results, and the agreement
improves with increasing the order of the resummation (other
orders not shown for clarity), down to temperatures T ∼ 0.15.
This is similar to what was reported in Ref. [19] when Wynn’s
resummation was used for the site expansion. In contrast, the
results of order 2 of Wynn’s resummation (the highest order
accessible) for the square expansion, which are also shown
in the inset, make apparent that there are not enough orders
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FIG. 14. Specific heat Cv vs temperature T for the antiferromag-
netic Heisenberg model on the square lattice. We compare the results
obtained from the bare sums for the site and the strong-embedding
L expansion (as per the legend), as well as the highest two orders of
the Wynn resummation for the strong-embedding L expansion, with
results reported by Bernu and Misguich (BM) in Ref. [86].

of the square expansion for Wynn’s resummation to produce
significant improvements for this model. The inset in Fig. 13
further shows that the Euler transformation for the Lexpansion
gives results that are close to the exact ones up to T ∼ 0.35.

Hence, the results in the main panel in Fig. 13 show that
the bare sums of the strong-embedding L expansion share
the advantages of the square expansion over the site ex-
pansion, namely, a convergence of the bare sums to lower
temperatures. The inset in Fig. 13, on the other hand, shows
that the strong-embedding L expansion shares the advantages
of the site expansion over the square expansion when it comes
to resummation techniques, namely, resummation techniques
allow one to obtain meaningful results at significantly lower
temperatures than those accessible via the bare sums.

In Fig. 14, we show results for the bare sums of the site
and strong-embedding L expansion for the specific heat and
compare them to results reported by Bernu and Misguich
(BM) in Ref. [86]. For Cv , the bare sums of the L expansion
converge only to slightly lower temperatures than the site
expansion. The difference is not as marked as for the energy
in Fig. 13. When in agreement with each other, the NLCE
results also agree with those from Ref. [86], but the NLCE
results show no hints of the nearby maximum seen in BM re-
sults. The Wynn resummation results also reported in Fig. 14,
on the other hand, exhibit a maximum at approximately the
same temperature as the results in Ref. [86]. One can see
that the maximum in the Wynn resummation is higher for the
highest Wynn order so it is possible that if more orders of
the L expansion were calculated the results from higher-order
Wynn resummations will agree with the result in Ref. [86].
We should add that the Wynn resummation results for the site
expansion, reported in Ref. [19], behave similarly as those of
the L expansion in Fig. 14.

The antiferromagnetic Heisenberg model in the triangu-
lar lattice is frustrated and exhibits long-range order at zero
temperature [87]. Because of the effect of frustration, the
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FIG. 15. Strong-embedding L expansion results for the entropy
of the antiferromagnetic Heisenberg model as a function of the
temperature obtained from different values of JD, namely as one tran-
sitions between the square, i.e., JD = 0, and triangular, i.e., JD = 1,
lattice geometries. The thin and thick lines show results for up to 7
and 8 Ls, respectively.

spin-spin correlations at any given temperature are shorter
than in the square lattice [88]. In Fig. 15, we plot the en-
tropy as a function of the temperature as the Heisenberg
model transitions between the square and the triangular lattice
geometries. All the results were obtained using the strong-
embedding L expansion. As expected due to frustration, and as
we have seen for the Ising and XX models, the entropy at low
temperatures increases as JD increases. In parallel, we find that
the bare sums converge to lower temperatures also as JD in-
creases. The convergence of the bare sums for the Heisenberg
model in Fig. 15 is worse than that of the XX model in Fig. 12,
i.e., the Heisenberg model is more challenging to study using
NLCEs.

We conclude this section showing results for the spe-
cific heat of the triangular lattice Heisenberg model (see
Fig. 16) obtained using the weak and the strong-embedding
L expansions. For this specific lattice geometry, one can refer
to those expansions as the weak- and strong-embedding tri-
angle expansions, of which the weak-embedding version was
introduced in Ref. [19]. Figure 16 shows that both expansions
give nearly identical results, despite the fact that the strong-
embedding expansion includes fewer clusters. When both
expansions agree with each other, they also agree with results
from BM reported in Ref. [86]. In the inset in Fig. 16, we
show that both expansions exhibit similar convergence prop-
erties for T � 1. Hence, we plan to use the strong-embedding
version in future studies of the triangular lattice.

VIII. SUMMARY

We introduced a NLCE for square-lattice models whose
building block is an L-shape cluster. We showed that this
expansion shares the advantages of expansions based on larger
building blocks, such as corner-sharing squares, over expan-
sions based on smaller building blocks, such as sites and
bonds. Namely, the bare sums of the L expansion converge
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FIG. 16. Specific heat Cv vs temperature T for the antiferromag-
netic Heisenberg model on the triangular lattice. We compare the
results obtained from the bare sums for the weak- (w) and strong-
(s) embedding L expansions with results reported by Bernu and
Misguich (BM) in Ref. [86]. (inset) Normalized difference between
the specific heat obtained using the strong-embedding (filled sym-
bols) and weak-embedding (empty symbols) L expansions and the
highest order (8) computed for each expansion vs the order of the
expansion.

to lower temperatures than the site- and bond-based expan-
sions and exhibit a similar or better convergence than that of
the square expansion. We also showed that the L expansion

can be carried out to sufficiently high orders to enable the
use of resummation techniques to signifficantly extend the
convergence beyond that of the bare sums. In this regard,
the L expansion shares an advantage of the smaller building
blocks bond and site expansions over the square expansion. In
addition, we showed that in disordered phases in the presence
of magnetic fields (and this holds no matter whether or not
there is frustration), the L expansion can provide accurate
results at all temperatures.

We introduced weak-embedding and strong-embedding
versions of the L expansion, and showed that they exhibit
similar convergence properties at intermediate and high tem-
peratures, while in ordered phases at very low temperatures,
only the strong-embedding version converges for the models
considered here. Given the lower computational cost of the
strong-embedding L expansion, which has fewer topologically
distinct clusters at any given order of the expansion, and
the previously mentioned convergence properties make the
strong-embedding L expansion the more appealing one of the
two for future studies. Finally, we showed that the expansion
based on the L-shape cluster can be naturally used to study
properties of lattice models that smoothly connect the square
and triangular lattice geometries.
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