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We study the equilibrium and dynamic phase transition properties of a two-dimensional Ising model on a
decorated triangular lattice under the influence of a time-dependent magnetic field composed of a periodic
square wave part plus a time-independent bias term. Using Monte Carlo simulations with a standard Metropolis
algorithm, we determine the equilibrium critical behavior in zero field. At a fixed temperature corresponding to
the multidroplet regime, we locate the relaxation time and the dynamic critical half period at which a dynamic
phase transition takes place between ferromagnetic and paramagnetic states. Benefiting from finite-size scaling
theory, we estimate the dynamic critical exponent ratios for the dynamic order parameter and its scaled variance,
respectively. The response function of the average energy is found to follow a logarithmic scaling as a function of
lattice size. At the critical half period and in the vicinity of a small bias field regime, the average of the dynamic
order parameter obeys a scaling relation with a dynamic scaling exponent which is very close to the equilibrium
critical isotherm value. Finally, in the slow critical dynamics regime, investigation of metamagnetic fluctuations
in the presence of bias field reveals a symmetric double-peak behavior for the scaled variance contours of the
dynamic order parameter and average energy. Our results strongly resemble those previously reported for kinetic

Ising models.
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I. INTRODUCTION

The kinetic Ising model and its variants [1-3] which focus
on the response of a ferromagnetic (FM) system to a time-
varying and externally applied periodic magnetic field A(t)
have been a class of the most actively studied problems of sta-
tistical mechanics, as well as in the theory of phase transitions
and critical phenomena. In this model, a dynamic phase transi-
tion may originate as a result of a dynamic symmetry breaking
mechanism [4,5]. This mechanism depends on a competition
between two characteristic time scales; namely the period P
of the oscillating magnetic field and the relaxation time t of
the system. Despite the fact that the period P is an adjustable
external parameter, T depends on several factors including
the temperature, field amplitude, and other magnetic interac-
tion parameters such as the ferromagnetic exchange coupling,
which mimics the interaction between neighboring magnetic
moments in the lattice. If 7 is larger than period P, the system
cannot find enough time to follow the external perturbation;
hence the instantaneous magnetization m(t) oscillates around
some nonzero value in which the magnetic phase of the system
is called “dynamic ferromagnetic” On the contrary, when
P > 1, m(t) can easily follow the alternation of magnetic
field with some small delay. In this case, the system is in the
“dynamic paramagnetic” phase.

In addition to the theoretical observations, dynamic phase
transition (DPT) properties of magnetic systems have been
experimentally realized in some recent works [6,7] in
which some similarities have been unveiled between DPT
and its equilibrium counterpart called the thermodynamic
phase transitions (TPT). For instance, it was shown that a
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time-independent bias field /; in DPT plays the role of the
homogeneous magnetic field in TPT. Therefore, bias field A,
is identified as the “conjugate field” of the dynamic order
parameter (i.e., the period-averaged magnetization) (Q) [8].
In the presence of an oscillating magnetic field with square
wave form in addition to the bias field &, ({(Q) — h;) curves
obtained in the vicinity of the dynamical critical point were
found to show a power law behavior with a dynamic scaling
exponent §;, which is identical to the critical isotherm §,
of TPT [8]. Furthermore, universality and scaling relations
in DPT have been examined in two [9-11] and three [12]
dimensions and some additional similarities between DPT
and TPT cases were reported in the absence of bias field. A
number of general outcomes can be summarized as follows:
a DPT can be observed in the vicinity of critical period P.
below which a dynamically ordered phase is manifested. In
this regard, (Q) versus P curves of DPT qualitatively exhibit
the same behavior as the spontaneous magnetization versus
temperature curve of TPT. It is worth noting that the critical
period P. at which a DPT takes place between dynamically
ordered and disordered states was found to be highly sensitive
to the field amplitude [10]. Apart from these, the most striking
outcome is that the universality class of DPT is the same as the
corresponding TPT in the vicinity of P.. This latter result is
also found to be robust against introduction of quenched disor-
der [13]. For a detailed discussion of the scaling properties and
phase diagrams of DPT in low dimensional, semi-infinite, and
bulk systems, please refer to Ref. [14]. However, these sim-
ilarities between DPT and TPT cases should be approached
with utmost caution, since in the presence of bias field some
features of DPT substantially differ from those observed in
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TPT. For instance, for a regular ferromagnet in the presence
of a longitudinal magnetic field, the magnetic susceptibility
curve as a function of magnetic field exhibits a broad sym-
metric maximum which is centered around zero field [15],
whereas, in the DPT counterpart, magnetic susceptibility (as
well as scaled variance) plotted against bias field exhibits
multiple symmetric peaks which are called “metamagnetic
anomalies” [16].

After the discovery of graphene as a two-dimensional (2D)
material [17,18], there has been a renowned interest in 2D
magnetism during the past decade. Consequently, from the
viewpoint of dynamic phase transition phenomenon, investi-
gation of 2D lattices gained particular importance. However, it
is worth mentioning that the vast majority of the literature on
the kinetic Ising model discussed so far is restricted to regular
lattices and, in general, the role of nonregular lattices has
been overlooked. In the present work, in order to overcome
this issue, we perform extensive Monte Carlo simulations
on a decorated triangular lattice (DTL) to estimate both the
TPT and DPT characteristics of this nonregular lattice. To
the best of our knowledge, thermal and magnetic properties
of a DTL were scarcely investigated before. Among these
works, one can refer to Refs. [19,20] for ferrimagnetic and
magnetocaloric properties and to Ref. [21] for treatment of
the Blume-Capel model. Note that the main focus of these
works is limited to the TPT case. Therefore, the objective
of the present paper is to provide detailed analyses of the
equilibrium critical behavior of TPT, as well as the critical
exponents corresponding to the DPT case in the presence of
a time-dependent square magnetic field with period P for a
kinetic Ising model located on a DTL. In addition to these
properties, we also clarify the metamagnetic anomalies and
power-law behavior in ({(Q) — hp) curves with a DPT scaling
exponent &,.

The outline of the paper is as follows. In Sec. II, we briefly
introduce our model and simulation details. Section III con-
tains our simulation results and related discussions. Finally,
Sec. IV is devoted to the concluding remarks.

II. MODEL AND FORMULATION

We simulate the system defined by the Hamiltonian
H=—J) Si5:— h)s:, (1)
(i) i

where J > 0 is the ferromagnetic exchange coupling between
nearest-neighbor spins and S7 is a pseudospin variable tak-
ing the values £1. Each spin is located on the nodes of
a DTL, which is schematically represented in Fig. 1. The
last term in Eq. (1) stands for the Zeeman term where
the magnetic field h(z) is composed of two parts as a
time-independent bias term %, and a time-dependent part
in square-wave form. We implement Monte Carlo simu-
lations based on a standard Metropolis algorithm [22] by
imposing periodic boundary conditions (PBC) applied in
each direction. The lattice sites are swept randomly and
one Monte Carlo step (MCS) consists of N = L x L spin-
flip attempts, where L is the linear dimension of DTL
depicted in Fig. 1.

FIG. 1. Schematic representation of a decorated triangular lattice.

A. Measured quantities and simulation
parameters for TPT properties

In order to clarify the equilibrium critical behavior, we set
the field amplitude and bias field terms to zero (hy/J, hy/J =
0) and measure the following quantities by considering 100
individual samples and 5 x 10* Monte Carlo steps at each
temperature after discarding the first 20% for thermalization.

(i) Spontaneous magnetization:

1 N
M = ﬁ<; S§>. )

(i1) Magnetic susceptibility:

X = N{M?) — (M)} /ksT. 3)
(iii) Internal energy and specific heat:
_ _UE)
(E)y=(H), C= 3T “)

where angular brackets denote thermal averaging. Note that
we set kg = 1 for simplicity.

B. Measured quantities and simulation
parameters for DPT properties

To determine the DPT properties, we perform a series of
simulations by considering lattice sizes ranging between 64 <
L < 324. In the DPT case, the time length of a simulation
for a given set of parameters with a fixed L depends on the
period P of the periodic magnetic field. In this regard, to
calculate the physical quantities, 2.2 x 10* period cycles of
the oscillating field were considered and the initial 2 x 10°
cycles were discarded for thermalization. In the absence of
bias field, we take 500 independent realizations to reduce the
statistical errors. This number of samples was found to be suf-
ficient to obtain high quality data around the dynamic critical
point P, to estimate the critical exponent ratios. Accumulated
running averages calculated around P, have been displayed in
the Appendix (cf. Fig. 10). Moreover, in order to perform error
analysis, we use the Jackknife method [23] and, to estimate
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FIG. 2. Temperature dependencies of thermal and magnetic properties calculated at zero field: (a) magnetization and magnetic susceptibil-
ity; (b) average energy and heat capacity. Each curve is obtained for a lattice with L = 256.

the error bars, we divide the data set containing 500 individual
measurements for each quantity into 20 subgroups. Note that
the size of the obtained error bars are generally smaller than
the size of the data points.

Once we monitor the time series m(z) of instantaneous
magnetization, it is possible to define the dynamic order pa-
rameter Q(k) at the kth cycle of the dynamic magnetic field

1 k(2t1/2)

o) = m(t)dt, &)

(2t12) Ju—1y@n))

where we prefer to use the parameter #;,, for convention,
which defines the half period of the dynamic magnetic field,
i.e., we set P = 2t; . Using Eq. (5), we calculate the dynamic
order parameter (Q) which is the average of Q(k), where the
averaging is performed over many cycles of i(¢). In addition,
dynamic scaling variance of Q which resembles the dynamic
magnetic susceptibility [8] is given by the formula

xo =N[(Q%) — (Q)7]- (6)

Following the same procedure, dynamic scaling variance of
average internal energy can also be obtained from

xe =N[(E*)L — (E)]], (7)

where (E) is the average internal energy per spin calculated
using the Hamiltonian (1). Last but not least, we also measure
the Binder cumulant V,
4
Vi=1- & ®)
3(0?)

benefiting from the higher order moments of Q to precisely
determine the critical point [24].

It is important to underline that DPT takes place in the
multidroplet (MD) regime in which the metastable decay orig-
inates via nucleation and growth processes of many droplets
[9,25]. Therefore, in order to ensure that the system is in
the MD regime, the field amplitude and the temperature are
respectively fixed as hp/J = 0.3 and T = 0.87, throughout
the simulations where 7. is the pseudocritical temperature of
the DTL.

III. RESULTS AND DISCUSSION

In order to investigate the equilibrium critical behavior
of the system (i.e., the TPT case), we have calculated the
temperature dependencies of thermal and magnetic properties
defined by Eqs. (2)-(4) in the absence of magnetic field. The
results are shown in Fig. 2 for a DTL with L = 256. Sponta-
neous magnetization of the system depicted in Fig. 2(a) shows
that a ferromagnetic-paramagnetic phase transition emerges at
the critical point 7, and the transition is of second order. For a
DTL, a ratio of 3/4 of lattice sites is coordinated to two near-
est neighbors (z; = 2) and the remaining 1/4 of spins have
six nearest neighbors (z; = 6), indicating that the effective
coordination number of DTL is Z,sy = 3 [21]. Temperature
dependent internal energy per spin curve [Fig. 2(b)] attains a
ground state value (E)/J = —1.5 which eventually supports
Ref. [21]. The insets of Figs. 2(a) and 2(b) show the variation
of response functions, i.e., the magnetic susceptibility y and
specific heat C exhibiting sharp peaks at the critical tempera-
ture T,.. Examination of x (T") and C(T') curves reveals that the
ordering temperature is 7,./J = 1.75.

Note that the obtained critical temperature value is dif-
ferent than those obtained in Refs. [13,21,26]. The reason
is twofold. In Ref. [21], a spin-1 Blume-Capel model is
considered. Consequently, due to the reduced anisotropy in
comparison with the Ising counterpart discussed in the present
work, critical temperature is expected to be smaller than our
numerical result. On the other hand, Refs. [13,26] investi-
gate the model on a regular triangular lattice in which the
coordination number Z = 6 is twice as large as that of a
DTL with Z, s = 3. Besides, one can also compare our result
with 7. /J = 1.519 of a honeycomb lattice with Z = 3 [27]. It
should be mentioned that, although the Binder cumulant anal-
yses give more precise values for the exact location of 7, we
do not need to find the location of the critical temperature in
full precision, as our estimated value ensures that the system
stays in the MD regime in the presence of a dynamic magnetic
field. Therefore, in order to reduce the computational time,
we benefit from the pseudocritical temperature obtained by
inspecting the response functions corresponding to L = 256
in the following analyses of DPT properties. Once the critical

034125-3



Y. YUKSEL

PHYSICAL REVIEW E 108, 034125 (2023)

1.0

~~
= 05

0 200 400 600 800

FIG. 3. Time series of magnetization in the presence of a square-
wave magnetic field with half period (a) t;,, = 50 and (b) #,, = 10.
The dashed lines represent the magnetic field. In (a) a dynamic
paramagnetic (disordered) regime is manifested, whereas in (b) the
system exhibits dynamic ferromagnetic (ordered) behavior.

temperature of the system is determined, we can go one step
forward in our analyses of DPT properties. The competition
mechanism leading to the emergence of DPT is illustrated in
Fig. 3. When the magnetization is aligned with the magnetic
field, then the energy is minimized and a change in the sign of
magnetic field causes the magnetization to flip along the field
direction within a certain amount of time. If the relaxation
time 7 needed to flip the sign of the magnetization in the
metastable state is comparable to or smaller than the critical
half-period #] ,, then a domain nucleation process takes place
which is followed by the formation of new domains composed
of parallel spins along the new field direction. In this case,
the magnetization can follow the periodic alternation of the
dynamic magnetic field [Fig. 3(a)] with a small phase lag (dy-
namic paramagnetic state). On the contrary, if 7 is larger than
1} 5, the system always stays in the metastable state, indicating
that the dynamically ordered state is favored in which the
net magnetization oscillates around some nonzero value, as
shown in Fig. 3(b). This competition behavior is characterized
by the following equation [3,12]:

0="2 ©)

()

where (1) is the average relaxation time of the system. In order
to estimate (t), we set all spins pointing in the antiparallel
direction with respect to a constant bias field 4,/J = 0.3 and
monitor the time variation of m(z). In this process, (T) is
defined as the time at which m(#) momentarily reduces to zero.
From our analysis (see Fig. 4), we deduce that (r) = 29.6
on a DTL which can be compared with (t) = 74.6 of square
[8,9,28] and (r) = 55.8 of Kagome [29] lattices for the same
set of other system parameters. Relatively large values ob-
tained in Refs. [8,9,28] are due to the Glauber single-spin-flip
algorithm used in the calculations. It is known that the result
will be much smaller for Metropolis dynamics [30].
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FIG. 4. Instantaneous magnetization as a function of time calcu-
lated at a temperature 7 = 0.87, and a constant bias field 4,,/J = 0.3
for a lattice with L = 256. The relaxation time (i.e., the metastable
lifetime) of the system is determined by inspecting the crossing point
of the curve at which the magnetization switches its sign. The dashed
horizontal line refers to a guide to the eye of the reader.

The existence of a DPT can be verified by investigating
the dynamic order parameter Q(k) calculated by using Eq. (5)
as a function of cycle index k. As shown in Fig. 5, below
the critical period (f1/2 < #{),), a single domain formation is
manifested where Q(k) # 0, whereas, for (¢/2 > t{ /2), nucle-
ated droplets emerge where Q(k) ~ 0. At the dynamic critical
point ©. = t{/,/(t), a DPT occurs between dynamically or-
dered and disordered states.

In order to determine the precise location of the critical
half period #} , and to estimate the relevant critical exponent
ratios, we need to perform finite-size scaling analysis of the
numerical data gathered in the simulations.

1.0 T T T T T T T T

Q (k)

0 5000 10000
k (in periods)

15000

FIG. 5. Cycle averages of dynamic order parameter Q obtained
from the time series of the instantaneous magnetization m(t). The
system exhibits large fluctuations around the dynamic critical point
due to reversal of large domains.
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A. Finite-size scaling

The magnetic ordering of the system can be identified by
calculating the average of the absolute value of the dynamic
order parameter, i.e., (|Q|) [11]. In this regard, (|Q|) versus
t1/2 curve of DPT plays the role of the spontaneous magneti-
zation versus temperature curve of TPT. Figure 6(a) shows the
finite-size behavior of the dynamic order parameter and the
corresponding response function (scaled variance xp). (|Ql)
decreases from its saturation value in the fast critical dynam-
ics regime (712 < 1y,,) to zero in the slow critical dynamics
regime (¢, > tf/z). The transition is of second order. In the
inset of Fig. 6(a), we observe that the response function yg ex-
hibits a divergent behavior in the vicinity of the critical point
resembling the behavior of magnetic susceptibility of a regular
ferromagnet. This divergent behavior becomes significant for
larger lattices. We also calculate the average energy (E) and
the corresponding scaled variance yg as functions of #;,. Both
quantities have been plotted in Fig. 6(b). Note that xz mimics
the behavior of equilibrium heat capacity which exhibits a
prominent cusp around the critical point. Very slow variation
of (E) as a function of system size L around the critical region
is clear and a logarithmic scaling behavior of xg as a function
of L is expected at the dynamic critical point 77 .

Prior to calculation of critical exponent ratios, we deter-
mine the critical half-period #{ , by measuring the half-period
dependence of the fourth-order cumulant (i.e., Binder cumu-
lant) curves according to Eq. (8) for a variety of lattice sizes.
In Fig. 6(c), the intersection point of the curves is identified
as the critical point 7} ,. According to the simulated data, our
estimation is #{,, = 25 in units of MCSs. The horizontal line
[shown in the inset of Fig. 6(c)] marks the universal value
of the cumulant V;* = 0.6106924(16) of the 2D Ising model
at the critical point [31-33]. This result unveils a similarity
between DPT and TPT cases regarding the analyses of Binder
cumulant curves. At the dynamic critical point, dynamic order
parameter Q and the scaled variance x obey the following
scaling forms [11,12,34,35]:

(1Q1) o« LAY, (10)

Xo o< LV, (11)

Logarithmic plots of (|Q|) and x¢ as functions of L obtained at
the critical point 77, exhibit a linear variation. After fitting the
data, we find 8/v = 0.12531 £ 0.0006 and y /v = 1.75405 +
0.000795 [Figs. 7(a) and 7(b)], which agree well with the 2D
Ising equilibrium results §/v = 1/8 and y /v = 7/4 within
the estimated errors [22,27].

Besides, the logarithmic divergence behavior of xg at{,,

Xe X a+ b lIn(L), (12)

can be observed in the semilogarithmic plot of x£ as a func-
tion of L, indicating that the related exponent has the value
o = 0.0 [Fig. 7(c)].

Consequently, these results hitherto show that the esti-
mated critical exponents agree well with the previous results
[14] and it can be once again emphasized that the DPT falls
within the same universality class as the TPT.
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FIG. 6. Variation of (a) dynamic order parameter (|Q|), (b) av-
erage energy per spin (E), and (c) Binder cumulant curve V, as
functions of half period t,/,. The insets in (a) and (b) respectively
correspond to scaled variance curves xp and xz. The inset of
Fig. 6(c) focuses on the critical region. Different data symbols denote
different lattice size L.
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FIG. 7. Finite-size scaling analysis of (a) (|Ql), (b) xp, and
(c) xe- Solid red lines represent the linear fitting curves.

B. Metamagnetic anomalies

So far, we have elucidated some salient similarities
between DPT and TPT cases. These similarities mainly
originate in the vicinity of the critical point and in the absence
of the bias field %;. In addition to the periodically oscillating

0.5
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FIG. 8. Contour plots of (a), (b) dynamic order parameter (Q),
(c), (d) scaled variance xg, and (e), (f) scaled variance xg in hy/J
versus h,,/J plane. The left panel has been obtained for a field period
t1» = 25, whereas for the right panel we set #;, = 250. Data point
X in (a) denotes the dynamic critical point.

part, upon introducing a time-independent contribution h;,
in the magnetic field term, some controversial behaviors
can be observed. For example, a figure of merit for
the aforementioned issue is the metamagnetic anomaly
phenomenon which is especially observed in the slow critical
dynamics regime. It was experimentally reported for Co films
that the metamagnetic anomaly behavior is manifested in
the h, dependence of xo as multiple-symmetric peaks [16],
despite the fact that it is not observed for a regular ferromagnet
for which the magnetic susceptibility versus magnetic field
curve exhibits a broad maxima centered around zero field
[15]. Recently, the experimental observations of Refs. [16,36]
have been supported by some theoretical studies [37—40]. In
the following, we present our simulation results for the present
model. In Fig. 8, we show the contour plots of the quantities
(Q). xo and xg as functions of the field parameters fy/J and
hyp/J. The left panel of Fig. 8 shows the results obtained at
1i;, =25, whereas for the right panel we set 1,5 = 250 >
1{),- Below the dynamic critical point, which is marked
by the symbol “x” in Fig. 8(a), ((Q), ho/J, hp/J) plots
exhibit discontinuous jumps between (Q) = £(Q, values. By
comparing Figs. 8(a) and 8(b) with each other, we see that the
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critical amplitude value shifts to smaller values for increasing
field period, which means that the dynamic paramagnetic
region in the phase space becomes expanded. This behavior
results in the triangular regions depicted in Figs. 8(a) and
8(b). A steep variation of (Q) around h;, = hgeak is evident,

whereas, for i, > hgeak, (Q) saturates to unity. Although the
metamagnetic anomalies (i.e., the sidebands) are not visible
at the dynamic critical point (ho/J = 0.3, £, = 25) in the
Xo contour plot [Fig. 8(c)], the phenomenon is pronounced
in the slow critical dynamics regime [Fig. 8(d)]. Moreover,
hy values corresponding to xo peak positions represent a

critical threshold indicating that for A > h’;eak we observe
dynamically ferromagnetic (polarized) oscillations. On the
other hand, for h;, < A the system stays in the dynamically
paramagnetic phase. We have also examined the emergence
of metamagnetic anomalies in xg contour plots. As we found
for xo curves, the sideband behavior is barely evident in
the vicinity of the dynamic critical point, whereas they are
indisputably pronounced in the slow critical dynamics regime
where t1> 3> t{ ,. These results clearly suggest that, in regard
to dissimilarities between DPT and TPT cases, beside the
scaled variance xg, the other response function xg also
exhibits metamagnetic anomalies which are very prominent
in the slow critical dynamics regime. Such behavior has also
not been observed in equilibrium ferromagnets. Last but
not least, another DPT critical exponent value can be found
related to the scaling of (Q) with respect to 4, in the form

(O)(t1)2 = 1{)5. hp — 0) o /™, (13)

where a dynamical scaling exponent §; = 14.85 was
estimated for a square lattice under the influence of a
square wave field within the small A4, regime [8]. This result
is very close to the critical isotherm value §, = 15 of the
2D Ising model in equilibrium [41]. For a DTL, we perform
simulations in the vanishingly small 4, regime for lattice sizes
ranging from L = 90 to L = 324 fort,,, = 25 and hy/J = 0.3
(Fig. 9). In the case of large L and small A, the log-log plot
of ({Q) vs hy) plots show a linear behavior and, considering
the numerical data corresponding to L = 324 between the
points A and B, the extracted exponent value is found to be
84 = 14.99, which improves Ref. [8]. This observation also
proves the fact that the bias field 4, is the conjugate field of
the dynamic order parameter Q.

IV. CONCLUSION

In summary, we perform extensive Monte Carlo simula-
tions to explore the phase transition characteristics and critical
behavior of a 2D Ising model on a decorated triangular lat-
tice. In the first part of the work, we identify the critical
temperature of the model in the absence of dynamic mag-
netic field effects (equilibrium model). The model exhibits
a ferromagnetic-paramagnetic phase transition at a critical
temperature 7. /J = 1.75, which is smaller than the result cor-
responding to the regular triangular lattice. This is attributed
to the small effective coordination number of the DTL in
comparison to its regular counterpart.

The second part of the study is focused on the DPT proper-
ties. In this regard, using the finite-size scaling theory and its
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FIG. 9. Dependence of (Q) as a function of bias field 4, depicted
in the log-log scale for a variety of lattice sizes within the range 90 <
L < 324. The dotted line is the result for L = 324, where a linear
fitting procedure was performed between the labels A and B. The
dashed line corresponds to the scaling of the equilibrium model [41].

arguments, the dynamic critical point of the lattice is found to
be 7, = 25 in units of MCSs, with the respective estimations
of the critical exponent ratios 8/v = 0.125 and y /v = 1.754
associated to the dynamic order parameter (Q) and the corre-
sponding response function x, leading to the fact that DPT
falls in the same universality class as the TPT, supporting the
observations of the previous works. Moreover, a logarithmic
scaling behavior in the scaled variance g as a function of L is
also predicted at the critical point 77 ,. These results indicate
that DPT and TPT properties show a number of similarities
in the vicinity of the critical point and in the absence of the
magnetic bias field /.

Upon introduction of the nonzero bias field, some pe-
culiarities called “metamagnetic anomalies” originate in the
magnetic behavior of the system which cannot be observed in
the equilibrium case. Our results confirm that this sideband
phenomenon observed in (xo, ho/J, hy/J) contour plots also
emerges for (xg, ho/J, hp/J) contours, which become very
prominent in the slow critical dynamics regime. Nevertheless,
another similarity between DPT and TPT cases can be cap-
tured when we consider log-log plots of ({(Q) vs hy) curves
for the small h, regime at the dynamic critical point 7] ,,
resulting in another critical exponent §; = 14.99 for large L,
which is very close to the critical isotherm of the equilibrium
model. Taking into account this latter issue, we can conclude
that our result improves the findings of previously published
works.

Overall, although the critical behavior of equilibrium
magnetic systems has been well established, the theory of
dynamic phase transitions tended to flourish within the past
two decades. As an outlook, we hope that our results reported
in this paper would make a contribution to the pursuit of new
concepts in dynamic phase transitions and would stimulate
further studies for the investigation of 2D magnetism, both
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from theoretical and experimental points of view. As a final
remark, in order to clarify the role of the lattice structure
on the DPT properties of spin systems with increased
complexity, the problem handled in the present work can be
extended to some other forms of irregular lattices including
a decorated square and decorated simple cubic lattices with
more complex Hamiltonian forms including Blume-Capel and
Blume-Emery-Griffiths models. Simulations in this regard are
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under consideration by us and may be the subject of a future
work.
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APPENDIX

A test of the running averages for the zero-field re-
sponse functions xo and xg have been performed for 500
independent sample realizations and the results are given in
Fig. 10. The figure shows that the accumulated averages (solid

curves) of the aforementioned quantities saturate at a fixed
point for 64 < L < 324, indicating that 500 independent sam-
ples may be sufficient to reduce the statistical errors regarding
the estimation of the dynamic critical point and critical expo-
nent ratios.
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