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Controls that expedite first-passage times in disordered systems
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First-passage time statistics in disordered systems exhibiting scale invariance are studied widely. In particular,
long trapping times in energy or entropic traps are fat-tailed distributed, which slow the overall transport process.
We study the statistical properties of the first-passage time of biased processes in different models, and we
employ the big-jump principle that shows the dominance of the maximum trapping time on the first-passage time.
We demonstrate that the removal of this maximum significantly expedites transport. As the disorder increases, the
system enters a phase where the removal shows a dramatic effect. Our results show how we may speed up trans-
port in strongly disordered systems exploiting scale invariance. In contrast to the disordered systems studied here,
the removal principle has essentially no effect in homogeneous systems; this indicates that improving the con-
ductance of a poorly conducting system is, theoretically, relatively easy as compared to a homogeneous system.
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I. INTRODUCTION

Tracer pathways, retention, and migration patterns in dis-
ordered environments are typically seen to be similar over a
large range of length and timescales, being observed ubiq-
uitously in nature, e.g., for the motion of a tracer in porous
media [1–6], a colloidal particle in a glassy system [7–9], a
charge carrier in a strongly disordered amorphous conduc-
tor [10,11], or an ion channel on the membrane of the cell
[12,13]. In many cases, the probability density function of
the transition times (also called sojourn times) is heavy-tailed
ψ (t ) ∼ At−(1+α) with some amplitude A and the scaling expo-
nent α > 0 [14–17]. A critical consequence is that extremely
long trapping times occur in deep traps, narrow passages, or at
major obstacles, hence, the motion slows down dramatically.
We present a simple but effective concept that overcomes this
slow down. One only needs to remove the single maximum
trapping time τmax along the tracer path to gain a surpris-
ingly great effect on the transport behavior. This effect is a
consequence of the so-called big-jump principle, which has
been studied extensively [18–21]. We claim that removal of
the maximum trapping time along the trajectory will result
in a significantly faster, expedited process, more importantly,
we will quantify the gain to be achieved. As a reference
procedure, we remove the maximum trapping time from each
individual particle trajectory. Other techniques will be also
discussed, e.g., the removal of only a few very large maxima,
or of deep traps from an energy landscape. In all of these tech-
niques, we eliminate (directly or indirectly) from all or only
some trajectories their associated maximum transition time.

We demonstrate this removal technique for one of the
most well-studied observables in stochastic dynamics, namely
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the time a tracer is advected through a system of length L,
known as the first-passage time t f [22–27]. A broad class
of well-known transport models is considered, e.g., with
rigorous theory for the unidirectional transport on a lattice
serving as a toy model, via the continuous-time random walk
[1–3,5,15,28–40] and quenched trap models [7–9,41–46], and
with extensive numerical analysis of simulated tracer migra-
tion in porous media. The study for each model contains
three parts: (A) We establish the principle of the single long
transition time for these different models, which is based on
the principle of the single big jump [18,21,47–54]. The tracer
path is described by trapping events on a coarse grained scale.
We may then define the longest trapping time τmax (defined
more precisely below). This time is clearly shorter than the
total time t f it takes the particle to cross the system. Still,
in scale free systems, as we show below, and for the slowest
particles, τmax � t f (see precise definition below). This is the
long transition time principle that we aim to establish, for
widely applicable models. The question is now: How can we
enhance the transport? (B) We remove the maximum transi-
tion times from the associated particle trajectories and find
that the distribution of the modified first-passage time,

tr = t f − τmax, (1)

decays much faster compared to the original distribution of t f .
The index “r” stands for removal. (C) This transport speedup
is further quantified with the measure of gain,

G = 〈tr〉
〈t f 〉 , (2)

where a small value indicates fast transport of the modified
process. Clearly, G < 1, but the question addressed is more
qualitative, what is G, and does it exhibit a phaselike transition
when the strength of disorder is increased? It is clear that for
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blind removal of a single trapping time, or when considering
homogeneous systems, then G will be close to unity for large
systems; however, in the case of strongly disordered systems,
we find G � 1.

The main practical challenge is to identify the bottlenecks,
namely, the large trapping times in the system. Our theoret-
ical analysis does not address this issue in full detail, but
we discuss this point in some depth in Sec. VI. We must
distinguish between several cases. Information on specific
pathways is now obtainable in many single-particle track-
ing experiments. In these cases, a “learning session” can be
completed to identify bottlenecks that slow down the first-
passage time. These bottlenecks, representing deep traps, are
quenched and localized; see Sec. V. Removal of some traps,
or restart of the process for a particle in the deepest trap, is in
principle possible. Here, we depart from the usual paradigm
of restart (see discussion below), where no information on
the system is given a priori. In contrast to annealed models
like the continuous-time random walk, which is effectively
considered a mean field model, the traps are not fixed in a
particular location in space. Here, the big-jump principle is
considered after the trajectory is completed, and the question
focuses on analyzing the effect of removal of one long waiting
time. In some systems, information about trajectories is not
available, and more clever ways must be used to identify
bottlenecks; one such method is outlined briefly in Sec. VI.
Summarized, two models in this article (simulation of tracer
transport in porous media and the quenched trap model) have
quenched disorder and the removal of the biggest trapping
times at bottlenecks is a priori possible, while for the two
other models (unidirectional transport and continuous-time
random walk) a removal is only possible a posteriori due
to the annealed disorder. The study of the latter models is
of academic interest as it indicates the significant effect of
removal.

A somewhat related concept is the restart protocol. A
“restart” of a stochastic search process may expedite the
search time vastly, and hence this strategy has been ex-
tensively studied [55–62], with applications in biological
processes [63–65] and computer science [66], among other
fields. The basic paradigm of restart is to consider a nonbiased
diffusive particle that is returned to its origin at a given rate.
Under certain conditions, this repeated return to the origin will
minimize the first-passage time t f to a target [67]. When a
bias is present, this strategy is not necessarily useful. Further-
more, the number of restarts can be large, and to pick up a
particle at some position in space and return it to its origin is
typically costly. Here, we present a new method to deal with
such questions. Our developments exploit the scale-invariance
of transport in disordered system [14–17] and the big-jump
principle [18–21,47–54] to find novel effects. Roughly speak-
ing, along the path of a particle advancing in a disordered
system, we identify a bottleneck where transport is slowed
down. Namely, the particle is trapped and released many times
along its path, and then the basic issue is: will the removal of
one and only one of these trapping times dramatically reduce
the first-passage time? Thus, unlike classical restart theory,
we do not send the particle back to its origin several times,
and exploit the disorder to obtain a dramatic speedup of the
first-passage time.

The article begins with the basic, unidirectional model
(Sec. II). This model already shows the relevant behavior that
is also found in the other models. The most complicated,
yet possibly realistic, model considered in this article is the
simulation of tracer transport presented in Sec. III, which
shows that the removal principle can serve as a powerful tool
in application. Thereafter, the continuous-time random walk
(Sec. IV) and quenched trap (Sec. V) models are examined
as two additional theoretical continuations of the basic uni-
directional model. Once these four models are extensively
analyzed, an outlook for practical applications is presented
(Sec. VI) and all results are summarized (Sec. VII).

II. UNIDIRECTIONAL TRANSPORT ON A LATTICE

We start with a simple model that still can capture some
of the complexities in the following, more challenging and
realistic, approaches. Consider the transport of particles on
a one-dimensional lattice of length L with the lattice points
{1, 2, . . . , L} and the absorption point (boundary) at x = L +
1. The movement is in one direction, corresponding to a
strongly biased system, i.e., an external, constant large force
that drives the particles to the right. Each particle starts at
x = 1 and is absorbed at x = L + 1; see Fig. 1(a) for a concep-
tual figure. Thus, every particle makes exactly N = L jumps
before it is absorbed. At each lattice point x ∈ {1, . . . , L},
a particle takes a random transition time τn with n = x be-
fore jumping to the nearest neighbor x + 1. Furthermore,
the transition times {τn}N

n=1 = {τ1, . . . , τN } are assumed to be
independent and identically distributed random variables. Im-
portantly, the probability density function of these transition
times is asymptotically heavy-tailed,

ψ (t ) ∼ At−(1+α), (3)

for all n with the scaling exponent α > 0 and the amplitude A.
The definition of this function is ψ (t ) = −d/dtProb(τn > t ),
where Prob(τn > t ) ∼ (A/α)t−α . Note that if α > 1, then the
mean transition time is finite, and otherwise it diverges. It
is well-known that physical systems exhibit dynamical tran-
sitions, e.g., from normal to anomalous diffusion at α = 1
[68]. A useful example is the Pareto distribution ψ (t ) =
α(t0)αt−(1+α) with t > t0 and otherwise zero.

There is a vast literature on the physical meaning of Eq. (3),
where it is also standard to use the parameter β instead of α

[10,11]. For example, in the quenched trap model, α = T/Tg

[7,41–43,45], where Tg is the glass temperature and T the
temperature; see Sec. V. Furthermore, α was recorded in time
of flight experiments of charge carriers in disordered systems
[10,11], in contaminant migration in porous media [5,69],
and for the tracer diffusion process in actin networks [70,71],
where α is controlled by the size of the tracer in relation to
the mesh size of the actin network; it was also observed in the
diffusion of channels on the membrane [12]. Similar waiting
times are found for blinking quantum dots [72], tracers in two-
dimensional rotational flows [73], and avian predators [74].
To summarize, in many fields of physics, one finds processes
described by Eq. (3), while the unidirectional assumption we
used here corresponds to a strong bias acting on the particle
(no backward jumps). We will relax this assumption later.
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FIG. 1. (a) Conceptual figure of the unidirectional transport model on a lattice. The first-passage time t f (red) to reach some boundary is
the sum of the transition times between lattice points. The maximum transition time τmax (blue) is also marked. (b) Conceptual figure of the
same transport model as in panel (a), but τmax has been removed from the trajectory. This shows the modified first-passage time tr = t f − τmax

(green) and the second maximum τ �
max (purple). (c) The distributions of t f (red circles), τmax (blue line), tr (green circles), and τ �

max (purple line)
obtained from Monte Carlo simulations for the unidirectional model. We used the Pareto distribution with α = 0.7 for the transition times with
L = 5 and 106 trajectories. As shown, the right tails before and after the elimination of τmax from each trajectory match for the maximum and
the first-passage time distributions, as predicted by the principle of the single long transition time Eq. (6) and the relationship after elimination
Eq. (11). Importantly, the elimination decreases the power law of the t f distribution Eqs. (7) to (9). This shows clearly that the elimination of
the maximum transition time dramatically modifies the statistics in the tail distribution by orders of magnitude.

A. Principle of the single long transition time

We now briefly review the principle of the single big jump,
which in the context of our work is called the principle of
the single long transition time. There are several versions of
this principle, and here we consider the simplest case when
dealing with independent and identically distributed random
variables [18]. We are interested in the first-passage time t f to
reach the absorbing site L + 1. This is the sum of the N = L
transition times,

t f =
N∑

n=1

τn. (4)

When the assumption of unidirectionality is removed, we will
have N �= L; see below. The second quantity of interest is the
maximum transition time,

τmax = max(τ1, . . . , τN ), (5)

i.e., the longest time a particle transits between two lattice
points upon reaching the boundary L + 1. In Fig. 1(a), we
show both quantities in a conceptual form.

According to the principle of the single long transition time
[18], we can relate the probabilities of t f and τmax when both
values are large:

Prob(t f > t ) ∼ Prob(τmax > t ) (6)

for large times t and any N . In particular, the power-law decay
is

Prob(t f > t ) ∼ N
A

α
t−α, (7)

which is the large t behavior of NProb(τn > t ). In Fig. 1(c),
we present this principle for transition times following the
Pareto distribution with α = 0.7 and t0 = 1. The intuitive idea
behind Eq. (6) is that for large t f , the remaining transition

times are negligible because τmax is so large that it dominates
the statistics indicated by the matching of the tails of the cor-
responding distributions. We note that in the large N limit, the
distributions of the properly rescaled and shifted t f and τmax

converge to an alpha-stable distribution according to the Lévy
central limit theorem [7] (when α < 2) and to the Fréchet
distribution according to the theory of extreme value statistics
[75]. The tails of these two famed distributions are identical,
as the principle of the single long transition time predicts.
However, Eq. (6) is valid for any N which is important for
any application with a finite sized system.

B. Elimination of the single long transition time

What is the effect of the elimination of the maximum
transition time τmax from the sequence {τn}N

n=1? We are in
particular interested in the modified first-passage time

tr = t f − τmax (8)

after removal of the maximum transition time from each par-
ticle trajectory. Clearly, this will speed up the transport in the
sense that now the time to transverse the system has shortened,
but by how much? Before we continue, we address a similar
problem. If we remove one transition at random, then we have
t f as the sum of N − 1 instead of N random variables. But this
is only a minor change in the statistics, which can be easily
seen by Eq. (7). Namely, the power-law decay of the sum
distribution is still t−α . However, as we show now, removing
the largest random variable as for tr in Eq. (8), the statistics
change dramatically.

In the Supplemental Material (SM) [76], we derive the
asymptotic behavior of the distribution of tr . We find

Prob(tr > t ) ∼ 1

2
N (N − 1)

(
A

α

)2

t−2α (9)
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valid for large times t and any N . The remarkable issue is
the doubling effect of the exponent −2α, i.e., previously we
had the −α decay in Eq. (7). Thus, the probability of large tr
is drastically decreased compared to the probability of large
t f . In particular, as we will discuss below, if α < 1, as it is
found in many disordered systems, then the mean first-passage
time diverges, but once we eliminate τmax from each trajectory,
the mean will diverge only if α < 1/2. In that sense, we have
a dramatic effect upon elimination. In Fig. 1(c), we present
Eq. (9), thus showing that the elimination effect is indeed large
for α = 0.7.

1. Scale invariance of the single long transition time principle

Similar to the principle Eq. (6), we can relate tr to the
maximum transition time after elimination of τmax from each
trajectory. So after this elimination, we deal with the N −
1 transition times {τn}N

n=1,n �=m = {τ1, . . . , τm−1, τm+1, . . . , τN }
where τmax = τm occurred at the m-th step. The step number
m is of course random. The maximum transition time after
elimination is

τ �
max = max(τ1, . . . , τm−1, τm+1, . . . , τN ), (10)

see Fig. 1(b) for schematics. The distribution of τ �
max is known

from order statistics [75]; we can simply see that its tail
behaves as Eq. (9). Therefore, we have the asymptotic rela-
tionship

Prob(tr > t ) ∼ Prob(τ �
max > t ) (11)

for large times t and any N . Thus, the principle of the sin-
gle long transition time still holds after the elimination of
τmax, which is an expected effect from scale-free fractal time
process. This indicates that continued removal of the second
longest transition time will also have a strong effect; see
further details below.

2. Elimination of several long transition times

What happens when we remove not only τmax but also
the next longest transition times from the trajectory? To
examine this question, we start by ordering the transition
times according to their values τ(1) < . . . < τ(N ). Obviously,
then, τ(N ) = τmax and τ(1) = min(τ1, . . . , τN ). Then we elimi-
nate the s, where s = 1, . . . , N − 1, longest transition times
{t(N−s+1), . . . , t(N )} and are left with {τ(1), . . . , τ(N−s)}. The
first-passage time after elimination is

tr (s) = t f −
N∑

q=N−s+1

τ(q). (12)

In the SM [76], we derive the asymptotic behavior of the
distribution of tr (s). We find

Prob(tr (s) > t ) ∼ N!

(s + 1)!(N − s − 1)!

(
A

α

)s+1

t−(s+1)α

(13)

for large t and any N . Importantly, Prob(tr (s) > t ) decays
with the exponent −(s + 1)α much faster than Prob(t f > t )
with the exponent −α. So the elimination of any additional
long transition time yields an additional power-law decrease

by the exponent −α. It follows that by removing the s longest
transitions times, we can strongly damp the tail of the time of
flight distribution.

The maximum transition time after elimination is

τ �
max(s) = τ(N−s) (14)

for which the distribution is known from order statistics [75],
and we see that its tail behaves as Eq. (13). Therefore, we have

Prob(tr (s) > t ) ∼ Prob(τ �
max(s) > t ) (15)

for large t and any N . This relationship generalizes the princi-
ple Eq. (11) due to the scale invariance of the transition times
Eq. (3). In Fig. B.1 in the SM [76], we present the four cases
s = 0, . . . , 3.

3. Mean first-passage time

The different power-law decays of Prob(t f > t ) in Eq. (6)
and Prob(tr > t ) in Eq. (9) have a dramatic effect on the mean
first-passage times. The mean 〈t f 〉 is finite only for α > 1 but
the mean after elimination 〈tr〉 for α > 1/2, as mentioned. We
quantify the elimination effect by the ratio

G = 〈tr〉
〈t f 〉 , (16)

where G is a measure of gain, in the sense that the smaller its
value, the faster is the modified transport process. We must
separate the two cases α < 1 and α > 1. As an example, we
present G for Pareto distributed transition times (see the SM
[76])

G =
⎧⎨
⎩

0 for 0 < α < 1,

1 − (−1)N α−1
α

(N − 1)!
�(−N+ 1

α )
�( 1

α ) for 1 < α.

(17)

Generally, for power-law transition times Eq. (3), we see a
transition in the behavior of G at the critical point α = 1
similar to a dynamical phase transition. When the disorder
becomes stronger α < 1, the ratio G is zero, which indicates
a significant effect upon elimination. In contrast, if we use
exponential transition times (see the SM [76]), we do not
witness a critical transition in the statistical properties of the
system. A subtle issue is found when α < 1/2. Then based
on our formulas Eqs. (6) and (9), both means 〈t f 〉 and 〈tr〉
diverge, so we have in Eq. (16) the ratio of two infinities. We
may still consider the sample means; the ratio is zero as shown
in Fig. 2, where we compare the theory of G with Monte Carlo
simulations. Note that close to α = 1, the simulation deviates
slightly from the nonanalytical prediction of the theory.

What is the effect of the elimination in the thermody-
namic limit N → ∞? To answer this question, it is useful
to eliminate the s longest transition times {τ(N−s+1), . . . t(N )}.
We quantify the gain by the ratio G(s) = 〈tr (s)〉/〈t f 〉. In the
SM [76], we calculate G(s) exactly for the Pareto and expo-
nentially distributed transition times. To define the limit, we
consider a fixed ratio s = f N , with the fraction 0 < f < 1.
We obtain for the example of the Pareto distributed transition
times

G(s) ∼
{

0 for 0 < α < 1,

1 − f 1−1/α for 1 < α.
(18)
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FIG. 2. The quantifier G, which is a measure of the transport
improvement Eq. (16), versus the parameter α, which is a measure
of disorder. When G = 0, the benefit from removal of the maximum
transition time is optimal, in contrast with G = 1. A transition is
found at α = 1, for three models of transport considered in this work,
the unidirectional model (UDT) (black circles), the continuous-time
random walk (CTRW) (red crosses), see Sec. IV, and the quenched
trap model (QTM) with strong bias (blue squares), Sec. V. We used
Pareto distributed transition times with t0 = 1. Each point in the plot
used 105 trajectories in the Monte Carlo simulation. For the UDT, we
have N = 20, for CTRW L = 10 and p = 0.75 so that 〈N〉 = 20, and
for QTM L = 20.

So even though the system is infinite, a relatively small f
leads to a qualitative improvement of the first-passage time.
Note that if f = 1, then we have G = 0. Furthermore, we
see that the gain undergoes a phaselike transition when the
control parameter is α, which as mentioned is proportional,
for example, to temperature for the trap model or the size of a
bead in actin network diffusion [70].

Finally, the assumptions used so far, namely prescribing
independent and identically distributed transition times and
the unidirectional transport, are too limiting. Most physical
systems have some kind of correlations among the transition
times, and particles performing the stochastic process can
move in the reverse direction even in the presence of a driving
force that transports the particle towards the boundary. Will
the above principles Eqs. (6) and (11) hold in more general
models, and will the large gain in elimination quantified by G
be generic in other models of transport in disordered systems?
Further, in what sense is it plausible to eliminate the long
sticking times in more realistic processes?

III. SIMULATION OF PORE-SCALE TRANSPORT
IN A POROUS MEDIUM SYSTEM

Over twenty years of field and laboratory experiments [69],
numerical simulations [4] and theoretical studies [1] have
shown how advective-diffusive tracer motion in hydrogeologi-
cal systems is characterized by many timescales. In particular,
the distribution of trapping times in these systems is very
broad, for example, for biased transport in porous medium
continuous-time random walk, with power-law sticking
times, is a profound model [23]. In many cases, values of the
exponents α are in the regime 1 < α < 2. Importantly, since

1 < α, and using the simplified picture used so far, we are
still in the phase where G is expected to be finite.

A. Model

In this section, we discuss the advection-dominated trans-
port behavior in porous medium. The particles and grains
for the porous medium are modeled as hard and imperme-
able. We have generated a two-dimensional heterogeneous
system, by randomly distributing in space solid circular grains
from a log-normal distribution, see Fig. 3(a), with a mean
diameter of λ = 1 mm and a standard deviation of λ/2.
The system overall dimensions are: Lx = 50λ and Ly = 40λ,
with an average porosity of φ = 0.35. A lognormal distribu-
tion can characterize the grain size distribution of different
natural soils [77], and therefore was used here as a rep-
resentative distribution. Fluid flow though this system was
determined by solving the Stokes equation (using COMSOL
Multiphysics): μ∇2U = ∇p, where U is the pore-scale (lo-
cal) velocity vector, p the fluid pressure, and μ = 10−3Pa s
the fluid dynamic viscosity of water, coupled with mass
conservation, ∇U = 0. No-slip boundary conditions were
applied on the perimeters of the solid objects (fluid-solid
interface) and on the external-vertical boundaries (e.g., im-
permeable walls). A constant pressure gradient was applied
between the bottom and the upper external boundaries of the
domain [4].

Particle transport was modeled by following an ensemble
of particles that move according to the flow field U [Fig. 3(b)].
The spatiotemporal displacement of each particle was deter-
mined by a streamline-based method [78], which computes
the time and distance needed for a particle to exit its cur-
rent element (within the numerical grid) and arrive to the
adjacent element. Particles (∼106) were distributed randomly
within a small rectangular strip along the entire (bottom) inlet
boundary of the flow domain, as an initial condition, and then
moved according to the equation of motion, dx = U[x(t )]dt ;
where x is the particle location vector and dt is the time step
[79]. Here, the transport mechanism takes into account only
the advective component, while neglecting the occurrence of
molecular diffusion. In practice, this scenario is suitable for
advection-dominated flow regimes [4,78].

To relate the transport of particles within the system to the
principle of the single long transition time, we first need to
characterize the transition times. To do so, we use a stan-
dard method [78] from single-particle tracking to define the
transition times, using a length scale roughly the size of the
grain diameter (λ); see the SM [76] for more information.
We use N = 30 as a representative number of transitions in
the numerical simulations to capture the fixed N situation of
the previous model. Thus, the typical travel distance of the
particles is L ≈ λN . Smaller values of N were examined (not
shown) and showed the same behavior.

In Fig. 3(b) inset, we show an example of a single-particle
trajectory within the domain, where the locations of transi-
tions are marked in black dots, and the maximum transition
time τmax is marked in red. From this example, it can be
seen that the maximum transition time occurs when a par-
ticle is transported within a narrow pore, perpendicular to
the pressure gradient (main flow direction). As a result, the
particle velocity magnitude (‖U‖) is small [see the color bar
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FIG. 3. (a) The generated porous medium, with a porosity of 0.35, and mean grain diameter of λ = 1 [mm]. (b) Fluid velocity field in the
generated pore-scale system; the color bar shows the normalized velocity field (divided by the mean value of the field, U ) with a logarithmic
scale. The inset shows an example of the location of the longest transition time from a single-particle trajectory within a scale of λ (see main
text). Transitions occur between two successive dots (black marker), where the longest transition time is marked in red. Length unit is [mm],
time in [s], and μ in [Pa s]. (c) A single trajectory showing the vertical axis y(t ) with N = 30 transitions. Each time point of a transition is
represented by a dot. The x axis is shown in a nondimensional time domain, i.e., t = tdimλ/U where the dimensional time tdim has the unit
U/λ, and U is the mean velocity. For the presented trajectory, we find τmax ≈ 279 and t f ≈ 343, where t f is the time it takes the particles to
transverse the typical distance L ≈ λN from bottom to top.

in Fig. 3(b)], and therefore the transition time ∼λ/‖U‖ be-
comes large. The results shown here can be considered typical
of other realizations of the domain disorder and with other
particle starting positions.

B. Principle of the single long transition time

In Fig. 4(a), we present the distributions for the first-
passage time t f and the maximum transition time τmax. As
expected from previous works, these distributions are very
wide (note the log-log scale). The striking behavior is that
we observe excellent matching in the right part of the tails
of the distributions, i.e., when t f and the maximum are large.
Thus, we find the principle of the single long transition
time in a nontrivial system, as in Eq. (6). This indicates

that the longest first-passage times are dominated by the
longest transition times, and not by a sequence of many
relatively long sticking times, or particles that move against
the flow.

An interesting effect is found in Fig. 4(a): The tails of both
distributions, of t f and τmax, are not smooth, but they exhibit
steplike structures. The transport is dominated by the disorder
configuration of the system. Namely, while the specific pat-
tern of the distributions depends on the details of the porous
medium model at hand, the single long transition principle
holds also in this fixed background system. It is also clear that
the existing theory of the big-jump principle for independent
and identically distributed random variables [18], presented
in the previous section, needs modifications to treat quenched

FIG. 4. (a) The distributions of the first-passage time t f (red circles) and the maximum of the transition times τmax (blue line) for the
simulation of transport in a pore-scale system with N = 30 transition times and 106 particles. The matching of the right tails of the respective
distributions shows the single long transition time principle which is nontrivial if compared to the Chistyakov version [18], as we do not
have here a power-law tail. (b) The distributions of t �

f (green circles) and τ �
max (purple line), i.e., the after the elimination of the maximum

transition time, for the same system as in panel (a). We also show the distribution of t f (red circles) again for comparison. (c) The distribution
of the first-passage time after eliminating only C = 5% of the largest maxima (black crosses) as explained in the main text, compared with the
distributions of the zero cost C = 0% first-passage time t f (red circles) and the costly eliminated t �

f (green circles) with C = 100%. Clearly,
the low-level removal C = 5% performs as well as the costly removal C = 100% (the removal of each maximum transition time from its
associated trajectory) in the far tails of the distribution. Namely, for the slow movers, which in the context of contaminant spreading are those
who leave long-lasting effects, we can use the cheaper strategy. Note that in our example, the longest transition times we sample are of the
order 2 × 104 while after removal we find this to be reduced by a factor of 10, indicating a large benefit time-wise.
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disorder (fixed in time like the scattering centers). This we
will be done later in Sec. V when treating the well-known
quenched trap model.

C. Elimination of the single long transition time

Now we eliminate τmax from each trajectory and study
the first-passage time tr = t f − τmax. This means that that we
follow each complete trajectory, and then remove the max-
imum transition time from it. Thus, the analysis focuses on
numerical validation of the removal principle. Regarding the
practical applications, we refer to Sec. III D below as well
as Sec. VI. In Fig. 4(b), we present the distribution of tr
(green) and the distribution of t f before elimination (red).
Clearly, we see a dramatic improvement in the transport. In
the same figure, we also show τ �

max after elimination (purple).
The figure illustrates the second level of the long transition
time principle, namely the tails of the distribution of tr and of
τ �

max match [like in Fig. 4(a) where the global maximum distri-
bution is compared with the distribution of t f ], compare also
to Eq. (11). The matching of the two distributions for tr and
τ �

max is valid even for a relatively complicated structure of the
right tail.

Practically the most important observation is that the elim-
ination leads to a significant reduction of the first-passage
times. Viewing the tracers as contamination, clearly, the re-
moval or treatment of the long transition time has a dramatic
effect on the cleanup of the system (see the original data in
red and the data after removal in green). Comparing the mean
first-passage times before and after elimination, as in Eq. (16),
we obtain the value G ≈ 0.6085; thus, the elimination of τmax

leads to expedited transport by about 39%.
So far, we showed that we gain nearly 40% increase of

efficiency of transport by the elimination method. However,
the method we used is costly, as it demands the elimination of
the maximum transition time from each trajectory. To move
closer to real applications, we address the following protocol.
We chose to remove the longest transition times from a fi-
nite percentage 0 < C < 1 of the trajectories (C is for cost).
In general, the idea is that in transport we may discover a
few pivotal regions or hot-spots where a critical number of
very large τmax occur, and then we need to treat/eliminate
only these spots, to expedite the transport. First, we order
the maxima according to τmax,(1) < . . . < τmax,(R) where R
is the number of trajectories. Then we eliminate the C × R
largest maxima {τmax,(R[1−C]) < . . . < τmax,(R)} and obtain the
modified first-passage time t�

f . The remaining R(1 − C) − 1
trajectories (with low maxima) remain with t f . The total elim-
ination C = 1 is clearly costly (but as shown very efficient)
while C = 0 is the limit of zero cost but also clearly not
useful for our purpose. In Fig. 4(c), we compare the distri-
bution of t�

f with C = 0.05 with the two distributions of the
original t f with C = 0 and t�

f with C = 1. Remarkably, for
large first-passage times, the distributions of t�

f with C = 0.05
and 1 are similar. Thus, the far right tail of the distribution of
t�

f , for the case of partial removal of merely 5% (C = 0.05)
is nearly as efficient as the costly case with C = 1. Thus,
because of the scale-free nature of the process, it is suffi-
cient to use a relatively inexpensive method, and small C
performs well.

0% 50% 100%

0.6

0.8

1

0% 0.05% 0.1%
0

0.5

1

FIG. 5. (a) The quantifier G Eq. (16) versus the cost factor C
for the porous medium simulation presented in Fig. 4. As explained
in the text, C is the percentage of trajectories where the τmax was
removed. (b) The quantifier G2 for the variance versus C for the same
simulation.

To further quantify these observations we plot in Fig. 5(a)
the gain quantifier G versus the percentage treated trajectories;
as mentioned, when C = 1, we obtain G ≈ 0.61, while clearly
if C = 0 then G = 1. We find that already for the relatively
small value C ≈ 0.1, G converges almost to the fixed value
0.61, which means that any additional elimination above C ≈
0.1 does not yield further significant gain.

Finally, we can quantify the gain also with the variance.
In Fig. 5(b), we show the ratio between the variance of the
first-passage time after elimination of the longest sticking
time, and the variance of the original data set. This ratio is
denoted as G2, and we perform the elimination as before with
some percentage C. We find that for a small value C ≈ 0.01%
the quantifier G2 dropped quickly. After that, the convergence
is very slow until G2 ≈ 0.25% for C = 100%. We see from
the sharp drop in G2, that the variance of the first-passage time
is very sensitive to the removal. For the advection-diffusion
model in the porous medium under study, this is because
the variance is by far more sensitive to the shape of the
distribution at its fat tail if compared to the mean. And this
is also related to the fact that here the disorder is not too
strong, namely the mean of the transition times is finite, for
the simulation in Fig. 4 we found 〈τn〉 ≈ 0.96. More specif-
ically, the fact that the ratio of the variances is so small is
important, because reducing the variance makes the system
more homogeneous, and hence predictable (we will discuss
this in a future publication). Thus, the transport behavior tends
toward Fickian behavior as we remove more maxima.

D. Bottlenecks in the porous medium model

As mentioned in the Introduction: A natural question is,
can we find specific spatial locations where the process is
slowed down? The general answer to this question is beyond
the scope of this study. Here, we focus on the simulation
model described above. After coarse graining, we may define
transition times along the paths of individual particles, as
already considered. We then, as before, search for the longest
transition times, focusing on a certain percentage of the largest
maximum sojourn times in the entire system. We can then
envision two opposing cases: if the system is homogeneous,
these longest (trapping) times will be spread uniformly in the
system, while if the system is strongly disordered, the longest
times will be distributed nonuniformly.
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FIG. 6. Location of the 1% largest maximum transition times,
i.e., the cost function is C = 0.01, for the system shown in Fig. 3. The
color bar on the right-hand side is displayed in a logarithmic scale,
where 0 corresponds to 1 particle and, for instance, 3 represents 103

particles. Clearly, the system exhibits well defined localized spots
where the transport is slowed down dramatically.

In Fig. 6, we present the locations for 1% of the largest
maximum sojourn times in our system for a total of 106 parti-
cles. It becomes clear that the system shows certain locations
where a large number of particles are trapped for extreme
times. Thus, the extremes are distributed in a highly non-
homogeneous manner throughout the system. This indicates
that, at least in principle, we can consider modification of
some rather small part of the system and gain a large effect
on the reduction in the first-passage time. In other words, we
envision a situation wherein we use a learning session, with a
relatively small number of particles, to gain information from
the resulting map (e.g., Fig. 6). Identifying the locations of
deep bottlenecks (longest trapping times) is key to identifying
a removal strategy and an enhancement of the first-passage
time. At this stage, it is premature to specify how, precisely,
a practitioner should treat this problem in practice, in terms
of determining how to create the bypass for the slow spots.
Moreover, from a theoretical point of view, this is no general
theory that can specify exactly when similar effects will occur
(beyond the one-dimensional trap model in Sec. V and the
model under study). Maps such as those presented in Fig. 6
will in general depend on the bias, the geometry and size
of the system, the disorder itself, the coarse graining, the
threshold for the number of largest maxima, and the initial
conditions. For example, a flux-weighted initial distribution
was also investigated but showed no statistical difference to
the random distributed initial condition presented here; it is
therefore not discussed further. Other initial conditions like
point injections, however, are likely to impact the specific
results shown in Fig. 6. This should be more prominent when
the bias becomes very strong. Further investigation in this
direction is clearly needed.

While a detailed study of bottleneck modification is be-
yond the scope of this study, we provide further analysis of
the impact of localized bottlenecks. Figure 7 shows how the
mean and variance of the first-passage time distribution are
altered when specific particles are removed from the deepest

FIG. 7. Mean (blue) and variance (yellow) of the first-passage
time distribution of particles after removing particles with the longest
transition times in the deepest bottlenecks (gray) for the system
shown in Figs. 3 and 6. Both moments are normalized with respect
to their initial values (i.e., before particles are removed).

bottlenecks, shown in Fig. 6. The elimination procedure be-
gins by identifying the particles with the longest transition
times and determining the bottlenecks in which they reside
(using a fixed-radius, λ, nearest neighbors clustering algo-
rithm); rather than remove the entire bottleneck from the sys-
tem (which would then lead to a change in flow patterns and
thus a modified overall transport behavior), we extract specific
(long transition time) particles that pass through these regions.

In Fig. 7, the mean and variance (left y axis) are normalized
with respect to their initial values (i.e., before particles are
removed). The right y axis denotes the number of bottle-
necks that have been extracted (shown as grey dots). The
x axis indicates the percentage of particles removed from
these bottlenecks, and thus the entire system. Clearly, this
knowledge of the maximum transition times is attainable only
after a learning session. Detecting bottlenecks prior to particle
transport necessitates an analysis of the system itself, such
as a comparison of trap depths, as demonstrated in the case
of the quenched trap model in Sec. V. Figure 7 shows that,
significantly, interception and extraction of even a relatively
small number of particles in the deepest bottlenecks triggers
notable alteration of the overall transport dynamics. Specif-
ically, addressing just two bottlenecks, which results in the
extraction of only ∼0.001% of the particles, yields a notable
reduction of ∼10% in the variance of the first-passage time.
This reduction highlights a substantial transformation in trans-
port characteristics, suggesting a discernible shift towards
Fickian behavior. As the proportion of eliminations increases,
the pace of transport quickens, leading to a reduction in the
mean value of the first-passage time. Note that the variance
is more strongly affected than the mean when considering
the removal of only limited numbers of particles with longest
overall transition times. In contrast, the removal of many or
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FIG. 8. Conceptual figure of paths in models considered in this
paper. The walks are on a lattice, while the (a) unidirectional trans-
port (UDT) (see also Fig. 1) and (b) continuous-time random walk
(CTRW) describe homogeneous processes, in the (c) quenched trap
model (QTM) we have a particle in a random, fixed in time, energy
landscape.

all maximum transition times has a large influence also on
the mean, as seen in Fig. 5. Thus, spatial removal of maxima
from specific locations and removal of maxima from all paths
do not yield the same results.

IV. CONTINUOUS-TIME RANDOM WALK

We now consider a basic model for anomalous transport,
the continuous-time random walk [15,29], which has found
application in a vast number of systems. The first-passage time
problem in this model was studied extensively [23,25–27,80–
84], starting from the pioneering work of Scher and Montroll
in the context of time of flight of charge carriers in disordered
material [10,11]. We study the connection between the first-
passage time and the maximum transition time, formulating
the single long transition time principle, and then investigate
the transport enhancement via elimination of the maximum
transition time.

A. Model

In contrast to the unidirectional model of Sec. II, jumps to
the left and right are permitted; see Fig. 8. The probability of
jumping from some lattice point to the left is q and to the right
is p = 1 − q. The difference p − q is related to the driving F
stemming from an external force field, in the limit of small F
via linear response theory [30,85]. In addition, at each lattice
point, the particle waits a random time τ distributed according
to the power-law distribution Eq. (3), namely ψ (t ) ∼ At−1−α ,
and α was obtained in Ref. [15]. The particles start at x =
1. The lattice points are {. . . ,−1, 0, 1, . . . , L}, thus having a
semi-infinite lattice, and the absorbing boundary is situated
at L + 1. The first-passage time t f to reach x = L + 1 is the
sum t f = ∑N

n=1 τn and the maximum is τmax = max{τn}N
n=1.

N which is the number of jumps made by the particle before
absorption is random while for the unidirectional model of
Sec. II N is finite namely N = L. This is a crucial difference,
especially when the fluctuations of N are large. We see that
the first-passage time t f in the continuous-time random walk
is the same as in Eq. (4) and τmax as in Eq. (5) but with a
random number of transitions N .

102 104 106

10-2

100

FIG. 9. The distributions of t f (red circles), τmax (blue line), tr

(green circles), and τ �
max (purple line) for the continuous-time random

walk with L = 5 and right bias p = 0.8. Pareto transition times with
t0 = 1 and α = 0.5 were used for the Monte Carlo simulations with
105 particles. We find perfect matching between the tails of the two
distributions as predicted by Eqs. (19) and (23). We clearly see also
here a large benefit from the elimination of the longest transition
time τmax.

B. Principle of the single long transition time

Because N is random, we have to average over it with a
technique called subordination [23,26,80,86]. The idea is to
consider a discrete time random walk, namely performing
jumps every unit of time. In this walk, we use the same
bias, initial conditions, and boundary conditions, as for the
original model, the continuous-time random walk. Let φdis(n)
be the probability that a particle made N = n jumps before
its absorption, and the subscript “dis” stands for discrete.
Obviously, φdis(n) depends on p and the initial distance L to
the absorbing boundary plays a key role.

The following analysis depends on the mean 〈N〉 =∑∞
n=1 nφdis(n), namely the mean number of steps in a biased

discrete time random walk made before absorption. We have
to differ the two cases of finite 〈N〉 < ∞ and the case where
〈N〉 = ∞ diverges, which yields a vastly different behavior
for the long transition time principle. We first study the case
p > 1/2 where 〈N〉 is finite. In this case we are treating a prob-
lem, investigated by Ref. [51] in generality, namely where the
large deviations are studied for a random number of random
variables. As before, we are interested when the first-passage
time is large, and find

Prob(t f > t ) ∼ Prob(τmax > t )

∼
∞∑

n=1

nφdis(n)
A

α
t−α

∼ 〈N〉A

α
t−α,

(19)

see the SM [76]. We see that the difference to the unidirec-
tional case Eq. (6) is that we replace N by the mean number
of jumps 〈N〉. More importantly, the principle of single long
transition time holds, as before, see Fig. 9.

We find φdis(n) and then 〈N〉 which is easy to obtain 〈N〉 =
L/(p − q) (see Refs. [23,24,87] and also the SM [76]). Then
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FIG. 10. (a) The factor 
α given in Eq. (21) to obtain the rescaled
transition time τ̃max = 
ατmax. (b) The distributions of t f (red circles)
and τ̃max (blue line) compared with the theory Eq. (22) (black line)
for the continuous-time random walk with no bias p = 0.5 and L =
5. We used Pareto transition times with t0 = 1 and α = 0.5 for the
Monte Carlo simulations with 105 particles. Due to possible very
long left excursions, we cut off the simulations once t f > 1014. We
find perfect agreement with the theory of the extended long transition
time principle Eq. (22).

Eq. (19) reads

Prob(t f > t ) ∼ Prob(τmax > t )

∼ L

p − q

A

α
t−α.

(20)

Notice that when p → 1/2, and hence q = 1 − p → 1/2 as
well, the amplitude diverges. Similar results can be obtained
for other models (see the SM [76]), for example, the case
when we have a reflecting wall situated possibly far from the
initial condition, or when we replace the lattice model with a
continuous space version.

1. Principle of the extended long transition time

A very different behavior is found for the nonbiased
continuous-time random walk, namely p = q = 1/2. Then the
mean 〈N〉 is infinite, which is well known [24], as it stems
from the fact that the walker can drift to the left, in the
direction opposing the absorbing boundary. Nevertheless, the
random walk is recurrent. The open question is will the single
long transition time principle still hold and if so what are the
asymptotics?

To formulate the single long transition time principle we
define a rescaled maximum transition time τ̃max = 
ατmax

with the α-dependent factor


α =

⎛
⎜⎝ 2

√
|�(−α)|

α

|�(−α/2)|

⎞
⎟⎠

2/α

. (21)

In Fig. 10(a), this rescaling factor is presented. Clearly,

α > 1, hence τ̃max > τmax. For α → 0, we obtain the
original maximum τ̃max → τmax while for α → 1, the scaling
factor 
α diverges. Now this rescaled long transition time
τ̃max is related to the first-passage time by the asymptotics

Prob(t f > t ) ∼ Prob(τ̃max > t )

∼ (
α )α/2

√
2A

α
t−α/2,

(22)

see Fig. 10(b) and the derivation in the SM [76]. The fact that
here we rescale τmax with the factor 
α means that the pre-
viously discussed long transition time principle Eq. (19) still
holds but with a renormalized definition of the maximum tran-
sition time. But in contrast to Eq. (19), in Eq. (22) the power-
law decay is t−α/2. The first-passage time is always larger
than the original τmax, that is why we rescaled the latter with

α > 1. Thus, we call Eq. (22) the principle of the extended
long transition time. In the limit α → 0, the first-passage
timescales as the longest transition time without rescaling. On
the other hand, in the limit α → 1, we have 
α → ∞ so that
the principle breaks down as we discuss now.

What happens for α > 1 for the unbiased case p = 1/2?
The probability distribution Prob(t f > t ) called survival prob-
ability decays like t−1/2 which is a well-known result in the
theory of diffusion [24]. Because the mean transition time is
finite, α plays no role in the decay of this survival probability.
This is vastly different from the distribution of the maximum
Prob(τmax > t ) which decays in the continuous-time random
walk model like t−α/2; see the SM [76]. Hence, for α > 1 and
p = 1/2, there is no principle of the single long transition time
nor of the extended version. We end this subsection with a
reference to the SM [76] for a discussion of the left biased
case p < 1/2.

The asymptotic relationship in Eq. (22) requires renor-
malization of the maximum transition time. We note that
scale invariance and renormalization are indeed related to the
models under study; for example, the renormalization group
was studied for the quenched trap model [88]. We note that
removal of the largest waiting time will modify the exponent
of the first-passage time, in the sense defined above for see
Eq. (9). In usual renormalization group treatment, the relevant
exponents do not change via coarse graining. The renormal-
ization group approach used to find the transport properties of
the system is different from the one presented here.

C. Elimination of the single long transition time

After studying the long transition time principle, we are
now ready to make use of it. The fact that tail of distributions
of t f and τmax are related, are a strong indication that the
removal of the longest transition times will have a profound
effect, which is now quantified.

We consider the case p > 1/2, so the moments of N exist.
With the same approach as in Sec. IV B, we obtain the asymp-
totic relationship

Prob(tr > t ) ∼ Prob(τ �
max > t )

∼ 1

2
〈N (N − 1)〉

(
A

α

)2

t−2α,
(23)

with 〈N (N − 1)〉 = ∑∞
n=1 n(n − 1)φdis. Compared to the re-

sult of the unidirectional model Eqs. (9) and (11), we find
again the same power-law decay −2α but the N-dependent
prefactor must be averaged, see Fig. 9.

We measure the gain from the elimination of τmax with
the ratio G = 〈tr〉/〈t f 〉 as in Eq. (16). For the example of the
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FIG. 11. The quantifiers G of the unidirectional model Eq. (17)
(black circles) and the continuous-time random walk Eq. (24) (red
crosses). The transition times follow the Pareto distribution with
α = 1.1 and t0 = 1. To make the comparison we take N in the uni-
directional model equal to L/(p − q), which is the mean number of
steps before absorption in the continuous-time random walk, namely
〈N〉. Furthermore, the continuous-time random walk has the bias
parameter p = 3/4.

Pareto distributed transition times, it is

G =
{

0, 0 < α < 1,

1 − hα

∑∞
n=1 φdis(n)(−1)nn!�

(−n + 1
α

)
, 1 < α,

(24)

with hα = [(p − q)(α − 1)]/[αL�(1/α)]; see the SM [76]. In
Fig. 11, we show the quantifier of the elimination effect G
versus L. The figure also shows G for the unidirectional model
of Sec. II. For small L the two quantifiers are different, but
for large enough L they are similar. This similarity is shown
in Fig. 2 where we plot G versus α of the continuous-time
random walk. Based on that observation, the thermodynamic
limit L → ∞ can be treated similarly as for the unidirectional
model. Namely, the removal of the s = f N longest transition
times in the continuous-time random walk satisfies Eq. (18).
It is remarkable that the phaselike transition in G, found when
α is varied, is insensitive to model details.

Remark. In some transport systems, the continuous-time
random walk exponent α is spatially varying [89,90]. Such
cases require a separate discussion. In these systems, parti-
cles aggregate in regions where roughly speaking α(x) has a
minimum. We expect an even larger effect of removal in these
systems.

V. QUENCHED TRAP MODEL

In the unidirectional transport model and the continuous-
time random walk, the transition times are spatially homo-
geneous, i.e., independent of the lattice points. We drop
this simplifying property now, considering the quenched trap
model [7–9,43,45]. Similar to the simulation of the pore-scale
system in Sec. III, in the quenched trap model the disor-
der is fixed, more specifically the particle is performing a
biased random walk with 1/2 < p < 1 in a random energy
landscape. For the quenched trap model, we deal with en-

ergetic traps on the lattice points x = {. . . ,−1, 0, 1, . . . , L}.
As before, the particle starts at x = 1 and the absorption is
at x = L + 1. At each lattice point x, an energy trap Ex is lo-
cated with the distribution Prob(Ex > E ) = exp(−E/Tg) and
Tg is a measure of disorder. At lattice point x, where the trap
depth is Ex, the particle waits the random time τx with the
mean τ̄x = t0exp(Ex/T ) which is the well-known Arrhenius
time to escape from an energy trap, used in many activation
processes. Here, T is the temperature of the system and t0 is
a well-studied timescale for dynamics in the bottom of the
trap [91]. According to the basic theory of activation, the
distribution of the transition times is exponential Prob(τx >

t ) = exp(−t/τ̄x ). Averaging Prob(τx > t ) over the disorder
gives Eq. (3) with α = T/Tg [7]. The idea is that the Arrhenius
time is exponential in E , and hence even for a thin-tailed
distribution of the energy, we obtain fat-tailed distributions for
the transition times (after averaging over the disorder, which
is discussed below).

A. Principle of the single long transition time

1. Strong bias in a one-dimensional random environment

We first consider the strong bias case p = 1 where the par-
ticles move only to the right, namely a constant strong driving
force acts on the system. We consider the first-passage time
without averaging over the disorder, namely we treat a system
with a specified realization of the energies {E1, .....EL} and the
absorption at x = L + 1. This corresponds to a situation when
the experiment has one realization of the disordered system.
The first-passage time t f is a sum of the microscopic transition
times at the traps, as in Eq. (4) with N = L. The maximum
transition time, in the quenched trap model, is defined as the
transition time in the deepest trap Emax = max(E1, . . . , EL ).
Let us say the deepest trap is at the lattice point x = m.
Then τmax = τm. We consider the probability density function
of the first-passage time pt f (t ) = 〈δ(t − [τ1 + . . . + τL])〉.
Its Laplace transform p̂t f (s) = ∫ ∞

0 pt f (t )exp(−st )dt and the
maximum probability are

p̂t f (s) =
L∏

x=1

(1 + τ̄xs)−1,

Prob(τmax > t ) = exp

(
− t

τ̄m

)
. (25)

Note the equal sign in the second equation due to the as-
sumption that τmax is the transition time from the deepest
trap. Asymptotically, when the maximum transition time is
very long, as found in strongly disordered systems, then it
always happens in the deepest trap. The inverse Laplace
transform of the first formula can be calculated exactly
pt f (t ) = ∑L

x=1 Qx pτx (t ) with Qx = τ̄ L−1
x

∏L
y=1,y �=x[τ̄x − τ̄y]−1.

From here we find

Prob(t f > t ) ∼ QmProb(τmax > t )

= Qmexp

(
− t

τ̄m

)
,

(26)

with the prefactor Qm = τ̄ L−1
m

∏L
x=1,x �=m[τ̄m − τ̄x]−1. The de-

cay of both distributions for t f and τmax is exponential, unlike

034124-11



HÖLL, NISSAN, BERKOWITZ, AND BARKAI PHYSICAL REVIEW E 108, 034124 (2023)

100 200 300 40010-2

10-1

100

FIG. 12. The distributions of t f (red circles) and τmax (blue lines)
for the strongly biased quenched trap model with L = 25. Here, we
consider a specific realization of the disorder, corresponding to an
experimental situation where no averaging over disorder is made. We
find excellent agreement with theory Eq. (26). The two upper lines
represent a unique realization of the disorder with Emax ≈ 10.61 and
the two lower lines represent another realization with Emax ≈ 8.86.
We used the parameters T = Tg = 2 so that α = 1 and t0 = 1. To
generate the figure, we used 105 trajectories for each disorder. These
simulations take into consideration the thermal fluctuations, namely
the activation process happens at random times. The fact that differ-
ent sets of disorder do not produce the same behavior is an indication
for nonself averaging for the observables of interest, however, the
single long transition time principle clearly holds.

the power laws found previously. The reason is that in each
trap we have exponentially distributed trapping times and
hence naturally the distribution cannot be fat tailed, as the
system is finite. What is remarkable, is that the principle of
the single long transition time still holds, in the sense that
the exponential decays of the two probabilities are the same
though note the prefactor Qm in Eq. (26). In Fig. 12 we
demonstrate Eq. (26) and compare its prediction with Monte
Carlo simulations. Eq. (26) is an indication that the removal of
the deepest trap, is going to qualitatively change the statistical
properties of the time to cross the system t f .

2. Strong bias with average over the disorder

In the laboratory and also theoretically, averaging over
disorder has a profound effect in the sense of modifying
statistical laws such as Eq. (26). As discussed in the review of
Bouchaud and Georges [7], many channels of disorder may be
present. Each particle then encounters a specific realization of
disorder, but eventually, the measured quantity is an average.
What will be the consequences for the single long transition
time principle?

The procedure of averaging over disorder of the energy
landscape denoted 〈◦〉en, using Eq. (25), is found in the SM
[76]. We find the single long transition time principle

〈Prob(t f > t )〉en ∼ 〈Prob(τmax > t )〉en

∼ L�(1 + α)(t0)αt−α,
(27)

with the exponent α = T/Tg valid for large t (see also Fig. 13).
This scaling behavior is the same as the large t behavior
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FIG. 13. The effect of elimination of the deepest trap on transport
is studied for the quenched trap model. The plot shows the distribu-
tions of t f (upper red circles), τmax (upper blue line), tr (lower red
circles), and τ �

max (lower blue line) for the strongly biased quenched
trap model with L = 10. An average over the disorder was per-
formed. We find perfect agreement with the theory, i.e., the principle
of the single long transition time Eq. (27) (upper black line) and the
relationship after elimination Eq. (33) (lower black line). We used
the parameters T = Tg = 2 such that α = 1, t0 = 1. We used 106

particles in the Monte Carlo simulations.

of L〈Prob(τx > t )〉en where 〈Prob(τx > t )〉en is the probabil-
ity of the transition times after averaging over the disorder.
This long transition time principle shows that the theory for
the unidirectional model, continuous-time random walk and
quenched trap model after averaging over the disorder and
p = 1 are similar, i.e., compare Eqs. (6), (7), (19), and (27).
The more profound issue is what is the effect of elimination?
And for what happens when p �= 1, see Eq. (29).

3. Weak bias with average over the disorder

We now consider the case 1/2 < p < 1, namely the bias
is driving the system towards the absorbing boundary x =
L + 1. Unlike the case studied in previous subsection where
p = 1, now the particle can retract. Here, the number of vis-
ited traps K is a random integer. Note that the problem of
the number of distinct sites visited by a random walker has
a long history [92–94]. We also define the total time spent in
a trap, the occupation time τ̂x. This observable is of interest,
since if we can eliminate traps, possibly the deepest in our
system, we are modifying not a single transition time, since
the particle can revisit the trap several times before being
absorbed. The occupation time is τ̂x = ∑Nx

nx=1 τ (nx )
x where Nx

is the number of visits of the particle at trap x. Further,
Nx = 0 implies that the particle did not visit x before being
absorbed (note that N1, . . . , NL are necessarily not equal to
zero while N0, N−1, . . . can be zero). For each of these Nx

visits, the transition time is drawn from the same distribution
Prob(τx > t ) = exp(−t/τ̄x ). We denote these transition times
as τ (nx )

x with the visit number nx = 1, . . . , Nx.
The first-passage time is a sum of occupation times t f =∑L
x=L−K+1 τ̂x. Similarly, the occupation time in the deepest

visited trap Emax = Em with random x = m is denoted τ̂max =
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τ̂m. The probability distributions of these two quantities are

Prob(t f > t ) =
∞∑

k=1

∞∑
nx=0

φ(nx, k)Prob(t f > t |nx, k),

Prob(τ̂max > t ) =
∞∑

k=1

∞∑
nx=0

φ(nx, k)Prob(τ̂max > t |nx, k).

(28)

Here, φ(nx, k) is the joint probability that a particle visited
K = k traps with Nx = nx visits at trap x. For example, if
p = 1, then clearly φ(nx, k) = δnx,1δk,L where we use the Kro-
necker δ. The conditional probabilities on the right-hand side
of Eq. (28) are conditioned on the number of visits per trap and
of visited traps. The full analysis of Eq. (28) and in particular
the derivation of the asymptotic behaviors can be found in
the SM [76]. For the average over the disorder, we obtain the
principle of the long transition time

〈Prob(t f > t )〉en ∼ 〈Prob(τ̂max > t )〉en

∼ (t0)αMαt−α,
(29)

with the function

Mα =
L∑

x=−∞

〈
�(Nx + α)

�(Nx )

〉

=
L∑

x=−∞

∞∑
k=1

∞∑
nx=0

φ(nx, k)
�(nx + α)

�(nx )
. (30)

While the dimensionless function Mα is nontrivial we see that
the long transition time principle holds, in general for the
quenched trap model, the far tails of the distribution of the
first-passage time and the maximum are related. This holds
true for any value of α whether one is in the glassy phase
α < 1 or not α > 1. However, clearly the principle becomes
meaningful in practice when α is not too large. In Fig. 14(a),
we present the simulation for α = 1 which perfectly matches
the long transition time principle Eq. (29). We now explain
how to find Mα .

The function Mα can be obtained from the simulation of
a discrete time and space random walk with the bias p. We
generate numerically a trajectory of the discrete time and
space random walk which starts at x = 1 and is absorbed at
x = L + 1. With this trajectory, we count for every simulated
trajectory, the number of visits nx at each lattice point x <

L + 1. Then averaging �(nx + α)/�(nx ) as in Eq. (30) gives
us Mα . In Fig. 14(b), we plot Mα versus α and in Fig. 14(c),
the same function versus p. Clearly, for p → 0.5, the value
of this parameter blows up, indicating the breakdown of the
long transition time principle. The physical reason for this
is that when p = 1/2, the particle can explore in principle a
very large number of traps as the motion becomes nonbiased
(somewhat similar, but far less trivial as the case found with
p = 1/2 for the continuous-time random walk).

B. Elimination of the deepest trap

We now study the effect of elimination of the maximum
transition time on the statistics of the first-passage time for
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FIG. 14. (a) The distributions of t f (red circles), τ̂max (blue line),
tr (green circles), and τ̂ �

max compared with the theories Eq. (29) (upper
black line) and Eq. (35) (lower black line) for the weakly biased
quenched trap model with L = 10 and p = 0.7. The functions Mα

and M�
α were obtained from a discrete time and space random walk,

as explained in the main text. We used the parameters T = Tg = 2 so
that α = 1, t0 = 1 (as in Fig. 12 and 13) and 106 particles. (b) Mα of
Eq. (30) versus α is plotted for p = 0.55, 0.75, and 1 (three curves
with black circles from top to bottom). When p = 1, we obtain
Mα = L�(1 + α) as in Eq. (27) which is also shown (red line). We
used L = 10 and 104 particles were simulated to obtain Mα . (c) Mα

of Eq. (30) versus p is plotted for α = 1 (black circles). We used the
same parameters for the simulation as in panel (b).

the strongly biased model. The idea is to remove the deepest
trap max(E1, . . . , EL ) from the set of traps {E1, . . . , EL} and
study the effect on the transport.

1. Strong bias in a one-dimensional environment

We apply the methods of order statistics, i.e., we order
the traps according to E(1) < . . . < E(L) and remove E(L) =
max(E1, . . . , EL ) from this set. Let x[E(q)] be the lattice
point of the q-th deepest trap E(q) with q = 1, . . . , L. The
first-passage time and the long transition time both after elim-
ination of τmax = τm (remember that m is the location of the
deepest trap Em = E(L)) are tr = ∑L−1

q=1 τx[E(q)] = t f − τx[E(L)]

and τ �
max = τx[E(L−1)]. So clearly τ �

max is the time spent in the
trap whose depth is ranked second in the sequence. The
Laplace transform p̂tr (s) of the probability density function
ptr (t ) = 〈δ(t − [τx[E(1)] + · · · + τx[E(L−1)]])〉 and the probability
of the maximum in the second deepest trap are

p̂tr (s) =
L−1∏
q=1

(
1 + τ̄x[E(q)]s

)−1
,

Prob(τ �
max > t ) = exp

(
− t

τ̄x[E(L−1)]

)
. (31)

We can analyze Eq. (31) for the one-dimensional random en-
vironment (i.e., one channel of energy traps) just as Eq. (25),
thus, finding after the removal

Prob(tr > t ) ∼ Qx[E(L−1)]Prob(τ �
max > t )

= Qx[E(L−1)]exp

(
− t

τ̄x[E(L−1)]

)
,

(32)
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with the prefactor Qx[E(L−1)] = (τ̄x[E(L−1)] )
L−1 ∏L−1

x=1,x �=x[E(L−1)]

[τ̄x[E(L−1)] − τ̄x]−1. The exponential decay of both distribu-
tions is the same, namely the second deepest trap with the
rate −1/τ̄x[E(L−1)] takes control, which is faster than the de-
cay −1/τ̄x[E(L)] found previously without the elimination in
Eq. (26) because E(L−1) < E(L). Thus, removing the deepest
trap yields a gain depending on the particular values of the
energies E(L−1) and E(L). Recall that the Arrhenius times
are related to the energies τ̄x[E(L−1)] = t0exp(E(L−1)/T ) and
τ̄x[E(L)] = t0exp(E(L)/T ), so the times in Eqs. (26) and (32) are
mapped to the energies as usual.

We now consider the two examples in Fig. 12, where the
energy landscape was generated with α = 1. We find before
elimination Prob(t f > t ) ∝ exp(−t/201) and exp(−t/84)
while after elimination Prob(tr > t ) ∝ exp(−t/18) in the first
example and ∝ exp(−t/11) in the second. The gain is clearly
enormous, and if we would consider α < 1, then we expect an
even larger typical gain. However, obviously, since we did not
average over disorder, this result is specific for a realization
of disorder. To quantify the effect we consider below the
ensemble averages. The measure of gain is G = t̄r/t̄ f with
the averages t̄ f = ∑L

x=1 τ̄x and t̄r = ∑L−1
q=1 τ̄x[E(q)]. For the two

examples of Fig. 12, we obtain G = 0.25 and 0.46. Note that
while G is a measure of gain based on the mean, the above
discussion on the exponential decay focuses on large times.
Both G and the exponential tails show remarkable sensitivity
after the removal. However, G is roughly speaking a statistical
measure of typical events, while the tails are naturally sensi-
tive to the longest transition times.

2. Strong bias with average over the disorder

Averaging Eq. (31) over the disorder yields

〈Prob(tr > t )〉en ∼ 〈Prob(τ �
max > t )〉en

∼ L(L − 1)�(1 + 2α)
(t0)2α

2
t−2α.

(33)

See the SM [76] for the full details of the calculation. Com-
parison with the long transition time principle Eq. (27) shows
again the drastic improvement by our method. While the
power-law decay of Eq. (27) is t−α , in Eq. (33) it is doubled
to t−2α . We previously found this doubling effect also for the
unidirectional model and the continuous-time random walk.

The measure of gain is G = 〈t̄r〉en/〈t̄ f 〉en and we find ex-
actly

G =
⎧⎨
⎩

0 for 0 < α < 1,

1 − (−1)L α−1
α

(L − 1)!
�(−L+ 1

α )
�( 1

α ) for 1 < α,

(34)

see the SM [76]. In Fig. 2, we plot G versus α for L = 20
and compare this analytical prediction with the simulation,
showing excellent agreement without fitting. The behavior is
the same for the unidirectional model Eq. (17) with L = N
and Pareto distributed transition times. Thus, in the thermody-
namic limit L → ∞, i.e., removing the s = f L deepest traps,
we obtain Eq. (18).

3. Weak bias with average over the disorder

We consider the weak bias case of Sec. V A 3, namely
1/2 < p < 1. For the average over the disorder, we remove
the deepest visited trap of each particle. The two probability
distributions of the first-passage time and of the maximum
occupation time, both after the removal, behave as

〈Prob(tr > t )〉en ∼ 〈Prob(τ̂ �
max > t )〉en

∼ (t0)2α

2
M�

αt−2α,
(35)

with the function

M�
α =

L∑
x=−∞

〈
(K − 1)

�(Nx + 2α)

�(Nx )

〉

=
L∑

x=−∞

∞∑
k=1

∞∑
nx=0

φ(nx, k)(k − 1)
�(nx + 2α)

�(nx )
, (36)

see the SM [76]. Both probabilities are related and experi-
ence a doubling effect in the power-law exponent; compare to
Eq. (29). We obtain M�

α from a discrete space and discrete time
random walk (similar to the method of finding Mα). For the
case p = 1, the function is M�

α = L(L − 1)�(1 + 2α) which
gives Eq. (33). In Fig. 14(a), the two distributions of tr and
τ̂ �

max are demonstrated, and we find full accord between theory
and simulation.

The gain quantifier G = 〈t̄r〉en/〈t̄ f 〉en has the numerical
value 0.151 for the simulation of Fig. 14, showing once
again that the elimination of the maximum contribution, here
the deepest trap, yields a large gain stemming from doubly
decreased power-law decay of the probability (compared to
the original statistics), especially for α = 1 as used in this
example.

VI. OUTLOOK FOR PRACTICAL APPLICATIONS

Before we summarize our results in Sec. VII, we briefly
discuss potential implications of our findings for practical
applications, focusing on the field of contaminant transport in
porous media. We first note that current technology allows for
the detailed tracking of single tracers in experimental systems;
this is used extensively in single molecule tracking in the cell
environment. Once the trajectories are analyzed, for example,
with video microscopy, the experimentalist can, in principle
[95], pinpoint regions where the transport is particularly slow.

As a second example, consider charge carriers in a wire of
length L, where the disorder is large and hence conductance is
poor. Assume that along the wire we may add a bypass (a low
resistivity segment) of length 
L � L. Further, assume one
may place this segment anywhere along the wire. The basic
question is whether or not the transport will be dramatically
improved for a particular choice of location of the bypass. If
so, then one has a method of expediting transport and identify-
ing bottlenecks and their statistical properties. The challenge
for the theory would be to predict the magnitude of the effect.
Note that in this paper, we investigate improvement of the
first-passage time and not of transport (we do not optimize the
current). For the latter goal, one should consider the inverse of
the time required for a particle to traverse the system, which
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in turn means that the measure studied here, Eq. (16), may
require modification depending on the observable of interest.

We note that in continuous-time random walk theory, we
need the full path to determine the maximum waiting time. In
this model there is no quenched disorder, hence one cannot
find a spatial and localized bottleneck. This means that for
the continuous-time random walk, as a mean field model,
the improvement of transport is very different as compared
to models of quenched disorder. One can say that the im-
provement of transport in the continuous-time random walk
is costly and in some sense more theoretical, because we need
the full trajectory to determine the largest waiting time. How-
ever, the continuous-time random walk offers deep insights,
for example, regarding the phaselike transition of G, which is
important in our case.

Additionally, the goal of expediting transport is not limited
to tracers in disordered systems. In the study of wave trans-
mission in strongly scattered media, it was shown how, with
clever interference, one may improve transmission [96–98]
by controlling the many degrees of freedom in the incident
waves. Clearly, the basic idea we use is vastly different, and a
comparison is meaningless, but we mention this point because
the goal of expediting transport is certainly not new.

A. Spreading of chemical contamination

In the studies of porous media in earth sciences and
chemical engineering, our results might be generalized to
continuum-level (effective medium) treatment of transport in
large-scale, heterogeneous porous media, to address critical
problems in groundwater quality remediation and manage-
ment. In such cases, it is relevant to consider efforts to
expedite chemical transport, to reduce residence times of
chemical constituents in a system [99,100].

The foundation for a promising real-world technique (of
our theoretical removal approach) was laid in our analysis
of the pore-scale transport in a porous medium (Sec. III).
We demonstrated that removing even a small portion of the
longest transition times is sufficient to expedite the trans-
port behavior significantly. This economic strategy provides
the possibility of treating only a few critical regions in the
system, namely those regions where a sufficient number of
very large maximum transition times occur, which are mainly
responsible for the slow down of the process. In the context
of our pore-scale transport simulation, we found—based on
analysis of particle trajectories as shown in Fig. 3(b)—that the
locations of the longest transition times occur preferentially in
a small number of regions within the flow domain. Of course,
this depends on the coarse graining applied in the statistical
analysis, and a separate, rigorous study of this coarse grain
method and of the spatial correlations among the maxima may
prove fruitful.

Our findings regarding tracer transport at the pore scale,
discussed in the preceding paragraph, can be transferred
to continuum-level treatment of transport in heterogeneous
porous systems. At this level, in strongly heterogeneous
porous geological formations, preferential pathways transmit
the bulk of the tracer mass [99,100]. Small numbers of lo-
cations along these pathways are characterized by very low
permeability properties—corresponding to low velocities and

long transitions times—compared to the entire system. In such
cases, the longest transitions times will occur in this limited
number of locations, suggesting that the overall chemical
transport behavior could be expedited in practice by removing
or otherwise clogging and bypassing these locations.

VII. DISCUSSION

For several frameworks of transport in disordered systems,
we studied how the first-passage time is strongly modified
when we remove the maximum transition times from their
associated trajectories. The study contains three parts: (A) We
established the principle of the single long transition time for
different models. This principle states that the first-passage
time t f , when it is long, is dominated by a single element
being the maximum transition time τmax; this holds for some
of the most well-studied models of transport in strongly dis-
ordered systems. For systems where this principle holds, the
removal of largest transition times will clearly enhance the
transport, which is what we studied next. (B) We eliminated
the maximum transition times from their trajectories, and
found that the distribution of the modified first-passage time
tr = t f − τmax decays much faster compared to the original
first-passage time t f . (C) This transport speedup was further
quantified with the measure of gain G = 〈tr〉/〈t f 〉. We explain
our results for these three points now.

(A) The reference setting is unidirectional transport, for
which the principle of the single long transition time is well-
known [18]. We recapped it in Eq. (6) [see also Fig. 1(c)]. The
t f distribution (and the τmax distribution) decays algebraically
Eq. (7) where the power-law exponent is the measure of the
disorder α Eq. (3). Our goal was then to show that basic results
hold more generally for well-known and applicable models of
transport: the continuous-time random walk and the quenched
trap model averaged over the disorder. The main difference is
that now the paths are no longer unidirectional and the number
of jumps may fluctuate. Still, the principle holds: namely the
first-passage time distribution is the same as the distribution
of the largest trapping time, and both decay as a power law
with an exponent α [see Eq. (3)]. For the continuous-time
random walk, see Eqs. (19), (20) and Fig. 9. For the quenched
trap model, see Eqs. (27), (29) and Figs. 13, 14(a). Here, t f is
related to the occupation time τ̂max, which is the total time of
multiple visits in the deepest trap.

We also discovered three vastly different situations, and
so we encountered important modifications of the basic long
transition time principle. (i) For the pore-scale transport sim-
ulation, the principle of the single long transition time is
presented in Fig. 4(a). We observed a striking matching
between the distributions of t f and τmax for large values,
although both tails follow a complicated structure. This means
that the matching between the distributions of the two observ-
ables does not have to follow a power-law decay (as found
in the other simpler models, i.e., unidirectional transport,
continuous-time random walk and averaged over disorder
quenched model). This is important, because in physical re-
alizations of disordered systems, mean field approaches (like
the continuous-time random walk) or average over disorder
(like those carried out in the quenched model) are not always
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relevant. As a consequence, delineating a relation between
the maximum transition time and the first-passage time is
nontrivial. (ii) For the continuous-time random walk with no
bias (p = 1/2), we obtained Eq. (22) [see also Fig. 10(b)].
Unlike the other cases, here the mean number of jumps before
reaching the boundary diverges because the bias is zero. The t f

distribution decay is α/2 when α < 1, and t f is related to the
rescaled maximum 
ατmax [with 
α > 1 in Eq. (21)]. This
case is vastly different from other examples because 
α is not
equal unity; moreover, as 
α diverges when α → 1. And fi-
nally if α > 1, then the principle does not hold at all, showing
a qualitative transition in the statistics when α = 1. (iii) The
last example is the quenched trap model in a one-dimensional
random environment Eq. (26) under strong bias (p = 1) and
for a single realization of disorder. The principle follows an
exponential decay with the rate depending solely on the deep-
est trap. Thus, different realizations of the environment lead to
different decays (see Fig. 12). Remarkably, the distributions of
t f and τmax are asymptotically the same; the distribution is thus
by itself random in the sense that it depends on the disorder,
although the principle of the long transition time holds. As
mentioned previously, the decay of the quenched trap model
distributions becomes algebraic when we average over the
disorder. Nevertheless, the common trait of all these different
examples is that a large value of t f is dominated by a single
element of the trajectory, which is the maximum transition
time. This motivated us to eliminate the latter.

(B) For the three models (unidirectional transport,
continuous-time random walk, and averaged over disorder
quenched trap model) where the t f distribution decays alge-
braically with the measure of disorder α, the distribution of
tr decays twice as slowly, namely with exponent 2α. This
implies a statistically significant shortened travel time, which
was found for all these models; see the reference case of
the unidirectional model Eqs. (9), (11) and Fig. 1(c), the
continuous-time random walk Eq. (23) and Fig. 9, and the
quenched trap model averaged over the disorder Eqs. (33),
(35) and Figs. 13, 14(a). We further discovered that tr scales
asymptotically as the second longest transition time τ �

max, or
for the quenched trap model, as the second longest occupa-
tion time τ̂max. This asymptotic equivalence can be seen as a
second level principle of the single long transition time (see
Sec. II B 2). The power-law exponent switch from α to 2α

means that while the mean first-passage time diverges 〈t f 〉 in
strongly disordered systems, when α < 1, after the removal
we obtain a finite mean 〈tr〉, when α > 1/2, indicating a large
impact of the removal.

For the pore-scale simulation, the distribution of tr pre-
sented in Fig. 4(b) exhibits a dramatic speedup compared to
the t f statistics. Furthermore, the distribution matches that of
τ �

max (the second longest transition time per trajectory) even
with such a complicated pattern. Finally, the quenched trap
model in a one-dimensional random environment under the in-
fluence of a strong bias is presented in Eq. (32). After removal
of the deepest trap, the statistics tr decay exponentially, with
the rate depending on the second deepest trap. Thus, we found
for all of these examples a strong shortening of the overall
travel time in terms of the probability statistics, which implies
a significant speedup of the process.

(C) The long transition time principles we found here offer
a statement on the relation of the tails of the distribution of the
t f and τmax. We further quantified the effect using G, which
is the ratio of the mean first-passage times, i.e., G = 〈tr〉/〈t f 〉.
The influence of the removal undergoes a transition at the crit-
ical point α = 1; see Fig. 2. The stronger the disorder in terms
of α, the stronger the gain. When α < 1, G = 0 indicates
the most radical speedup. We derived G rigorously for the
unidirectional transport Eq. (17), the continuous-time random
walk Eq. (24), and the quenched trap model averaged over
the disorder Eq. (34). For large systems L, the behaviors of G
are universal (Fig. 2). The thermodynamic limit (L → ∞) is
presented in Eq. (18).

We also studied the efficiency of the method and discussed
different approaches of the removal of the maxima. For ex-
ample, in the quenched trap model, we removed the deepest
trap, namely we identified a specific location in space that,
when eliminated, dramatically enhanced the transport. We
also studied the option of removing only a fraction of longest
sticking times, from a fraction of the trajectories (this will
eventually reduce the resources needed to expedite transport).
For example, for the pore-scale system, the removal of even
a small portion C of maximum transition times (namely the
largest ones among all maxima) is sufficient to expedite the
transport behavior significantly [see Fig. 4(c)]. The quantifier
G versus C is presented in Fig. 5(a), again showing the effi-
ciency of this low cost removal technique. Finally, we studied
numerically the spatial locations that yield the longest trap-
ping times in the model of porous medium. In this system the
disorder is quenched and strong, which allows for the spatial
identification of bottlenecks; see Fig. 6. This in turn im-
plies, mainly for future research, that in principle first-passage
times statistics could be modified by local changes in the
system.

In summary, we provided an extensive study on the fun-
damental change of the first-passage time statistics under the
removal of the maximum transition times, which demonstrates
a drastic speedup of the transport process; the first-passage
time distribution decays much faster, which reduces the trans-
port dispersion significantly. Even the latest tracers leave the
system rapidly, but also the average velocity is increased. We
illustrated this behavior with the much shorter mean first-
passage time. Generally, the field of transport in disordered
systems, and the transport settings investigated here, have a
long history with numerous applications in diverse fields. Our
results thus have the potential to open a field of actively expe-
dited transport in disordered systems, with many applications
(see Sec. VI).

ACKNOWLEDGMENTS

M.H. is funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation), Grant No. 436344834.
The support of Israel Science Foundation Grant No. 1614/21
(E.B.) and ViTamins project funded by the Volkswagen Foun-
dation grant AZ 9B192 (B.B.) is acknowledged. A.N. is
supported by an ETH Zurich Postdoctoral Fellowship. B.B.
holds the Sam Zuckerberg Professorial Chair in Hydrology.

M.H. and A.N. contributed equally to this work.

034124-16



CONTROLS THAT EXPEDITE FIRST-PASSAGE TIMES … PHYSICAL REVIEW E 108, 034124 (2023)

[1] B. Berkowitz, A. Cortis, M. Dentz, and H. Scher, Rev.
Geophys. 44, RG2003 (2006).

[2] B. Berkowitz and H. Scher, Phys. Rev. Lett. 79, 4038 (1997).
[3] B. Berkowitz and H. Scher, Phys. Rev. E 57, 5858 (1998).
[4] A. Nissan and B. Berkowitz, Phys. Rev. E 99, 033108 (2019).
[5] A. Nissan and B. Berkowitz, Phys. Rev. Lett. 120, 054504

(2018).
[6] F. A. Dullien, Porous Media: Fluid Transport and Pore Struc-

ture (Academic Press, San Diego, CA, 2012).
[7] J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).
[8] C. Monthus and J.-P. Bouchaud, J. Phys. A: Math. General 29,

3847 (1996).
[9] L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).

[10] H. Scher and E. W. Montroll, Phys. Rev. B 12, 2455 (1975).
[11] E. W. Montroll and H. Scher, J. Stat. Phys. 9, 101 (1973).
[12] Z. Fox, E. Barkai, and D. Krapf, Nat. Commun. 12, 6162

(2021).
[13] A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf, Proc.

Natl. Acad. Sci. USA 108, 6438 (2011).
[14] R. Klages, G. Radons, and I. M. Sokolov, Anomalous Trans-

port (Wiley Online Library, Hoboken, New Jersey, 2008).
[15] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
[16] R. Metzler, J.-H. Jeon, A. G. Cherstvy, and E. Barkai, Phys.

Chem. Chem. Phys. 16, 24128 (2014).
[17] F. Höfling and T. Franosch, Rep. Prog. Phys. 76, 046602

(2013).
[18] V. P. Chistyakov, Theory Probab. Appl. 9, 640 (1964).
[19] B. Derrida, On Three Levels: Micro-, Meso-, and Macro-

Approaches in Physics (Springer, Berlin, 1994), pp. 125–137.
[20] M. Filiasi, E. Zarinelli, E. Vesselli, and M. Marsili,

arXiv:1309.7795.
[21] A. Vezzani, E. Barkai, and R. Burioni, Phys. Rev. E 100,

012108 (2019).
[22] S. N. Majumdar, Physica A 389, 4299 (2010).
[23] G. Bel and E. Barkai, Phys. Rev. E 73, 016125 (2006).
[24] S. Redner, A Guide to First-Passage Processes (Cambridge

University Press, Cambridge, UK, 2001).
[25] G. Rangarajan and M. Ding, Phys. Rev. E 62, 120 (2000).
[26] S. Condamin, O. Bénichou, and J. Klafter, Phys. Rev. Lett. 98,

250602 (2007).
[27] S. Condamin, O. Bénichou, V. Tejedor, R. Voituriez, and J.

Klafter, Nature (London) 450, 77 (2007).
[28] E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (1965).
[29] R. Kutner and J. Masoliver, Eur. Phys. J. B 90, 50 (2017).
[30] E. Barkai, R. Metzler, and J. Klafter, Phys. Rev. E 61, 132

(2000).
[31] G. Margolin and B. Berkowitz, Phys. A: Stat. Mech. Appl.

334, 46 (2004).
[32] M. Dentz, A. Cortis, H. Scher, and B. Berkowitz, Adv. Water

Resour. 27, 155 (2004).
[33] M. Dentz and B. Berkowitz, Phys. Rev. E 72, 031110 (2005).
[34] M. Dentz, H. Scher, D. Holder, and B. Berkowitz, Phys. Rev.

E 78, 041110 (2008).
[35] A. Cairoli and A. Baule, Phys. Rev. Lett. 115, 110601 (2015).
[36] R. Burioni, G. Gradenigo, A. Sarracino, A. Vezzani, and A.

Vulpiani, Commun. Theor. Phys. 62, 514 (2014).
[37] E. Scalas, Phys. A: Stat. Mech. Appl. 362, 225 (2006).
[38] E. R. Weeks and H. L. Swinney, Phys. Rev. E 57, 4915 (1998).
[39] E. R. Weeks, J. Urbach, and H. L. Swinney, Physica D 97, 291

(1996).

[40] T. Albers and G. Radons, Europhys. Lett. 102, 40006 (2013).
[41] S. Burov and E. Barkai, Phys. Rev. Lett. 106, 140602 (2011).
[42] T. Akimoto, E. Barkai, and K. Saito, Phys. Rev. Lett. 117,

180602 (2016).
[43] S. Burov and E. Barkai, Phys. Rev. Lett. 98, 250601 (2007).
[44] E. M. Bertin and J.-P. Bouchaud, Phys. Rev. E 67, 026128

(2003).
[45] T. Akimoto, E. Barkai, and K. Saito, Phys. Rev. E 97, 052143

(2018).
[46] S. Burov and E. Barkai, Phys. Rev. E 86, 041137 (2012).
[47] P. Embrechts, C. Klüppelberg, and T. Mikosch, Modeling Ex-

tremal Events: For Insurance and Finance (Springer Science
& Business Media, Cham, 2013).

[48] P. Embrechts and N. Veraverbeke, Insur. Math. Econ. 1, 55
(1982).

[49] T. Rolski, H. Schmidli, V. Schmidt, and J. L. Teugels, Stochas-
tic Processes for Insurance and Finance (John Wiley & Sons,
New York, NY, 2009).

[50] A. E. Kyprianou, Introductory Lectures on Fluctuations of Lévy
Processes with Applications (Springer Science & Business
Media, Cham, 2006).

[51] C. Klüppelberg and T. Mikosch, J. App. Prob. 34, 293
(1997).

[52] W. Wang, A. Vezzani, R. Burioni, and E. Barkai, Phys. Rev.
Res. 1, 033172 (2019).

[53] W. Wang, M. Höll, and E. Barkai, Phys. Rev. E 102, 052115
(2020).

[54] M. Höll and E. Barkai, Eur. Phys. J. B 94, 216 (2021).
[55] R. Yin and E. Barkai, Phys. Rev. Lett. 130, 050802 (2023).
[56] M. R. Evans and S. N. Majumdar, Phys. Rev. Lett. 106, 160601

(2011).
[57] M. R. Evans and S. N. Majumdar, J. Phys. A: Math. Theor. 44,

435001 (2011).
[58] M. R. Evans, S. N. Majumdar, and G. Schehr, J. Phys. A:

Math. Theor. 53, 193001 (2020).
[59] A. Chechkin and I. M. Sokolov, Phys. Rev. Lett. 121, 050601

(2018).
[60] D. Campos and V. Méndez, Phys. Rev. E 92, 062115 (2015).
[61] B. Besga, A. Bovon, A. Petrosyan, S. N. Majumdar, and S.

Ciliberto, Phys. Rev. Res. 2, 032029(R) (2020).
[62] O. Tal-Friedman, A. Pal, A. Sekhon, S. Reuveni, and Y.

Roichman, J. Phys. Chem. Lett. 11, 7350 (2020).
[63] S. Reuveni, M. Urbakh, and J. Klafter, Proc. Natl. Acad. Sci.

USA 111, 4391 (2014).
[64] S. Budnar, K. B. Husain, G. A. Gomez, M. Naghibosadat, A.

Varma, S. Verma, N. A. Hamilton, R. G. Morris, and A. S. Yap,
Dev. Cell 49, 894 (2019).

[65] G. Bel, B. Munsky, and I. Nemenman, Phys. Biol. 7, 016003
(2009).

[66] P. Hamlin, W. J. Thrasher, W. Keyrouz, and M. Mascagni,
Monte Carlo Methods Appl. 25, 329 (2019).

[67] A. Pal and S. Reuveni, Phys. Rev. Lett. 118, 030603 (2017).
[68] J. P. Bouchaud, J. Phys. I France 2, 1705 (1992).
[69] B. Berkowitz and H. Scher, Adv. Water Resour. 32, 750

(2009).
[70] I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M. T.

Valentine, A. R. Bausch, and D. A. Weitz, Phys. Rev. Lett. 92,
178101 (2004).

[71] M. Levin, G. Bel, and Y. Roichman, J. Chem. Phys. 154,
144901 (2021).

034124-17

https://doi.org/10.1029/2005RG000178
https://doi.org/10.1103/PhysRevLett.79.4038
https://doi.org/10.1103/PhysRevE.57.5858
https://doi.org/10.1103/PhysRevE.99.033108
https://doi.org/10.1103/PhysRevLett.120.054504
https://doi.org/10.1016/0370-1573(90)90099-N
https://doi.org/10.1088/0305-4470/29/14/012
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1103/PhysRevB.12.2455
https://doi.org/10.1007/BF01016843
https://doi.org/10.1038/s41467-021-26465-8
https://doi.org/10.1073/pnas.1016325108
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1088/0034-4885/76/4/046602
https://doi.org/10.1137/1109088
http://arxiv.org/abs/arXiv:1309.7795
https://doi.org/10.1103/PhysRevE.100.012108
https://doi.org/10.1016/j.physa.2010.01.021
https://doi.org/10.1103/PhysRevE.73.016125
https://doi.org/10.1103/PhysRevE.62.120
https://doi.org/10.1103/PhysRevLett.98.250602
https://doi.org/10.1038/nature06201
https://doi.org/10.1063/1.1704269
https://doi.org/10.1140/epjb/e2016-70578-3
https://doi.org/10.1103/PhysRevE.61.132
https://doi.org/10.1016/j.physa.2003.10.069
https://doi.org/10.1016/j.advwatres.2003.11.002
https://doi.org/10.1103/PhysRevE.72.031110
https://doi.org/10.1103/PhysRevE.78.041110
https://doi.org/10.1103/PhysRevLett.115.110601
https://doi.org/10.1088/0253-6102/62/4/09
https://doi.org/10.1016/j.physa.2005.11.024
https://doi.org/10.1103/PhysRevE.57.4915
https://doi.org/10.1016/0167-2789(96)00082-6
https://doi.org/10.1209/0295-5075/102/40006
https://doi.org/10.1103/PhysRevLett.106.140602
https://doi.org/10.1103/PhysRevLett.117.180602
https://doi.org/10.1103/PhysRevLett.98.250601
https://doi.org/10.1103/PhysRevE.67.026128
https://doi.org/10.1103/PhysRevE.97.052143
https://doi.org/10.1103/PhysRevE.86.041137
https://doi.org/10.1016/0167-6687(82)90021-X
https://doi.org/10.2307/3215371
https://doi.org/10.1103/PhysRevResearch.1.033172
https://doi.org/10.1103/PhysRevE.102.052115
https://doi.org/10.1140/epjb/s10051-021-00215-7
https://doi.org/10.1103/PhysRevLett.130.050802
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1088/1751-8113/44/43/435001
https://doi.org/10.1088/1751-8121/ab7cfe
https://doi.org/10.1103/PhysRevLett.121.050601
https://doi.org/10.1103/PhysRevE.92.062115
https://doi.org/10.1103/PhysRevResearch.2.032029
https://doi.org/10.1021/acs.jpclett.0c02122
https://doi.org/10.1073/pnas.1318122111
https://doi.org/10.1016/j.devcel.2019.04.031
https://doi.org/10.1088/1478-3975/7/1/016003
https://doi.org/10.1515/mcma-2019-2052
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1051/jp1:1992238
https://doi.org/10.1016/j.advwatres.2008.05.004
https://doi.org/10.1103/PhysRevLett.92.178101
https://doi.org/10.1063/5.0045278


HÖLL, NISSAN, BERKOWITZ, AND BARKAI PHYSICAL REVIEW E 108, 034124 (2023)

[72] F. D. Stefani, J. P. Hoogenboom, and E. Barkai, Phys. Today
62, 34 (2009).

[73] T. H. Solomon, E. R. Weeks, and H. L. Swinney, Phys. Rev.
Lett. 71, 3975 (1993).

[74] O. Vilk, Y. Orchan, M. Charter, N. Ganot, S. Toledo,
R. Nathan, and M. Assaf, Phys. Rev. X 12, 031005
(2022).

[75] S. N. Majumdar, A. Pal, and G. Schehr, Phys. Rep. 840, 1
(2020).

[76] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.108.034124 for the derivation of the
asymptotic behavior of the first-passage time distribution.

[77] A. C. Fowler and B. Scheu, Proc. Math. Phys. Eng. Sci. 472,
20150843 (2016).

[78] B. Bijeljic, P. Mostaghimi, and M. J. Blunt, Phys. Rev. Lett.
107, 204502 (2011).

[79] J. P. Pereira Nunes, B. Bijeljic, and M. J. Blunt, Transp. Porous
Media 109, 317 (2015).

[80] G. Bel and E. Barkai, J. Phys.: Condens. Matter 17, S4287
(2005).

[81] V. Balakrishnan and M. Khantha, Pramana 21, 187 (1983).
[82] H. Krüsemann, A. Godec, and R. Metzler, J. Phys. A: Math.

Theor. 48, 285001 (2015).
[83] H. Krüsemann, A. Godec, and R. Metzler, Phys. Rev. E 89,

040101(R) (2014).
[84] S. Jose, J. Stat. Mech. (2022) 113208.
[85] E. Barkai and V. N. Fleurov, Phys. Rev. E 58, 1296

(1998).
[86] H. C. Fogedby, Phys. Rev. E 50, 1657 (1994).

[87] J. Klafter and I. M. Sokolov, First Steps in Random Walks:
From Tools to Applications (Oxford University Press, Oxford,
UK, 2011).

[88] C. Monthus, Phys. Rev. E 68, 036114 (2003).
[89] S. Fedotov and D. Han, Phys. Rev. Lett. 123, 050602 (2019).
[90] S. Fedotov, D. Han, A. Y. Zubarev, M. Johnston, and V. J.

Allan, Philos. Trans. R. Soc. A 379, 20200317 (2021).
[91] P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62,

251 (1990).
[92] A. Dvoretzky and P. Erdös, in Proceedings of the 2nd Berkeley

Symposium on Mathematical Statistics and Probability (Uni-
versity of California Press, Berkeley and Los Angeles, 1951),
pp. 353–367.

[93] G. H. Vineyard, J. Math. Phys. 4, 1191 (1963).
[94] M. Biroli, F. Mori, and S. N. Majumdar, J. Phys. A: Math.

Theor. 55, 244001 (2022).
[95] G. Muñoz-Gil, G. Volpe, M. A. Garcia-March, E. Aghion, A.

Argun, C. B. Hong, T. Bland, S. Bo, J. A. Conejero, N. Firbas
et al., Nat. Commun. 12, 6253 (2021).

[96] I. M. Vellekoop and A. P. Mosk, Phys. Rev. Lett. 101, 120601
(2008).

[97] J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A.
Lagendijk, Phys. Rev. Lett. 106, 103901 (2011).

[98] A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat.
Photon 6, 283 (2012).

[99] Y. Edery, A. Guadagnini, H. Scher, and B. Berkowitz, Water
Resour. Res. 50, 1490 (2014).

[100] M. Bianchi, C. Zheng, C. Wilson, G. R. Tick, G. Liu, and S. M.
Gorelick, Water Resour. Res. 47, W05524 (2011).

034124-18

https://doi.org/10.1063/1.3086100
https://doi.org/10.1103/PhysRevLett.71.3975
https://doi.org/10.1103/PhysRevX.12.031005
https://doi.org/10.1016/j.physrep.2019.10.005
http://link.aps.org/supplemental/10.1103/PhysRevE.108.034124
https://doi.org/10.1098/rspa.2015.0843
https://doi.org/10.1103/PhysRevLett.107.204502
https://doi.org/10.1007/s11242-015-0520-y
https://doi.org/10.1088/0953-8984/17/49/021
https://doi.org/10.1007/BF02849620
https://doi.org/10.1088/1751-8113/48/28/285001
https://doi.org/10.1103/PhysRevE.89.040101
https://doi.org/10.1088/1742-5468/ac9bef
https://doi.org/10.1103/PhysRevE.58.1296
https://doi.org/10.1103/PhysRevE.50.1657
https://doi.org/10.1103/PhysRevE.68.036114
https://doi.org/10.1103/PhysRevLett.123.050602
https://doi.org/10.1098/rsta.2020.0317
https://doi.org/10.1103/RevModPhys.62.251
https://doi.org/10.1063/1.1704049
https://doi.org/10.1088/1751-8121/ac6b69
https://doi.org/10.1038/s41467-021-26320-w
https://doi.org/10.1103/PhysRevLett.101.120601
https://doi.org/10.1103/PhysRevLett.106.103901
https://doi.org/10.1038/nphoton.2012.88
https://doi.org/10.1002/2013WR015111
https://doi.org/10.1029/2009WR008966

