
PHYSICAL REVIEW E 108, 034123 (2023)

Quasistatic deformation of yield stress materials: Homogeneous or localized?
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We analyze a mesoscopic model of a shear stress material with a three-dimensional slab geometry, under an
external quasistatic deformation of a simple shear type. Relaxation is introduced in the model as a mechanism
by which an unperturbed system achieves progressively mechanically more stable configurations. Although in
all cases deformation occurs via localized plastic events (avalanches), we find qualitatively different behavior
depending on the degree of relaxation in the model. For no or low relaxation, yielding is homogeneous in the
sample, and even the largest avalanches become negligible in size compared with the system size (measured
as the thickness of the slab Lz) when this is increased. On the contrary, for high relaxation, the deformation
localizes in an almost two-dimensional region where all avalanches occur. Scaling analysis of the numerical
results indicates that in this case, the linear size of the largest avalanches is comparable with Lz, even when this
becomes very large. We correlate the two scenarios with a qualitative difference in the flow curve of the system
in the two cases, which is monotonous in the first case and velocity weakening in the second case.
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I. INTRODUCTION

Yield stress materials [1–3] are substances that share fea-
tures of both solids and liquids. Below a well-defined applied
shear stress, known as the critical stress σc, they deform
elastically and reversibly. However, if this critical stress is ex-
ceeded, the material responds plastically, attaining a finite rate
of deformation (or strain rate) noted as γ̇ . The dependence of
γ̇ on σ defines the flow curve of the material. In a large class
of yield stress materials, the behavior of γ̇ (σ ) is continuous at
σc: γ̇ increases smoothly from zero when σ is increased be-
yond σc, typically as a power law of the form γ̇ ∼ (σ − σc)β

[4,5]. In other cases, there may be a discontinuous transition
at σc, typically with some hysteresis [6–9]. The discontinuous
case is also referred to as “reentrant,” as it is typically obtained
when the flow curve displays a negative slope region (Fig. 1)
that is qualitatively similar to the one occurring in a liquid-gas
transition in the van der Waals approximation. A discussion,
in a unified framework, of the different phenomenology asso-
ciated to these two possible scenarios is one of the aims of this
work.

Deformation of yield stress materials proceeds via discrete
plastic rearrangements generically called “avalanches” that re-
duce the shear stress locally, while increasing it in other parts
of the sample via anisotropic elastic interactions. In a stress
controlled experiment, if σ < σc, the material reaches—after
a transient—a static equilibrium state in which the deforma-
tion rate is zero. On the other hand, if σ > σc, there are, at any
moment, plastically active places in the sample that produce a
finite average value of the deformation rate γ̇ .

Within the protocol of applying a fixed value of σ , the
identification of isolated avalanches is not possible. However,
individual avalanches can be identified and characterized by
considering a strain driven experiment, in which the average
strain in the sample γ is controlled. If the value of γ is

assumed to increase infinitely slowly with time (thus γ̇ → 0),
the stress in the sample increases continuously everywhere
until there is a place where a mechanical instability occurs
(typically a saddle-node bifurcation), and an avalanche is trig-
gered. This avalanche produces a reduction of the stress in
the system that can be taken as a measure of the size of the
avalanche. The collection of points affected by the avalanche
can also be determined, defining the avalanche spatial extent.
Upon the further increase of γ , a sequence of avalanches will
be observed and their statistical properties (such as size and
duration distributions) can be studied.

The discrete nature of the deformation of yield stress ma-
terials has received a lot of attention in recent years, and
in particular the properties of the avalanches responsible for
the overall behavior have been studied in detail [10–13]. Yet,
although the deformation of all yield stress materials can be
described in terms of individual avalanches, it is crucial to
understand the different effect that these avalanches may have
in the behavior of macroscopic samples. There are cases in
which the effect of individual avalanches becomes less and
less detectable when system size increases. This corresponds
to a case in which the behavior of a macroscopic sample
can be characterized as “ductile.” In other cases, the effect
of individual avalanches continues to be detectable even if the
sample size is increased more and more. We will refer to the
behavior in such cases as “fragile”[14].

One of the main points we want to convey in this work
is that the distinction between ductile and fragile behavior is
intimately related to the underlying flow curve of the material
being of the continuous or reentrant type. Another impor-
tant difference between the two cases will emerge from the
analysis: while ductile behavior is associated with avalanches
that occur all across the sample (therefore producing, on aver-
age, a spatially uniform strain rate), the fragile case produces
avalanches that tend to localize spatially in a quasi-two-
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(a) (b)

FIG. 1. Qualitative flow curve of a shear stress material with con-
tinuous (left) or discontinuous (right) yielding behavior. The dotted
part of the flow curve in (b) is unstable and not experimentally ob-
servable, as it is typically replaced by some sort of generic Maxwell
construction.

dimensional region where the strain rate remains finite, while
it is essentially zero in the rest of the sample. This behavior
can be described as the sample developing a “fault” in it,
where all deformation occurs. In fact, a second idea that we
want to convey is that materials with fragile behavior deform
through the production of “earthquakes” that localize in a
sort of “seismic fault.” Beyond this localization effect, an
important characteristic that will emerge is that individual
earthquakes may have a macroscopically detectable effect,
contrary to the case of avalanches in systems without relax-
ation. This will make a connection with the deeply established
idea in the geophysical community that in order to sustain
earthquakes, a material must have a friction law that is veloc-
ity weakening, i.e., a region in which the stress in the system
decreases as a function of the strain rate [15]. This is precisely
the situation with materials having a reentrant flow curve.

When materials with reentrant yielding are driven at a
finite value of γ̇ , deformation localizes spatially in the form
of a shear band [16–21]. In fact, a situation reminiscent of
coexistence in a first-order phase transition occurs and there
is a spatial separation between a nonflowing region and a
flowing region in the form of a shear band in the system.
The properties of shear bands have received much attention
from the materials science community, as they are intimately
related, for instance, to the failure mechanisms of materials
such as metallic glasses [22–25]. The width of a shear band
decreases as the global strain rate decreases, as a kind of
Maxwell construction argument easily shows. In the limit of
very low deformation rate (γ̇ → 0), the thinning of shear
bands leads to the formation of a “fault” where earthquakelike
avalanches occur. Yet, numerical models devised to study the
statistical properties of earthquakes do not typically consider a
bulk three-dimensional sample. Instead, it is usually assumed
from the beginning that the deformation is localized in a
two-dimensional fault, and therefore only this fault is mod-
eled in detail, perhaps with the surrounding three-dimensional
medium considered at a mean field level [26–28]. One stan-
dard approach is to model the two-dimensional fault as a
collection of blocks that is joined by springs. The velocity
weakening feature is incorporated either as a direct external
ingredient (as in the Burridge-Knopoff model [26], in the form
of the local sliding law of each block) or it emerges as a
consequence of a more fundamental relaxation mechanism,
such as the viscoelasticity model discussed in [29]. In either

case, the three dimensionality of the system is incorporated
only through the stiffness of a driving spring acting on the ef-
fective two-dimensional fault. In addition, most simulations of
two-dimensional faults consider the elastic interaction within
the fault to occur among “nearest neighbors” only. Actually,
in a real situation, this interaction is mediated by the bulk
three-dimensional medium, and it is long range in an infinite
sample.

In the present work, we intend to provide a comparative
view of the cases of yield stress materials with continuous
or reentrant behavior, and the relation to the earthquake phe-
nomenology. We use a three-dimensional model, therefore
not assuming any simplifying two-dimensional situation. We
take a system of size L × L × Lz (where L is supposed to be
“very large”; see below), with periodic boundary conditions,
and apply a simple shear deformation of the form u = γ zx̂,
with γ defining the strain. The variation of Lz allows us
to perform a scaling analysis of the size of the observed
avalanches. Note that Lz would eventually relate to the value
of the driving spring that simplifying two-dimensional models
use for earthquakes, and also controls the detailed form of the
elastic interaction between different points of the fault. For
each value of Lz, the value of L is chosen to be sufficiently
large in such a way that the properties of the avalanches are
not affected by a further increase of L. It is the value of Lz that
controls the “size effects” in the system.

The model (details in the next section) is driven through
the quasistatic increase of the strain γ . This produces a se-
quence of avalanches that can be characterized in detail. In
addition, relaxation is introduced through a parameter R, and
the observed phenomenology crucially depends on the ratio
R/γ̇ [30]. In short, relaxation is a mechanism by which an un-
perturbed system achieves progressively mechanically more
stable configurations.

Here is a brief summary of the main results that are ob-
tained. When R/γ̇ → 0, we reproduce well-known results
corresponding to a system with a continuous yielding tran-
sition. In particular, we obtain a distribution of avalanche
size of the form P(S) � S−τ exp (−S/Smax) with a value of
τ � 1.5, and a cutoff avalanche size Smax that scales with Lz as
Smax � Lz

1.2. The actual observation of the avalanches reveals
that although they display the spatial correlations expected
from the symmetry of the elastic interaction, they appear all
across the sample. Therefore, in the long run, the deformation
of the system is uniform in this case.

For finite R/γ̇ , we observe the following trends:
(a) Avalanches become localized along the z axis, defining

a quasi-two-dimensional region that can be called a “seismic
fault.”

(b) The distribution P(S) becomes broader, with Smax in-
creasing with R/γ̇ for a fixed Lz. The dependence of Smax

with Lz displays a power law increase with an exponent that
becomes larger as R/γ̇ increases. For large R/γ̇ , there are
avalanches whose linear size (∼S1/2) becomes larger than Lz.
This means that avalanches will be macroscopically observ-
able even in the large system size limit (Lz → ∞).

(c) The stress distribution across the system is qualitatively
different for small or large R/γ̇ . At small values of this pa-
rameter, stress fluctuations decrease rapidly in the sample as
system thickness increases. Yet for large R/γ̇ , stress maintains
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long-wavelength spatial fluctuations that decay more slowly
with Lz.

(d) An examination of the flow curve of the system reveals
clear signs of velocity weakening when R/γ̇ �= 0. This ve-
locity wakening behavior is seen to be less detectable as the
system size (namely, Lz) increases.

These results make clear the differences between two dif-
ferent yielding behavior of materials, one that can be qualified
as smooth, or ductile, and a second one that is fragile, and
akin to a system that localizes deformation and can produce
earthquakes at the largest scales.

II. THE MODEL

Our approach is based on the modeling presented in [9].
The applied deformation on the system corresponds to an
affine displacement field u of the form u ∼ (γ z, 0, 0), which
gives the (xz) component of the strain as the only one that is
nonzero. The average strain is, therefore, γ and is the quantity
that is externally controlled. At the mesoscopic level, the
system responds with a local strain exz(r) that, for simplicity,
will be referred to as e(r), and which is the main variable in
the problem. Note that e(r) = γ , where the overline indicates
a spatial average. It has to be remarked that although we are
using a “scalar” model (in the sense that it is defined by a
single-component deformation field), full three-dimensional
phenomenology is encoded in the form of the elastic in-
teraction, as explained below. For a full three-dimensional
approach to the problem, see [31].

The temporal evolution equation for e(r) is assumed to be
of the overdamped form, therefore giving ė(r) as proportional
to a generalized force acting on e(r). This force has two
contributions: a local part floc and an elastic interaction part
fint. The elastic interaction term describes the effect that a
change in e(r) has on a different point r′. It can be expressed
as an integral over the whole system of the form

fint (r) =
∫

dr′G(r, r′)e(r′). (1)

The elastic kernel G(r, r′) depends on the symmetry of the
applied deformation, and it also includes the effect of other
elastic deformations with different symmetry that are not ex-
plicitly taken into account in the formalism. In the case in
which the deformation is a pure shear, G takes the form that
is known as the Eshelby interaction, which has a quadrupolar
symmetry. However, for the present simple shear deformation
case, it takes a slightly different form [32], namely,

Gq = q2
x + q2

y

q2
x + q2

y + q2
z

. (2)

Note that this represents a long-range interaction with an
asymptotic form in real space, ∼1/r3, as the standard Eshelby
interaction, yet the spatial symmetry is dipolar in this case.

The local part of the force, floc, models the disordered
nature of the system, and it consists of a potential with many
minima at different values of e, representing different locally
stable equilibrium configurations of our amorphous system.
The forces floc are taken totally uncorrelated at different points
in the system, namely, there are no correlations in the relative
positions of the energy minima at different points. The form of

FIG. 2. Sketch of the local potential for the variable e, at some
position in the sample. The width � of each potential well is a
stochastic variable uniformly distributed between 0.2 and 2.2. Note
that different spatial positions in the system have different, uncorre-
lated forms of this function.

the local potentials, Vloc(e), determining the forces, floc(e) ≡
−dVloc/de, is effectively chosen in the following way. At
each spatial position, we take a local equilibrium value of e,
namely, e0, in such a way that Vloc(e) = (e − e0)2/2, and the
force floc(e) = (e − e0). When, during the dynamical evolu-
tion, |e − e0| becomes greater than some value �, the local
potential well is supposed to destabilize and the local mini-
mum e0 shifts to a new value. This produces a typical local
potential Vloc(e), as sketched in Fig. 2. Once the form of the
local and interaction forces is defined, the model is completely
defined and ready to be simulated.

Although our model focuses on the dynamics of strain and
stress, it is probably useful to add a comment with respect
to the elastic energy in the system. When the applied strain
increases, and as long as there are no avalanches, strain energy
increases and is stored in the local potential energy of each
site, Vloc. On the other hand, when an avalanche occurs, some
elastic energy is dissipated (via the overdamped dynamics).
In a realistic situation of a shear stress material, this dissipa-
tion would produce some heating on the sample, or even the
radiation of elastic waves in a seismicity context.

The exact form of floc, and its relative amplitude with
respect to the elastic term fint, have an effect, for instance,
on the precise value of σc. However, we have observed that the
kind of effects we are interested in do not depend qualitatively
on details in the exact definition of these forces. Therefore, we
are quite convinced that the results we are obtaining are robust
with respect to changes of the system parameters.

The system is driven by externally enforcing the average
value of e to be equal to the applied strain γ . It has to be
stressed that in the present case, no additional parameter is
included to enforce the driving condition. This is contrary
to the standard situation in depinning models where a spring
with adjustable stiffness is added to drive the system. In the
simulations shown below, γ is increased quasistatically, so
each avalanche in the system occurs at a fixed value of strain.
Along the simulations, the stress σ in the system is calculated
as the average value of the local forces, σ � floc (note that
the system average value of fint vanishes). When an avalanche
occurs, σ drops by some amount �σ , which is taken as a
measure of the avalanche size S.

We consider the possibility of relaxation in the system,
which is the property that will drive strain localization and
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“earthquakelike” properties of the avalanches. Relaxation rep-
resents a tendency in the system to achieve more relaxed states
as time progresses, and will compete with the driving, which
pushes the system away from its most relaxed states. It has
been introduced in a variety of manners in different models of
yielding. Here we use the implementation originally presented
in [9], which was able to generate a realistic phenomenology
of shear bands, when driving the system at a finite γ̇ . Relax-
ation is introduced through a parameter R, which represents
a backaction of the local forces on the form of the local
potentials trying to uniformize the stress across the system.
This is implemented by the following evolution scheme [9]:

ė0 = R∇2(e0 − e). (3)

The value of R has to be considered in relation to the strain
rate γ̇ . Although we work in the limit of very low γ̇ , in such
a way that strain can be considered constant during the evo-
lution of any single avalanche, there is a strong dependence
of the system behavior on the ratio R/γ̇ , which will be the
crucial parameter to describe the dynamics of the model. The
only other free parameter is the system size, which we choose
to be L along the x and y directions, and Lz along z.

Before going to the results that we find, we want to mention
the status of the proposed kind of modeling with respect
to other approaches used for similar problems. The kind of
modeling that is presented here was initiated by Bulatov and
Argon [33] and then applied to other kinds of problems (see,
for instance, Refs. [34,35]). Its application to the problem of
yield stress materials with relaxation was initiated in [9]. It
was not clear in the beginning whether this kind of simulations
provided the same results as other more standard approaches
at that time, particularly the so-called elastoplastic models
(EPMs) [3]. The question was settled with a detailed compari-
son of both kinds of modeling [36], showing that our approach
provides the same qualitative results as those of EPMs. In
particular, some unexpected dependencies of the results on
the form of local potentials Vloc (particularly, whether they
are smooth or have a “cuspy form”) were also related to
the properties of EPMs when studied with stress-dependent
yielding rates [36]. Therefore, although the present approach
is not the only possibility for a mesoscopic model, it is one that
is compatible with other well-accepted modeling techniques,
in particular EPMs.

The use of the relaxation parameter R and its physical
meaning deserve further discussion. The effect of R [through
Eq. (3)] is to allow the potential energy landscape (coded
in the values of e0 at different positions) to adapt to the
strain distribution in the system (determined by e), reaching
progressively lower energy (i.e., more stable) configurations.
Although the present implementation is very specific, the
general description of a “relaxation” term is quite general and
has been implemented in a number of ways in other kinds of
modeling (see discussion and references in [3], Sec. V C). We
have shown in a number of papers (particularly [29,37]) that
this relaxation (which can also be interpreted as a viscoelastic
term in the equations of motion) is able to reproduce a great
deal of the phenomenology of earthquakes when applied to
two-dimensional systems. Actually, one of the points of the
present paper is to see how, in three-dimensional samples, the

(a)

(b)

FIG. 3. (a) Avalanche probability distribution P(S) as a function
of avalanche size S for four different values of Lz as indicated (the
values of L used along x and y are also reported, but they are
irrelevant because, in all cases, they are large enough so as to avoid
size effects due to L). (b) The same data as in (a), but plotted as
P(S)Sτ vs S/Lζ , with τ = 1.5, ζ = 1.2.

relaxation can produce the localization of the deformation in
a two-dimensional “fault.”

III. RESULTS

We first describe the results without relaxation, i.e., the
case R/γ̇ = 0. They are consistent with those obtained with
slightly different numerical models (particularly those called
elastoplastic models), although typically in those cases a cubic
geometry has been used, instead of the slab geometry we are
using here.

Along the simulation, the avalanches are characterized by
the stress drop they produce in the system. This defines the
size S of each avalanche. From a sequence of S values, we
define the avalanche size distribution P(S) as (proportional to)
the number of avalanches of sizes between S and S + dS. In
Fig. 3(a), we show the avalanche size distribution in samples
with different values of Lz. As explained before, the value of
L along the x and y directions is large enough in such a way
that the results are independent of the precise value of L. Yet,
for completeness, the values of L are also reported in Fig. 3.
As the scaling in Fig. 3(b) shows, the results can be fitted by
a power law with a large size cutoff, in the form

P(S) ∼ S−τ exp(−S/Smax), (4)

with τ � 1.5, and Smax ∼ Lz
∼1.2. The value τ � 1.5 is the one

expected for long-range elastic interaction, which in fact is
active here due to the structure of the elastic kernel G.
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FIG. 4. Upper and lateral view of the system indicating the
sites that were affected by a few successive large avalanches (each
avalanche is represented by a different color). Individual avalanches
are more or less localized along the z direction; however, successive
avalanches appear at random z positions (system size is 128 × 128 ×
32). In a very long run, avalanches uniformly cover the full three-
dimensional system.

The observation of the sites that participate in each individ-
ual avalanche (Fig. 4) gives further insight into their structure.
Active sites for individual avalanches tend to be spread along
the x and y directions, but remain rather localized along z.
The sites participating in an avalanche do not form a con-
nected set, but typically consist of a number of disconnected
pieces. This is an effect that is enhanced by the long-range
elastic interactions. When observing a temporal sequence of
avalanches, it is seen that they do not occur around the same
definite value of z, but, rather, they appear randomly in the
system. Therefore, when considering the deformation induced
by many avalanches, this is uniform across the system, with no
sign of strain localization.

Although the largest avalanches in the system diverge in
size as Lz → ∞, the x-y span actually becomes progressively
smaller compared with Lz as Lz increases. In fact, we observed
that the number of positions in the x-y plane affected by an
avalanche behaves similarly to the avalanche size itself [38].
Then the span along the x-y plane can be estimated as ∼S1/2

max,
which increases sublinearly with Lz (since Smax ∼ L1.2

z ). This
implies that avalanches become “vanishingly small” com-
pared with system thickness as this is increased, and in the
large thickness limit, the yielding of the system will be uni-
form and smooth. We will come back to this fact when
comparing with the results for R/γ̇ > 0.

Now we present the results obtained by including relax-
ation in the model. In this case, the system is characterized
by a competition between the rate of local relaxation and
the strain rate. Namely, the control parameter will be R/γ̇ .
In Fig. 5, we plot the sites affected by a few consecutive

FIG. 5. Same as Fig. 4 for finite relaxation (R/γ̇ = 0.3). The
main observed difference is the localization of the deformation
around a “fault” that is formed near a definite z value (system size
is 128 × 128 × 16). In a very long run, avalanches uniformly cover
the x, y projection of the system, but they remain localized around
the fault in the Z direction.

avalanches with a size larger than some minimum. One re-
markable feature that is observed at finite relaxation compared
to the unrelaxed case is that deformation is no longer uni-
form in the system, but localizes in a nearly two-dimensional
“fault” at some particular value of z. This is qualitatively ob-
served in the localization of the avalanches as observed in the
lateral view in Fig. 5, and it is also more quantitatively estab-
lished in Fig. 6, where we plot the accumulated deformation
that has affected each individual layer of the system within a
long run. While this deformation is seen to be uniform when
R = 0, it is clearly localized in z when R/γ̇ �= 0.

This localization effect is reminiscent of the shear band
localization observed in cases of finite γ̇ . However, in the

FIG. 6. Normalized accumulated deformation γ (z) at each z
value during a long run, as a function of the relaxation parameter
R/γ̇ . The deformation is seen to be uniform when R = 0, but it
becomes localized when R/γ̇ �= 0.
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FIG. 7. Avalanche probability distribution P(S) as a function of
avalanche size S for three different values of Lz and different values
of R/γ̇ as indicated (curves corresponding to different values of R/γ̇

were vertically displaced, for better comparison).

present case, the argument of a “Maxwell construction” does
not apply, as we do not have uniform sliding within the shear
band. Yet the reason to have localization is rather similar:
the region of the system in which avalanches occur main-
tains a state of low relaxation, which produces a local slower
critical stress, whereas the rest of the system which is fully
blocked had plenty of time to relax and therefore it has a
large critical stress. As a consequence, deformation continues
to occur systematically at the same spatial positions. In this
respect, it has to be mentioned that this localization process
is highly hysteretic when the value of R/γ̇ is changed. The
curves shown in Fig. 6 were obtained starting at R/γ̇ = 0 and
progressively increasing it. If, from the final large value of
R/γ̇ , this is reduced back to zero, it is very difficult to return
to a situation of uniform deformation because blocked parts
of the sample already have a large critical stress and are not
ready to flow even if relaxation is suppressed. The recovery
of a uniform deformation occurs via a very slow process that
was quantitatively described in [39–41] in the context of shear
bands at finite strain rate.

We now analyze how the avalanche size distribution is
affected by relaxation. In Fig. 7, we show size distributions
for different values of Lz and R/γ̇ (here again, Lx and Ly

are taken to be large enough, so as not to affect the results).
By comparing curves with the same value of Lz, we see that
in the presence of relaxation, the power law distribution is
maintained, roughly with the same value of τ , but the increase
of R/γ̇ makes the avalanche distribution broader, with a value
of Smax that increases with R/γ̇ . In Fig. 8, the avalanche dis-
tributions are plotted as a function of S/Lζ

z , where the values
of ζ are chosen to collapse the curves corresponding to the
same R/γ̇ , namely, we have an R-dependent ζ value. This
dependence is shown in the inset.

We see that ζ shows a strong increase as a function of R/γ̇ .
It starts at ζ � 1.2 for R = 0, reaching and even surpassing the
value ζ = 2 when R/γ̇ ∼ 1. The value ζ = 2 is somewhat of
a critical value, in the following sense. Since the linear size of
an avalanche in the x-y plane can be estimated as ∼S1/2, we
see that if ζ < 2, the maximum linear size of the avalanches
becomes negligible compared to the system thickness Lz as
Lz increases. On the contrary, if ζ > 2, this maximum size

FIG. 8. The data of the previous figure scaled according to S/Lζ
z .

The values of ζ used to scale the data for different values of R/γ̇ are
indicated in the inset. The line is a guide to the eye.

stays larger than Lz in the thermodynamic limit. We conclude
that there is a critical value of R/γ̇ below which avalanches
become vanishingly small when Lz → ∞, whereas above that
value, there are avalanches that have a linear extent in the
x-y plane that is much larger than Lz. We suggest this is an
indication (in the large system size limit) of a transition be-
tween smooth, ductile yielding and a fragile behavior in which
the effect of individual avalanches continues to be observable
even if Lz is increased arbitrarily. This is one of the main
findings of the present work.

IV. ROUGHNESS OF THE SPATIAL
DISTRIBUTION OF STRESS

In the previous section, we showed that avalanches become
vanishingly small in the thermodynamic limit (Lz → ∞) in
the absence of, or for low values of, relaxation, whereas there
are “macroscopic” avalanches (linear size larger than Lz) for
large enough relaxation. We will explore the consequence of
this fact in the stress distribution across the sample.

In the simulation, we have access to the local value of stress
at every time, which is given by σ (r, t ) = e(r, t ) − e0(r, t ).
To be able to extract some manageable information from this,
we do the following. First, we work with an average of this
quantity over the z coordinate. This generates a function [that
we continue to call σ (x, y, t ) for simplicity] that is much sim-
pler to analyze and also eliminates the large differences that
would certainly appear between points close to or away from
the yielding plane (at least for cases where spatial localization
occurs). Therefore, we take the function σ (x, y, t ) at fixed
times as an indication of the spatial fluctuation of stress.

As before, we first consider the R = 0 case. In Fig. 9, we
see the function σ (x, y) at some fixed time for systems with
different values of Lz. An examination of these figures sug-
gests that the fluctuation of σ across the system is reduced
as Lz is increased, which is compatible with that stated in
the previous section. In order to have a more quantitative
confirmation of this behavior, we calculate the structure factor
of these configurations and plot the results in Fig. 10. We see
a rather flat structure, indicating the lack of correlations of
σ among different parts of the sample. Moreover, the typ-
ical value of the structure factor decreases as Lz increases,

034123-6



QUASISTATIC DEFORMATION OF YIELD STRESS … PHYSICAL REVIEW E 108, 034123 (2023)

FIG. 9. Instantaneous stress fluctuation across the sample, for
different values of Lz = 8, 16, 32 (Lx = Ly = 128), in the absence
of relaxation.

indicating that the stress distribution become progressively
more uniform in thicker samples. We find a decay of the
typical fluctuation of stress w across the sample that follows
w ∼ L−1

z .

FIG. 10. Structure factor S(q) of the configurations in Fig. 9
(“q = 1” corresponds nominally to the maximum q-value allowed by
the discrete mesh). The structure factor is flat and its value decreases
as L−1

z .

FIG. 11. Same as Fig. 10 for Lz = 4, 8, 16 (we depict a 128 ×
128 piece of a system with Lx = Ly = 512), for R/γ̇ = 1.

Now we do the same analysis in a case with R/γ̇ = 1. We
see the distribution of σ across the system in Fig. 11. It is
apparent that in the present case, there are noticeable correla-
tions between the values of σ at different spatial positions. To
be more quantitative about this point, we again resort to the
analysis of the structure factor. The curves corresponding to
the three values of Lz (obtained by averaging a large number
of configurations to minimize the statistical error) are shown
in Fig. 12. For large q values, the structure factor decreases
with Lz, as before. However, for the lowest values of q, a
remarkable independence of the structure factor on Lz is ob-
served. This independence occurs in a range of small q that
corresponds to a spatial region of the order of Lz, and it is
related to the correlation that is visible in the snapshots in
Fig. 11. We should stress, however, that the independence of
S(q) with Lz observed at low q does not imply that the stress
distribution has a finite width in the limit Lz → ∞. In fact,
our model does not sustain persistent long-range correlations
as the relaxation mechanism is a diffusive process that tends
to uniformize the stress in the system. In other words, if we
go to a limit in which R/γ̇ → ∞ (for instance, setting γ̇ = 0
while R remains finite), the system configuration will evolve
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FIG. 12. Structure factor of the configurations in Fig. 11 (an
average over many equivalent configurations was performed). Now
the structure factor reaches an Lz-independent value as q → 0.

towards a state of uniform stress. Yet the correlations in stress
that are observed originate in the existence of large (linear
size ∼Lz) avalanches in the presence of relaxation. In the next
section, we correlate this effect with the existence of “velocity
weakening” in the system.

V. FLOW CURVE AND VELOCITY WEAKENING

The spatial correlations of stress that we observe for finite
R/γ̇ are a consequence of the velocity weakening at the funda-
mental level caused by relaxation. Velocity weakening is the
underlying mechanism behind a reentrant flow curve as that
in Fig. 1(b); yet, the weakening part of this curve (dotted line)
is not observed in the thermodynamic limit, in the same way
that a reentrant liquid-gas isotherm of a system displaying a
liquid-gas transition is not observed, since it is screened by the
coexistence of phases. However, in finite systems, the velocity
weakening behavior can be observed and this is what we want
to show here.

Our simulations are run in a quasistatic limit in which
avalanches are instantaneous events. This means that we are
exploring the γ̇ → 0 limit of the full flow curve of the system.
Yet, we still have, as an independent parameter, the ratio R/γ̇ .
To discuss the flow curve, it is more instructive to think of
R as fixed and γ̇ as variable. By collecting results from our
simulations, we constructed the plot in Fig. 13. The velocity
weakening effect in this curve is clearly visible. Yet the effect
becomes less visible as Lz is increased. This is not surprising.
A negatively sloped velocity-stress dependence is a mechani-
cally unstable situation that at finite strain rates, is screened by
the breakdown of spatial homogeneity. In fact, the localization
of deformation along the z direction that was described in the
previous section is a manifestation of this effect, where the
unstable behavior is cured through a “Maxwell construction
mechanism” in which most of the system is blocked, and
only a very thin region yields. But even when the deforma-
tion is localized in a single layer (which plays the role of a
“seismic fault”), the yielding may have a velocity weakening
character that the system will screen by producing strong in-
homogeneities in the x-y plane. This is actually the reason for
the strong fluctuations that we have observed in the previous
section for the stress across the system.

FIG. 13. Flow curve of our quasistatic simulations showing the
velocity weakening effect. Results for Lz = 4 (red) and Lz = 16
(blue). Note how the velocity weakening effect becomes less pro-
nounced for the thicker sample. Also, because our simulations are
quasistatic, we do not observe the increase of σ with γ̇ that typically
occurs at finite γ̇ , as sketched in Fig. 1.

This result reinforces the idea of two different yielding
regimes in the thermodynamic limit, depending on the extent
of relaxation. One is the smooth regime, occurring for low or
no relaxation, in which the effect of individual avalanches is
washed out in the thermodynamic limit, and the stress distri-
bution becomes asymptotically uniform. The second regime,
occurring at large relaxation, displays some avalanches that
are larger in linear size that the system thickness Lz, no matter
how large this is, and also spatial fluctuations in the values
of stress that are intimately related to the velocity weakening
nature of the yielding at short scales.

VI. SUMMARY AND CONCLUSIONS

In this work, we have presented numerical simulations of
a model for a yield stress material under quasistatic deforma-
tion. The aim was to investigate under which circumstances
the deformation is smooth and uniform at large scales, or jerky
and localized. The main result is that the answer to this ques-
tion depends on the amount of “relaxation” that is included in
the model. This relaxation also affects other characteristics of
the model, such as the global flow curve.

For no or low levels of relaxation, the avalanches that are
responsible for the plastic deformation of the system scale
with system size in such a way that they become compara-
tively small as the system size increases. Also, they appear
all across the system and the observed deformation is spa-
tially uniform and smooth in the large system size limit.
In this case, the flow curve of the material is monotonous,
and the overall behavior of the material can be described as
“ductile.”

However, when large levels of relaxation are present, the
deformation localizes in a very thin layer, and the maxi-
mum size of the observed avalanches is comparable to the
system thickness no matter how large this is, meaning that
individual avalanches may have macroscopic effects even for
very large system sizes. This phenomenology strongly re-
sembles the situation occurring in geological faulting. The
very thin layer when deformation localizes is just the seismic
fault, and avalanches with an effect that propagates all across
the system are the earthquakes. All this phenomenology is
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associated to an underlying velocity weakening behavior of
the system, which is responsible for both the localization of
the deformation in a thin fault and the fact that avalanches
within this fault have noticeable effects at the system size
scale.

ACKNOWLEDGMENT

The author acknowledges discussions with Alberto Rosso
and Giuseppe Petrillo on topics related to the content of this
work.

[1] P. Coussot, Yield stress fluid flows: A review of experimental
data, J. Non-Newtonian Fluid Mech. 211, 31 (2014).

[2] D. Bonn, M. M. Denn, L. Berthier, T. Divoux, and S.
Manneville, Yield stress materials in soft condensed matter,
Rev. Mod. Phys. 89, 035005 (2017).

[3] A. Nicolas, E. E. Ferrero, K. Martens, and J.-L. Barrat,
Deformation and flow of amorphous solids: Insights from
elastoplastic models, Rev. Mod. Phys. 90, 045006 (2018).

[4] D. S. Fisher, Collective transport in random media, Phys. Rep.
301, 113 (1998).

[5] M. Kardar, Nonequilibrium dynamics of interfaces and lines,
Phys. Rep. 301, 85 (1998).

[6] G. Picard, A. Ajdari, L. Bocquet, and F. Lequeux, Simple model
for heterogeneous flows of yield stress fluids, Phys. Rev. E 66,
051501 (2002).

[7] P. D. Olmsted, Perspectives on shear banding in complex fluids,
Rheol. Acta 47, 283 (2008).

[8] T. Divoux, M. A. Fardin, S. Manneville, and S. Lerouge, Shear
banding of complex fluids, Annu. Rev. Fluid Mech. 48, 81
(2016).

[9] E. A. Jagla, Strain localization driven by structural relax-
ation in sheared amorphous solids, Phys. Rev. E 76, 046119
(2007).

[10] J. Lin, E. Lerner, A. Rosso, and M. Wyart, Scaling description
of the yielding transition in soft amorphous solids at zero tem-
perature, Proc. Natl. Acad. Sci. USA 111, 14382 (2014).

[11] S. Karmakar, E. Lerner, and I. Procaccia, Statistical physics of
the yielding transition in amorphous solids, Phys. Rev. E 82,
055103(R) (2010).

[12] K. A. Dahmen, Y. Ben-Zion, and J. T. Uhl, Micromechanical
Model for Deformation in Solids with Universal Predictions for
Stress-Strain Curves and Slip Avalanches, Phys. Rev. Lett. 102,
175501 (2009).

[13] B. Tyukodi, S. Patinet, S. Roux, and D. Vandembroucq, From
depinning transition to plastic yielding of amorphous media: A
soft-modes perspective, Phys. Rev. E 93, 063005 (2016).

[14] The meaning of fragile here is unusual. Usually, fragile means
that a sample will break suddenly when deformation is in-
creased. In the present case, the sample does not break, but
individual avalanches of plastic rearrangements produce ob-
servable effects even in samples of arbitrarily large size.

[15] C. H. Scholz, The Mechanics of Earthquakes and Faulting
(Cambridge University Press, Cambridge, 2002).

[16] A. Kabla and G. Debregeas, Local Stress Relaxation and Shear
Banding in a Dry Foam under Shear, Phys. Rev. Lett. 90,
258303 (2003).

[17] H. Rehage and H. Hoffman, Viscoelastic surfactant solutions:
model systems for rheological research, Mol. Phys. 74, 933
(1991).

[18] J.-F. Berret, D. C. Roux, and G. Porte, Isotropic-to-nematic
transition in wormlike micelles under shear, J. Phys. II France
4, 1261 (1994).

[19] V. Schmitt, F. Lequeux, A. Pousse, and D. Roux, Flow Behavior
and Shear Induced Transition near an Isotropic/Nematic Tran-
sition in Equilibrium Polymers, Langmuir 10, 955 (1994).

[20] C. Grand, J. Arrault, and M. E. Cates, Slow transients and
metastability in wormlike micelle rheology, J. Phys. II France
7, 1071 (1997).

[21] M. M. Denn, Issues in viscoelastic fluid mechanics, Annu. Rev.
Fluid Mech. 22, 13 (1990).

[22] C. Tang, H. Peng, Y. Chen, and M. Ferry, Formation and di-
latation of shear bands in a Cu-Zr metallic glass: A free volume
perspective, J. Appl. Phys. 120, 235101 (2016).

[23] A. L. Greer, Y. Q. Cheng, and E. Ma, Shear bands in metallic
glasses, Mater. Sci. Eng.: R: Rep. 74, 71 (2013).

[24] S. Ogata, F. Shimizu, J. Li, M. Wakeda, and Y. Shibutani,
Atomistic simulation of shear localization in CuZr bulk metallic
glass, Intermetallics 14, 1033 (2006).

[25] C. Zhong, H. Zhang, Q. P. Cao, X. D. Wang, D. X. Zhang, U.
Ramamurty, and J. Z. Jiang, Deformation behavior of metallic
glasses with shear band like atomic structure: A molecular
dynamics study, Sci. Rep. 6, 30935 (2016).

[26] R. Burridge and L. Knopoff, Model and theoretical seismicity,
Bull. Seismol. Soc. Am. 57, 341 (1967).

[27] J. M. Carlson, J. S. Langer, and B. E. Shaw, Dynamics of
earthquake faults, Rev. Mod. Phys. 66, 657 (1994).

[28] Z. Olami, Hans Jacob S. Feder, and K. Christensen, Self-
Organized Criticality in a Continuous, Nonconservative Cellu-
lar Automaton Modeling Earthquakes, Phys. Rev. Lett. 68, 1244
(1992).

[29] E. A. Jagla, F. P. Landes, and A. Rosso, Viscoelastic Effects
in Avalanche Dynamics: A Key to Earthquake Statistics, Phys.
Rev. Lett. 112, 174301 (2014).

[30] Note that we have stated that we work in the limit γ̇ → 0. The
fact that R/γ̇ is finite means that relaxation is also a very slow
process in the system. In other words, we can say that during
the duration of any avalanche, R and γ̇ do not have any effect
on the system.

[31] E. A. Jagla, Tensorial description of the plasticity of amorphous
composites, Phys. Rev. E 101, 043004 (2020).

[32] For a derivation of this kernel, see the Appendix of I. Fernández
Aguirre and E. A. Jagla, Phys. Rev. E 98, 013002 (2018).

[33] V. V. Bulatov and A. S. Argon, A stochastic model for contin-
uum elasto-plastic behavior. I. Numerical approach and strain
localization, Modell. Simul. Mater. Sci. Eng. 2, 167 (1994).

[34] T. Lookman, S. R. Shenoy, K. O. Rasmussen, A. Saxena, and
A. R. Bishop, Ferroelastic dynamics and strain compatibility,
Phys. Rev. B 67, 024114 (2003).

[35] S. Kartha, J. A. Krumhansl, J. P. Sethna, and L. K. Wickham,
Disorder-driven pretransitional tweed pattern in martensitic
transformations, Phys. Rev. B 52, 803 (1995).

[36] E. E. Ferrero and E. A. Jagla, Criticality in elastoplastic models
of amorphous solids with stress-dependent yielding rates, Soft
Matter 15, 9041 (2019).

034123-9

https://doi.org/10.1016/j.jnnfm.2014.05.006
https://doi.org/10.1103/RevModPhys.89.035005
https://doi.org/10.1103/RevModPhys.90.045006
https://doi.org/10.1016/S0370-1573(98)00008-8
https://doi.org/10.1016/S0370-1573(98)00007-6
https://doi.org/10.1103/PhysRevE.66.051501
https://doi.org/10.1007/s00397-008-0260-9
https://doi.org/10.1146/annurev-fluid-122414-034416
https://doi.org/10.1103/PhysRevE.76.046119
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1103/PhysRevE.82.055103
https://doi.org/10.1103/PhysRevLett.102.175501
https://doi.org/10.1103/PhysRevE.93.063005
https://doi.org/10.1103/PhysRevLett.90.258303
https://doi.org/10.1080/00268979100102721
https://doi.org/10.1051/jp2:1994198
https://doi.org/10.1021/la00015a057
https://doi.org/10.1051/jp2:1997172
https://doi.org/10.1146/annurev.fl.22.010190.000305
https://doi.org/10.1063/1.4972189
https://doi.org/10.1016/j.mser.2013.04.001
https://doi.org/10.1016/j.intermet.2006.01.022
https://doi.org/10.1038/srep30935
https://doi.org/10.1785/BSSA0570030341
https://doi.org/10.1103/RevModPhys.66.657
https://doi.org/10.1103/PhysRevLett.68.1244
https://doi.org/10.1103/PhysRevLett.112.174301
https://doi.org/10.1103/PhysRevE.101.043004
https://doi.org/10.1103/PhysRevE.98.013002
https://doi.org/10.1088/0965-0393/2/2/001
https://doi.org/10.1103/PhysRevB.67.024114
https://doi.org/10.1103/PhysRevB.52.803
https://doi.org/10.1039/C9SM01073D


E. A. JAGLA PHYSICAL REVIEW E 108, 034123 (2023)

[37] E. A. Jagla and A. B. Kolton, A mechanism for spatial and
temporal earthquake clustering, J. Geophys. Res. 115, B05312
(2010).

[38] This occurs because, typically, no more than a single site with
the same x-y coordinates participates in an avalanche, and ad-
ditionally because every participating site typically moves to
the next potential well of the local potential, and no more than
that.

[39] E. A. Jagla, Shear band dynamics from a mesoscopic modeling
of plasticity, J. Stat. Mech. (2010) P12025.

[40] Y. Shi, M. B. Katz, H. Li, and M. L. Falk, Evaluation of the
Disorder Temperature and Free-Volume Formalisms via Simu-
lations of Shear Banding in Amorphous Solids, Phys. Rev. Lett.
98, 185505 (2007).

[41] D. D. Alix-Williams and M. L. Falk, Shear band broadening in
simulated glasses, Phys. Rev. E 98, 053002 (2018).

034123-10

https://doi.org/10.1029/2009JB006974
https://doi.org/10.1088/1742-5468/2010/12/P12025
https://doi.org/10.1103/PhysRevLett.98.185505
https://doi.org/10.1103/PhysRevE.98.053002

