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We study communities emerging from generalized random Lotka-Volterra dynamics with a large number of
species with interactions determined by the degree of niche overlap. Each species is endowed with a number of
traits, and competition between pairs of species increases with their similarity in trait space. This leads to a model
with random Hopfield-like interactions. We use tools from the theory of disordered systems, notably dynamic
mean-field theory, to characterize the statistics of the resulting communities at stable fixed points and determine
analytically when stability breaks down. Two distinct types of transition are identified in this way, both marked
by diverging abundances but differing in the behavior of the integrated response function. At fixed points only
a fraction of the initial pool of species survives. We numerically study the eigenvalue spectra of the interaction
matrix between extant species. We find evidence that the two types of dynamical transition are, respectively,
associated with the bulk spectrum or an outlier eigenvalue crossing into the right half of the complex plane.
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I. INTRODUCTION

The foundations of the theory of disordered systems date
back to the early 1970s [1]. Initially, the aim was to understand
certain magnetic states in condensed-matter physics (“spin
glasses”) [2]. However, it became clear that applications of the
tools developed for disordered systems had a reach far beyond
the boundaries of physics. Methods such as replica theory
or dynamic generating functionals were quickly adapted and
used to answer questions in neural networks [3–5] and to
study the Minority Game [6] (sometimes presented as a simple
model of a financial market) or indeed evolutionary bimatrix
games and so-called Nash equilibria [7].

The defining feature of disordered systems is the pres-
ence of quenched disorder. That is, the system is made up
of many constituents, and the interactions between these are
determined by coefficients that are drawn at random at the
beginning but then remain fixed as the dynamics of the system
unfolds. The disorder leads to complicated energy landscapes.
The number of local minima can grow exponentially in the
size of the system and is often organized in a hierarchical
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manner. Dynamic phenomena in disordered systems include
ergodicity breaking and so-called ageing [2,8].

Ideas and methods from the physics of disordered systems
have also been used to study complex ecosystems [9–17]. The
word “complex” in this context indicates that the ecosystem is
composed of a large number of species and that these species
are subject to randomly drawn interaction coefficients. In this
paper we continue this line of work and focus on a Lotka-
Volterra system with Hopfield-like interactions [3–5]. More
specifically, we are interested in a set of N species (N � 1),
whose abundances develop in time following a generalized
Lotka-Volterra equation (details will follow in Sec. II). This
involves an N × N matrix ai j of interaction coefficients. Ex-
isting work on the statistical physics of complex ecosystems
has mostly focused on the case in which the interaction matrix
is drawn from distributions with either no correlations be-
tween different matrix elements or only correlations between
diagonally opposed entries [9,11,14–19]. There is also work
on cases in which the matrix is composed of blocks and
where the elements in different blocks have different statistics
[20]. One common element shared by many existing random
Lotka-Volterra models is that the finest level of modeling is
set by the interaction coefficients. No further assumptions are
made about the properties of the species and how the species
interactions come about from these properties.

The Hopfield model is inspired by structures first used in
neural networks [5,21,22]. Translated into the language of
ecology, the starting point is now a set of species and a set of
traits. Each species can either possess or not possess a given
trait. This assignment of traits to species, in turn, determines
how species will interact. Broadly speaking, the interaction
between two species will be more competitive the more traits
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they share (i.e., the more similar the two species are). This
type of interaction structure has also been studied in models
combining resources and consumers, both in economics and
in ecology [12,13,23–25]. A particularly notable model is
that by MacArthur and collaborators [26–28]. Analyses of
random replicator systems with “Hebbian” interactions [29]
have shown interesting statistical mechanics and in particular
types of phase transition that are different from those seen in
replicator systems with Gaussian couplings.

In this paper, we set out to characterize the behavior of a
Lotka-Volterra system with Hopfield-like interactions, where
we allow for a degree of “mild” dilution (the system is
not fully connected, but each species still interacts with an
extensive number of other species). A system of replicator
equations with such interactions was studied in Ref. [29]. Our
aim is to calculate the statistics of fixed points in the phase
where such fixed points are attained and identify the onset
of instability. As in the system with Gaussian interactions,
we find that only a proportion of the initial species survive
at stable fixed points. Recent work [30] on Gaussian systems
has shown that the reduced interaction matrix (the matrix of
interaction coefficients among the surviving species) has in-
tricate statistics. Specifically, its bulk and outlier eigenvalues
can be related to different types of dynamic phase transitions.
As we will show, the types of phase transition seen in our
model differ from those in the Gaussian model. One aim of
the current paper is therefore to establish (in simulations) how
these transitions relate to the spectra of the interaction matrix
of the extant species.

The remainder of the paper is organized as follows. In
Sec. II we define the model and introduce the necessary no-
tation. Section III then contains the mathematical analysis.
This is based on so-called generating functionals and dynamic
mean-field theory. The phase diagram and further behavior of
the model are then discussed in Sec. IV. In Sec. V we finally
turn to a study of the spectra of the reduced interaction matrix
and their relation to the phase diagram. We conclude the paper
with a discussion and an outlook in Sec. VI.

II. MODEL DEFINITIONS

We will study the following generalized Lotka-Volterra
equation (gLVE)

ẋi(t ) = xi(t )

[
Ki − uixi +

∑
j �=i

ci jJi jx j

]
, (1)

where the xi � 0 represent the abundances (or population
densities) of different species, i = 1, . . . N . We always assume
initial conditions for which all xi are strictly positive.

The quantities ui > 0 denote the strength of intraspecific
competition, and the ai j = ci jJi j represent the interspecific
interactions. The Ki (together with the ui) set the carrying
capacities of the species in the absence of interactions between
different species (xi then tends to Ki/u in the long run). We
focus on the case ui ≡ u for all i, noting that u controls the
time scale on which the noninteracting system approaches the
fixed point xi ≡ Ki/u. We allow for general positive values of
u throughout our analysis, but in an effort to keep the number
of parameters manageable we set Ki ≡ 1.

The dilution variables ci j ∈ {0, 1} (i �= j) determine which
species interact with one another, i.e., they set the topology of
the interaction network. For each pair i < j, the coefficients
ci j and c ji are chosen from a Bernoulli distribution with

〈ci j〉 = c, 〈ci jc ji〉 − c2 = �c(1 − c). (2)

We thus have P(ci j = 1) = c for all i �= j, i.e., c is the analog
of what May called “connectance” [9]. The parameter � is
restricted to the range from −1 to 1 by construction, but we
note that not all choices of pairs (c, �) are possible (see the
Supplemental Material (SM) [31] for details). We note that
the choice of the diagonal coefficients cii is irrelevant as we
set Jii = 0 below

Throughout our paper, c is chosen not to scale with N
[c = O(N0)]. This means that each species interacts with an
O(N ) number of other species. We are therefore not studying
a “dilute” system in the sense of random matrix theory. The
extensive connectivity allows us to use established methods
from dynamic mean-field theory. Truly dilute systems with
c = O(1/N ) (and where, consequently, each species only in-
teracts with a finite number of other species) can be expected
to behave very differently, see, e.g., Ref. [32], and a theoretical
analysis would be much more intricate.

Interaction links in our system are directed, that is, an effect
of the presence of species j on the dynamics of i does not
necessarily imply the reverse. The parameter � measures the
correlations between ci j and c ji. A choice of � = −1 implies
ci j = 1 − c ji with probability 1, and � = 1 means that ci j =
c ji with probability 1.

The matrix Ji j determines the strength of the effects of
the presence of species j on the dynamics of the abundance
of species i. Positive values of Ji j imply that the population
of species j is beneficial to the growth of species i, while
negative values imply a detrimental interaction. In ecological
terms the signs of the pair of interactions (sgn Ji j, sgn Jji )
determine whether two species are in a mutualistic relation
(+,+), whether they compete with one another (−,−), or
whether there is an antagonistic predator-prey relation be-
tween i and j (±,∓) [10].

In this work, the interspecific interaction is chosen ac-
cording to a niche overlap heuristic (see e.g., Ref. [33]). We
assume each species is described by a set of binary traits,
labeled μ = 1, . . . , P, and that a pair of species will compete
in proportion to the similarity between the two species (i.e.,
the number of traits which both or neither species possess).
We write ξ

μ
i = +1, if species i has trait μ, and ξ

μ
i = −1 if

the species does not possess the trait. Interactions are then
assumed to be of the form

Ji j =
{− 1

cN

∑αcN
μ=1 ξ

μ
i ξ

μ
j i �= j

0 i = j
. (3)

We have here set P = αcN , with α > 0 a model parameter
(in simulations P is restricted to integer values.) That is,
we assume that the number of traits is proportional to the
number of species in the system. The interaction in Eq. (3)
is reminiscent of the Hopfield model, used in the context
of neural networks [4,21]. This suggests interesting phase
behavior when α = O(N0), which is the regime we focus on.
We have normalized the interaction strength by cN , the mean
number of species that any one species will interact with. We
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will refer to the random variables ci j and ξ
μ
i as the disorder of

the system.
The traits ξ

μ
i are chosen to be ξ

μ
i = ±1 with equal prob-

ability, and there is no correlation between the different ξ
μ
i .

This implies that the distribution of the Ji j approaches a Gaus-
sian as N → ∞, reminiscent of the model studied for example
in Refs. [14,15]. We note, however, that the Hopfield structure
introduces correlations between the different Ji j , which are
different from the correlations studied in the earlier literature.
We highlight again the structural similarity to MacArthur’s
consumer-resource model [26–28] (see also Refs. [24,25] for
statistical physics studies), noting though that the latter model
is more sophisticated, with dynamical equations both for con-
sumers and resources.

III. GENERATING FUNCTIONAL ANALYSIS
AND STABILITY

A. Generating functional and effective process

We analyze the system in Eq. (1) using dynamic generating
functionals, an established method in the theory of disordered
systems [4,34]. This leads to an effective “dynamic mean-field
theory.” Similar approaches have been used to study Lotka-
Volterra systems with Gaussian random couplings [11,15,35].
We note that an alternative approach is based on the so-called
cavity method [14,18,36]. We also add that the dynamics ad-
mit a Liapunov function when c = 1 (leading to a symmetric
interaction matrix). Methods from the equilibrium statistical
physics of disordered systems such as the replica approach can
be used in this special case (for examples see Refs. [16,17]).

The outcome of the application of these techniques is an
effective stochastic process for a “representative species.” The
ensemble of realizations of stochastic processes is statistically
equivalent to the set of single-species trajectories xi(t ) of
the disordered dynamical system in Eq. (1). The dynamic
mean-field description becomes exact in the thermodynamic
limit (N → ∞). Overall, in this limit, the infinite-dimensional
deterministic dynamical system in Eq. (1) is traded for an
effective single-species process which is nonlocal in time (it
involves retarded self-interaction) and contains colored noise.

The generating functional analysis begins from

ẋi(t ) = xi(t )

[
1 − uxi +

∑
j �=i

ci jJi jx j − hi(t )

]
, (4)

where we have introduced the perturbation fields hi(t ) in order
to calculate linear response functions. These fields are not
actually part of the model and are set to zero at the end of the
calculation, as well as in all simulations shown in the paper.
For more details see the SM. The generating functional of this
dynamical system is given by

Z[ψi(t ), hi(t )] =
〈

exp

[
i
∑

i

∫
dt xi(t )ψi(t )

]〉
paths

, (5)

where the average is over paths [x1(t ), . . . , xN (t )] of the dy-
namics in Eq. (4). The ψi(t ) constitute a source field. The
generating functional in Eq. (5) is the Fourier transform of the
probability measure in the space of paths generated by Eq. (4).

The final outcome of the generating-functional analysis is
a set of equations for the dynamic macroscopic order param-
eters of the problem. For the Lotka-Volterra model these are

M(t ) = lim
N→∞

1

N

N∑
i=1

〈xi(t )〉0,

C(t, t ′) = lim
N→∞

1

N

N∑
i=1

〈xi(t )xi(t ′)〉0, (6)

G(t, t ′) = lim
N→∞

1

N

N∑
i=1

δ〈xi(t )〉0

δhi(t ′)
,

where δ denotes a functional derivative and 〈· · · 〉0 stands
for an average over random initial conditions. The overbar
· · · represents the average over the disorder, i.e., over the
ci j and ξ

μ
i . The order parameters can be obtained from the

disorder-averaged generating functional as derivatives with
respect to the fields ψi(t ) and/or hi(t ), evaluated at ψi(t ) ≡ 0
and hi(t ) ≡ 0.

The order parameters in Eqs. (6) are determined self-
consistently from an effective process for a single represen-
tative (“mean-field”) species. The procedure to derive the
effective equations is well documented [5,6,11,37]; therefore,
we only report the final result (a more detailed derivation can
be found in the SM). The effective single-species process for
the model is given by

ẋ(t ) = x(t )

{
1 − ux(t ) − α

∫ t

0
dt ′[cG(I − G)−1

+�(1 − c)G](t, t ′)x(t ′) − η(t )

}
, (7)

where I is the identity operator and η(t ) is colored Gaussian
noise with zero mean and correlations in time, given by

〈η(t )η(t ′)〉 = α[c(I − G)−1C(I − GT )−1 + (1 − c)C](t, t ′).
(8)

The order parameters in Eqs. (6) are to be obtained self-
consistently from the following expressions:

M(t ) = 〈x(t )〉∗,
C(t, t ′) = 〈x(t )x(t ′)〉∗,
G(t, t ′) = δ

δη(t ′)
〈x(t )〉∗, (9)

where the average 〈· · · 〉∗ is performed over realizations of the
process in Eq. (7). Equations (7)–(9) form a closed system and
have to be solved self-consistently.

B. Fixed-point analysis

There is no realistic prospect for a general analytical so-
lution of the effective dynamics in Eq. (7). One alternative
is to use Monte Carlo methods to construct sample paths
for the effective process and solutions for the dynamic order
parameters, for example via the Eissfeller-Opper procedure
[38] or using the more recent approach in Ref. [18]. The
latter reference explicitly discusses applications to random
Lotka-Volterra systems with Gaussian disorder.
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FIG. 1. Fixed points and divergences of the dynamics in Eq. (1). Each panel illustrates the behavior of the model for different choices of
c and �. The heatmap indicates the fraction of samples that converge to a fixed point after numerical integration of the gLVE. The criteria
for the identification of convergence or divergence are described in Appendix A. The dashed lines are theoretical predictions for the onset of
divergence (see Sec. III C)

Here we will instead follow Refs. [11,15,35] and focus
on analytical solutions in the parameter regime in which
the dynamics approach stable fixed points. This is motivated
by observations from the numerical integration of Eq. (1).
We find that, for certain parameters, the system tends to a
unique fixed point, which is independent of initial conditions.
Figure 1 shows examples of parameter regions in which this
is the case. Broadly speaking, we observe two different types
of behavior: (i) the population densities converge to a fixed
point or (ii) they diverge. These types of behavior occur in
different regions of parameter space (Fig. 1). There is a thin
boundary between the two regions where other behavior (e.g.,
periodic behavior or persistent irregular motion) can appear,
as evidenced by the occasional green or light blue pixel in
Fig. 1. We attribute this to the fact that the system size N
is necessarily finite in numerical experiments, and we expect
that this behavior will become increasingly rare as N → ∞.

We will thus assume that each path in the ensemble of tra-
jectories of the effective process eventually arrives at a unique
fixed point, x = limt→∞ x(t ). Each realization of the noise
variable η(t ) in Eq. (9) also approaches a stationary value η.
We note that x and η will be random variables, differing across
realizations of the effective dynamics. We can then write

M = 〈x〉∗,
G(τ ) = lim

t→∞ G(t + τ, t ),

q = lim
t→∞C(t + τ, t ) = 〈x2〉∗. (10)

These relations can be understood as follows: If all real-
izations of the effective dynamics approach stationary values,
then M(t ) will approach a constant, given by 〈x〉∗. Further-
more, we assume that the response function G(t, t ′) becomes
time-translation invariant for large t , i.e., G(t, t ′) = G(t − t ′).
Causality implies that G(t − t ′) = 0 for t < t ′. Finally, given
that all trajectories of the effective dynamics approach fixed
points, the correlation function C loses all time dependence
and so we have written C(t, t ′) = q. This is consistent with
Eq. (8); the noise variables η(t ) also approach a random but
time-independent value for all realizations. The mean of the
random variable η is zero and using Eq. (8), its variance is

given by

〈η2〉 = αq

[
c

(1 − χ )2
+ 1 − c

]
, (11)

where

χ =
∫ ∞

0
dτ G(τ ). (12)

From now on, we will write η = √
q 
z, where z is a standard

Gaussian random variable, and


2 = α

[
c

(1 − χ )2
+ 1 − c

]
. (13)

Setting the time derivative on the left-hand side of Eq. (7)
to zero and using Eqs. (10)–(12) we find

x

{
1 − ux − √

q
z − αx

[
c

χ

1 − χ
+ �(1 − c)χ

]}
= 0.

(14)

For a given value of z this is to be solved for x, subject to
the constraint that abundances are non-negative, i.e., x(z) � 0.
Irrespective of the value of z, Eq. (15) always has the solution
x(z) = 0. Additionally, a second non-negative solution is pos-
sible for some values of z. As we will confirm in simulations,
the physically meaningful solution is given by

x = max

{
0,

1 − √
q
z

u + α
[
c χ

1−χ
+ �(1 − c)χ

]
}

. (15)

For given order parameters q and χ , the function x(z) in
Eq. (15) is therefore piecewise linear, with one piece equal to
zero. The denominator in Eq. (15) always comes out positive.
Therefore, we have the solution x(z) > 0 when z < �, and
x(z) = 0 when z � �, with

� = 1



√

q
. (16)

Given that z is a Gaussian random variable, the abundances
of extant species at the fixed point follow a clipped Gaussian
distribution. This is similar to what was reported in other
random Lotka-Volterra models; see e.g., Ref. [14]. An explicit
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example of a species abundance distribution can be found for
instance in Ref. [15].

Using this fixed-point ansatz, the relations for the order
parameters in Eq. (10) can be written in the following form
[14,15]:

M =
∫ �

−∞
Dz x(z),

χ = 1√
q


∫ �

−∞
Dz

∂x(z)

∂z
, (17)

q =
∫ �

−∞
Dz x(z)2,

where Dz = dz√
2π

e− z2

2 . It is now convenient to introduce the
following functions:

fn(�) :=
∫ �

−∞
Dz (� − z)n, (18)

for n = 0, 1, 2. We then find from Eqs. (17)

−χ

{
u + α

[
c

χ

1 − χ
+ �(1 − c)χ

]}
= f0(�),

M
u + α

[
c χ

1−χ
+ �(1 − c)χ

]
√

αq
[

c
(1−χ )2 + (1 − c)

] = f1(�),

{
u + α

[
c χ

1−χ
+ �(1 − c)χ

]}2

α
[

c
(1−χ )2 + (1 − c)

] = f2(�). (19)

Equations (19) together with Eq. (16) form a closed set for the
set of unknowns q, χ , M, and �, which is to be solved as a
function of the model parameters u, c, �, and α.

Recalling that x(z) > 0 if, and only if, z < � we identify
f0(�) as the fraction of surviving species,

φ ≡ f0(�) =
∫ �

−∞
Dz. (20)

Equations (19) can be solved parametrically. We fix u, c,
�, and � and then solve for the set of χ , q, M, and α.

In detail, we find the following cubic equation for χ , valid
for c < 1,

0 = f0(c(� − 1) f0 − � f0 − f2)

+ χ
(

f 2
0 [c + 2� − 2c�] + 2 f0 f2[1 − c] − f2u

)
+ χ2(c − 1)

(
� f 2

0 + f0 f2 − 2 f2u
) + χ3u f2(c − 1).

(21)

Further, we have from Eqs. (19),

M = χ
f 2
1

f0( f0 − f2)
,

q = χ2

(
f1

f2 − f0

)2 f2

f 2
0

,

α = f 2
0

f2

1

χ2
[
1 − c + c

(1−χ )2

] , (22)

where the fn are to be evaluated at �.
The relations in Eqs. (21) and (22) are also valid for c = 1

and can then be simplified as outlined in Appendix B.
The validity of the predictions from Eqs. (21) and (22)

is confirmed by direct numerical integration of the gLVE in
Fig. 2.

C. Stability analysis

1. Diverging abundance

a. Model with c < 1. The first and second relations in
Eqs. (22) indicate that the order parameters M and q both
diverge in the system with c < 1 when f0(�) = f2(�). The
latter implies � = 0. The value of α for which this occurs can
(for a given choice of c, u, and �) be obtained from the third
relation in Eqs. (22), with χ being the relevant root of Eq. (21).
Using Eq. (21) the susceptibility χ is found to remain finite at
the transition. We note that f0(�) > 0 for all relevant values
of �.

b. Model with c = 1. The fully connected system also
shows two types of divergences: (i) The quantities M and q
both diverge when f0(�) = f2(�); see Eqs. (B1). The sus-
ceptibility then remains finite; (ii) Eqs. (B1) further indicate
that M and q also diverge in the model with c = 1 when
f 2
0 (�) = u f2(�). This latter condition results in α = u. From

Eqs. (B1) the susceptibility χ is then seen to diverge as well
(the divergences of M, q, and χ take place simultaneously).

We note that the divergencies resulting from f0 = f2 and
f 2
0 = u f2 can take place at different locations in parameter

space for the model with c = 1. If this is the case, and starting
in the stable phase, then the divergence that occurs first will
determine the loss of stability in the fully connected system.
For u < 1/2 the transition of type (ii) takes place first as
α is increased (M, q, and χ diverge), and for u > 1/2 the
transition of type (i) is instead observed (q and M diverge
and χ remains finite). At present we do not have any further
intuition regarding any significance or special role of the value
u = 1/2.

2. Linear instability

The system also shows a linear instability which can be
identified using the procedure established in Refs. [11,29]. We
write x(t ) = x + y(t ) and η(t ) = √

q 
z + ζ (t ), where y(t )
and ζ (t ) are small perturbations about the fixed point of the
trajectories of the effective process in Eq. (7). Expanding to
first order in these perturbations we find that

ẏ(t ) = x

[
−uy(t ) − α

∫ t

−∞
dt ′ K

(
t, t ′)y

(
t ′) − ζ (t )

]

+ y(t )

[
1 − ux − αx

∫ t

−∞
dt ′ K

(
t, t ′) − √

q 
z

]
,

(23)

with K (t, t ′) = [cG(I − G)−1 + �(1 − c)G](t, t ′). We also
have the self-consistency relation

〈ζ (t )ζ (t ′)〉 = α[c(I − G)−1D(I − GT )−1 + (1 − c)D](t, t ′),

(24)

where D(t, t ′) = 〈y(t )y(t ′)〉∗.
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(a) (b) (c)

FIG. 2. Test of analytical predictions for the order parameters against numerical simulations. The figure shows the fraction of surviving
species φ, the mean abundance M, and the variance of abundances (q − M2) as a function of the model parameter α (where P = αcN is the
number of traits each species in the original system possesses). Lines are from the theory, derived in Eqs. (21) and (22), markers from numerical
integration of the gLVE (N = 1000, tmax = 30, averaged over 10 realizations of the disorder). The remaining model parameters are c = 0.5
and � = 0.3. Vertical dashed lines indicate the onset of divergence as determined from the theory in Sec. III C.

When x = 0, Eq. (23) becomes

ẏ(t ) = y(t )(1 − √
q 
z). (25)

Equation (15), together with the observation that the de-
nominator in this equation is strictly positive, implies that
1 − √

q 
z < 0 when x = 0. This allows us to conclude that
perturbations on extinct species decay and do not contribute
to any linear instability.

For fixed points x > 0 we find from Eqs. (15) and (23) that

ẏ(t ) = −x

[
uy(t ) + α

∫ t

−∞
dt ′ K

(
t − t ′)y

(
t ′) + ζ (t )

]
. (26)

To identify the onset of linear instability we follow
Refs. [11,29]. We move to Fourier space, writing ω for the
variable conjugate to time t and using tildes to indicate Fourier
transforms.

Focusing on the mode with ω = 0 and following steps
similar to those in Refs. [11,15,29] we then find from Eq. (26)

〈|ỹ(0)|2〉 =
{
φ−1

[
u + αc

χ

1 − χ
+ α�(1 − c)χ

]2

− α

[
c

(1 − χ )2
+ 1 − c

]}−1

. (27)

The left-hand side is manifestly non-negative, so a change
of sign of the expression inside the square bracket on the
right-hand side indicates an inconsistency (and divergence of
〈|ỹ(0)|2〉). Using Eqs. (19) this is shown to occur when

α

[
c

(1 − χ )2
+ 1 − c

]
( f0 − f2) = 0. (28)

For c < 1 the expression in the square brackets is never
zero. This leaves us with the condition f0 = f2, which is the
same as we obtained for the divergence of M and q. If c = 1,
then the term in the square bracket is zero if χ → ∞, which
using Eq. (B1) we can write as f 2

0 − u f2 = 0.
From this, we conclude that in our model the linear insta-

bility is always accompanied by the instability with diverging
mean abundance. This is markedly different from the behavior

of the gLVE model with Gaussian random interactions. In this
Gaussian model there are instances where the linear instability
sets in as the variance of interactions is increased, but where
abundances remain finite and the divergence only occurs at a
later point at even higher variance of the interactions. This
leads to a phase with multiple attractors between the two
transitions [14,16,36]. Our analysis indicates that the model
with Hopfield-like couplings does not have such a multiple-
attractor regime.

IV. PHASE DIAGRAM AND FURTHER BEHAVIOR
OF THE MODEL

A. Phase diagram for the fully connected system (c = 1)

The phase diagram of the fully connected model is shown
in Fig. 3(a). We recall that, for c = 1, the only model parame-
ters are the self-interaction coefficient u and the ratio of the
number of traits to the number of interspecies interactions
in the original pool (α = P/cN). For a fixed value of α, the
system shows a unique stable fixed point for u > uc(α), where
uc(α) marks the onset of instability. The line in Fig. 3(a),
obtained from Eq. (B1), shows the phase boundary between
the stable and unstable regions. At this boundary M and q
diverge, and if uc < 1/2 we also observe a divergence of χ .

The two types of trajectory in the stable and divergent
phases are illustrated in Fig. 3(b). In the stable phase the
system reaches a fixed point for any one realization of the
interaction matrix (two examples are illustrated in green and
red, respectively).

Figure 3(b) also shows two examples in which the species
abundances diverge (blue and orange). The divergence occurs
at a finite time. We will discuss this further in Sec. IV C.

B. Phase diagram for connectivity c < 1

Figure 4 shows how the phase diagram for the system
with c < 1 depends on the connectivity c and the symmetry
parameter �. In all cases there is a single phase boundary,
where the divergence of M and q and the onset of linear
instabilities coincide. This phase boundary separates a region
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(a) (b)

FIG. 3. Phase behavior of the fully connected model (c = 1). (a) Phase diagram for the model with c = 1, the only model parameters
are then u and α. The system is stable to the right of the lines. At the dot-dashed line (u < 1/2) q, M, and χ all diverge, and at the dashed
line M and q diverge, but χ remains finite. (b) Illustration of the behavior of the abundances of individual species in the two different phases
(convergence to a fixed point shown in green and red, diverging abundances in orange and blue).

where trajectories converge to a single globally stable fixed
point (phase to the right of the line), from a region where
trajectories are unbounded and diverge in finite time (phase
to the left).

The phase diagrams in Figs. 3 and 4 show that the system
is in the stable phase for small values of α (i.e., a small
number of traits relative to the number of species in the initial
pool) or large values of u (i.e., large negative self-interaction).
This is the consequence of two competing effects, the self-
interaction (parametrized by u) which stabilizes the system
and the interaction between species (induced by competition
of similar species) which promotes instability. When u is large
and/or α is small, the stabilizing effect of the intra-species
interaction dominates over the interactions across species.
In the extreme limit α = 0 (no interaction between different
species), each abundance follows a separate logistic equation,
ẋi = xi(1 − uxi ), and converges to xi = 1/u. When α is small
but nonzero, the system consists of weakly interacting species.
The effect of the interactions between species is then a small
perturbation to the logistic behavior of individual species and
does not change the convergence to a fixed point. This can
be confirmed from Eqs. (21) and (22) by taking the limit
α → 0, which results in all species surviving with fixed-point

abundance x∗
i = 1/u (φ → 1, M → 1

u , and Var[x] → 0). A
similar result is obtained for u � 1 at fixed value of α.

Conversely, for low values of u or large values of α

the system is unstable. In this situation, the stabilizing self-
interaction is not sufficient to overcome the destabilizing
effect of the random interactions between species.

The most interesting behavior takes place at the phase
boundary, where the effect of the intraspecific and inter-
specific nonlinearities are of comparable magnitude. From
Eqs. (21) and (22) we can conclude that φ → 1/2, and M ∼
(αc − α)−1 as the system approaches the instability (from the
stable phase). Further details can be found in Appendix C.

We further note that decreasing the value of the symme-
try parameter � increases the range of the stable region in
the phase diagrams in Fig. 4. This is similar to the effect
of increasing the fraction of predator-prey interactions in
Lotka-Volterra models with Gaussian interactions [10,14,15].
Indeed, the effect of a reduction of � is to increase the frac-
tion of species pairs i, j with ci j = 1 and c ji = 0, that is the
proportion of unidirectional interactions.

Interestingly, the effect of varying the “connectance” c is
not straightforward. As can be seen in Fig. 4 an increased
connectivity can, depending on the other model parameters,

(a) (b)

(c)

FIG. 4. Phase diagram for different choices of the connectivity c, and the symmetry parameter �. The colored lines in each panel indicate
where the linear instability occurs. The instability coincides with the divergence of M and q. The system is stable to the right of the line,
abundances diverge on the left.
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(a) (b) (c)

FIG. 5. Finite-time divergence of abundances. The heatmaps indicate the time, tdiv, at which abundances diverge for initial conditions
xi(0) = 1. Data are obtained from numerical integration of the gLVE. The dotted line is the phase boundary predicted by the theory. To the
right of the phase boundary the system is in the stable phase, so that no divergence occurs.

turn a previously stable system into an unstable one or, vice
versa, stabilize a previously unstable system.

C. Finite-time divergence of the mean abundance

As mentioned earlier, the divergence of the abundances
in the divergent phase occurs at finite time. This has previ-
ously been reported in the model with Gaussian interactions
[18] and can be justified heuristically from the Lotka-Volterra
equations. Indeed, Eq. (1) has a second-order nonlinearity in
the abundances xi. This can lead to dynamics of the form
ẋ ∼ x2, which in turn implies a solution of the form x(t ) =
(c − t )−1, where c is an integration constant. This results in a
divergence at finite time.

Figure 5 shows the time, tdiv, at which the divergence oc-
curs for different choices of the model parameters. This time
grows as one approaches the stability line (from inside the un-
stable phase). When the stability line is crossed (into the stable
phase), the time-to-divergence diverges itself (tdiv → ∞), i.e.,
the divergence no longer occurs. Results from the numerical
integration of the gLVE suggest that the divergence of the
abundances is of the form M ∼ (tdiv − t )ν , where ν ≈ 1, as
shown in Fig. 6. This behavior appears to be independent of
initial conditions, the values of the parameters u and α, and
the initial number of species N .

V. REDUCED INTERACTION MATRIX
AND ITS EIGENVALUE SPECTRUM

Reference [30] recently established a close connection
between different instabilities in the Gaussian random Lotka-
Volterra model and the eigenvalue spectrum of the interaction
matrix of the surviving species. More specifically, the spec-
trum of this reduced interaction matrix is composed of a bulk
region and a potential outlier eigenvalue. As parameters are
changed (starting from within the stable phase), either the bulk
spectrum or the outlier eigenvalue can cross into the right half
of the complex plane. In the Gaussian model, the crossing
of the outlier is associated with a transition marked by the
divergence of abundances and a crossing of the bulk with a
linear instability.

In this section, we explore in numerical simulations how
the different transitions in the gLVE model with Hopfield-like
interactions relate to the eigenvalue spectrum of the matrix of
interactions between surviving species.

A. Spectrum of the original interaction matrix

Before we discuss the spectra of the reduced interaction
matrix, we make a few remarks on the initial interaction ma-
trix αi j = ci jJi j among all species. Throughout this section we
set the diagonal elements of this matrix to zero, the only effect
of self-interaction (the term −uxi) is a simple shift of this
spectrum. In the large-N limit the central limit theorem applies
to Ji j = − 1

cN

∑αcN
μ=1 ξ

μ
i ξ

μ
j , so each off-diagonal entry αi j of

the interaction matrix is either a Gaussian random variable (if
ci j = 1) or equals zero (if ci j = 0). The variance of αi j is

Var(αi j ) = 1

cN2

αcN∑
μ,μ′

〈
ξ

μ
i ξ

μ′
i ξ

μ
j ξ

μ′
j

〉 = α

N
. (29)

FIG. 6. Divergence of M for initial conditions uniformly dis-
tributed in (0, 10−3) and parameters N = 1000, u = 1, and different
values of α. The dotted black line corresponds to (t∞ − t )−1. The
deviation from M ∼ (t∞ − t )−1 close to the divergence is attributed
to numerical error.
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FIG. 7. Examples of the eigenvalue spectrum of the original
interaction matrix. The dashed lines are the naïve predictions of
Eq. (31). Model parameters are c = 0.4, � = c/(c − 1), and N =
5000.

Calculating the correlations between pairs of elements we
obtain

Corr[αi j, αnm] = 〈αi jαnm〉 − 〈αi j〉〈αnm〉
Var(αi j )

=
⎧⎨
⎩

�(1 − c) + c (i, j) = (m, n)
1 (i, j) = (n, m)
0 else

, (30)

where we have used Eq. (2) and the fact that Ji j is symmetric.
This means that only diagonally opposed pairs of elements are
correlated and that their correlation is determined by both �

and c.
Based on a theory that only takes into account correlations

between diagonally opposed matrix entries, one might then
expect an elliptic spectrum [39], with support given by the
ellipse [

x√
α(1 + τ )

]2

+
[

y√
α(1 − τ )

]2

= 1, (31)

with τ = �(1 − c) + c. However, as illustrated in Fig. 7, this
is an approximation to the true spectrum at best for large
values of α. For intermediate values of α (an example is shown
in orange in the figure), the eigenvalue spectrum appears to
have a triangular shape, and for small values of α (shown in
green), the spectrum becomes even more skewed and eventu-
ally appears to consist of two separate components (example
shown in red). While we cannot fully exclude finite-size ef-
fects (the spectra in Fig. 7 are for N = 5000), we believe
that the deviations from an elliptical spectrum in Eq. (31)
are due to higher-order correlations between entries of the
interaction matrix. For example, it has been shown in Ref. [40]
that cyclic correlations can result in eigenvalue spectra with

FIG. 8. Eigenvalue spectrum of the reduced interaction matrix
for u = 5, c = 0.5, and � = c/(c − 1), for different choices of the
model parameter α. The vertical dashed lines indicate the real part of
the rightmost eigenvalue.

shapes similar to the ones in Fig. 7. For c = 1 the interaction
matrix is a (scaled and shifted) Wishart matrix, so its spectrum
follows the Marcenko-Pastur law.

B. Eigenvalues of the reduced interaction matrix

We now conclude the analysis of the model with a numeri-
cal study of the spectra of the reduced interaction matrix, that
is, the interaction matrix between species that survive at the
fixed points of the gLVE.

Figure 8 shows the spectra of this matrix for the case c < 1
and for a choice of � less than one. This means that the initial
interaction matrix is not symmetric. The reduced matrix is
not symmetric either, and as a consequence its eigenvalues
will generally be complex. As seen in Fig. 8, the spectrum
is not elliptic, and we have found no evidence of an outlier
eigenvalue in this scenario (c < 1). In the figure we have fixed
u, and varied α. The data suggest that the phase transition
at α = αc(u) coincides with the point at which the rightmost
bulk eigenvalue crosses the imaginary axis into the right half-
plane.

In Fig. 9 we study the fully connected system for two
different values of the self-interaction strength u. The original
interaction matrix in the fully connected model is symmetric
by construction and so is the reduced interaction matrix. As a
consequence, all eigenvalues are real.

Figure 9(a) focuses on the case u > 1/2. We find no signs
of outlier eigenvalues, and again the data indicate that the tran-
sition to instability occurs when the leading bulk eigenvalue
crosses into the positive half of the real axis.

Figure 9(b) shows a scenario in which u < 1/2. In contrast
with the situation in (a), an outlier eigenvalue now becomes
apparent, and the transition to instability in the gLVE at α =
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(a) (b)

FIG. 9. Eigenvalue spectrum of the reduced interaction matrix in the fully connected system. The matrices are symmetric, and their
eigenvalues are therefore real valued. Panel (a) is for u = 0.7; panel (b) is for u = 0.3.

αc(u) now appears to coincide with the point at which the
outlier becomes positive.

The connection between the different types of transition
and the behavior of the spectrum of the reduced interaction
matrix is shown in Table I. We recall that the mean abun-
dance and the second moment of the abundances diverge at all
transitions and that the onset of the linear instability always
coincides with the point of diverging abundances. There are
thus only two types of transition, one in which the susceptibil-
ity remains finite (χ < ∞) and another for which it diverges
(χ → ∞). The table indicates that the former transition (χ fi-
nite) appears to coincide with the bulk spectrum of the reduced
matrix crossing into the right half of the complex plane. The
transition at which χ → ∞ (along with the divergences of M
and q), on the other hand, seems to be seen when the outlier
eigenvalue of the reduced matrix in the fully connected system
reaches the origin.

We stress that these are numerical observations and that
these findings should therefore be seen mostly as conjectures
at this point. In principle, the spectrum of the reduced interac-
tion matrix can likely be calculated in our model, adapting the
method used in Ref. [30]. However, this involves a substantial
calculation and is beyond the scope of the current paper.

VI. DISCUSSION

To summarize, we have carried out a generating functional
analysis of a random generalized Lotka-Volterra system with
interactions determined by niche overlap. Species interactions

TABLE I. Types of phase transition in the gLVE model with
Hopfield-like interactions. The table summarizes the different tran-
sitions, giving details about the nature of the divergence at the
transition, and the associated behavior of the spectrum of the reduced
interaction matrix.

q, M diverge bulk spectrum
c < 1 χ remains finite crosses axis

c = 1 u > 1/2 q, M diverge bulk spectrum
χ remains finite crosses axis

u < 1/2 q, M, χ outlier eigenvalue
all diverge crosses axis
(at u = α)

in the model are governed by Hopfield-like couplings subject
to mild dilution (the remaining connectivity is still extensive).
We have computed the statistics of surviving species in the
stable fixed-point phase, and we have analytically determined
the onset of instability. Similarly to the gLVE with Gaussian
interactions, asymmetry in the connectivity matrix promotes
stability. That is, the system becomes more stable when there
is a larger fraction of unidirectional interactions (ci j = 1,
but c ji = 0). In contrast with the Gaussian model, the linear
instability against small perturbations cannot be separated
from an instability at which species abundances diverge. As
a consequence, there is no phase with multiple stable fixed
points our model. Despite some common features, the statis-
tical mechanics of the Gaussian and Hopfield-like models are
therefore rather distinct.

Our analysis shows two types of transitions to divergent
abundances, one in which the integrated response χ remains
finite and another in which χ diverges. This raises interest-
ing questions about the exact nature of memory onset in the
system (a diverging integrated response indicates persistent
memory of perturbations). Future work could focus on the
precise shape of the response function, where the numerical
methods in Ref. [18] might prove particularly useful. Given
that the fully connected system has symmetric couplings it
would also be interesting to see how crossing each of the
different types of transition affects the energy landscape. A
natural approach here might be the replica method and suit-
able levels of replica symmetry breaking [16,19].

Numerical simulations provide evidence that the transition
at which the integrated response remains finite (χ < ∞) is
associated with the bulk spectrum of the reduced interaction
matrix (the matrix of interactions between extant species)
crossing the axis. The transition at which χ diverges on the
other hand appears to be signalled by an outlier eigenvalue
crossing the imaginary axis.

These findings in simulations reinforce the intriguing an-
alytical result obtained recently in Ref. [30]. Namely, the
eigenvalues of the interaction matrix in the community of
surviving species can be used to decide the stability of fea-
sible equilibria, that is, fixed points with non-negative species
abundances. In the traditional approach to ecosystem stability
by Robert May [9], based on the eigenvalue spectra of random
matrices, no actual dynamics are specified, and the feasibility
of the assumed equilibria remains unclear. Any fixed point
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of the generalized Lotka-Volterra model on the contrary is
feasible by construction. The study of the spectra of reduced
interaction matrices resulting from Lotka-Volterra dynamics
can therefore contribute to establishing how May’s approach
can be adapted to include feasible equilibria. Noting that pre-
vious work [14,30] has shown that the statistics of the reduced
interaction matrix in random Lotka-Volterra models can be
quite different from those of the original interaction matrix,
it would be interesting to study the statistics of the Ji j among
survivors in the present model in more detail. In particular, the
niche overlap between surviving species.

On a broader level, our study highlights two common facets
of work on the statistical physics of complex systems, which
were also seen for example in the early 1980s to 1990s when
physicists studied neural networks or the early 2000s to 2010
when a number of physicists worked on the Minority Game.
On the one hand, tools from physics can make a difference
in problems from other disciplines. In our system (and other
models of complex ecosystems more generally) this is the
study of feasible equilibria with methods from spin-glass
physics. At the same time, studying problems arising in other
areas can reveal new types of physics and complexity, which
one would perhaps not find within the strict boundaries of
traditional physics. In our case, these are the different types
of phase transition in the generalized Lotka-Volterra model.
We think that this mutually beneficial relation of physics
and adjacent disciplines is what makes the field of complex
systems particularly attractive.
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APPENDIX A: DETAILS OF NUMERICAL PROCEDURES

For the numerical integration of the gLVE (1) we use
scypi’s solve_ivp function, which uses a RK45 integration
scheme.

To determine the fraction of survivors we count the number
of species above a threshold abundance of 10−4. There are two
sources of systematic error associated with this method. The
most relevant is the overestimation of the fraction of survivors
if the system is not close enough to the equilibrium configura-
tion. This can be addressed by extending the simulation time.

The second source of error comes from the fact there is
no “gap” between zero and the lowest nonzero abundance
[see the clipped Gaussian Eq. (15)]. This implies that for
any value of the threshold, there is a nonzero probability of
finding equilibrium abundances below it. A possible solution,
making use of the facts that in simulations N is finite and
that we know the abundance distribution analytically, is to
choose the threshold value so that the expected number of
surviving species with an abundance below the threshold is
small (e.g., smaller than 1). The chosen value of 10−4 provides
good results in the parameter ranges we have explored.

As part of our measurements, it is necessary to detect diver-
gences in the species’ abundances. To detect this divergence
we have used the failure of the integration method as an
indicator. Indeed, as the abundances grow with each iteration,
so does the estimated error used to adapt the step size. This
causes the solver to lower the time step until it eventually
drops below machine precision, at which point integration is
stopped. The agreement of the theoretical and numerical phase
boundaries in Fig. 5 confirms the validity of this method.

APPENDIX B: ORDER PARAMETERS AT THE FIXED
POINT OF THE FULLY CONNECTED SYSTEM

The parametric solution for the order parameters of the
fully connected system (c = 1) in the fixed-point phase can
be obtained from the following relations:

α = (u + f0)2 f2

( f0 + f2)2
,

M = f 2
1 ( f0 + f2)

( f0 − f2)
(

f 2
0 − u f2

) ,

q = f 2
1 f2( f0 + f2)2

( f0 − f2)2
(

f 2
0 − u f2

)2 ,

χ = f0( f0 + f2)

f 2
0 − u f2

. (B1)

The functions fn(�) on the right provide α, M, q, χ as implicit
functions of �.

Keeping Eq. (18) in mind one sees that M and q can only
diverge if f0 = f2 or f 2

0 = u f2, as indicated in the main text.

APPENDIX C: LIMITING BEHAVIOR
OF THE ORDER PARAMETERS

1. Limit α → 0

The weak interaction limit α → 0 corresponds to � → ∞.
[This can be seen from Eq. (22), keeping in mind that f0 > 0.]
From the definition in Eqs. (18) we have, in this limit,

f0(�) = φ = 1 + e− �2

2√
2π

[
− 1

�
+ O(�−3)

]
, (C1)

f1(�) = � + e− �2

2√
2π

[
1

�2
+ O(�−4)

]
, (C2)

f2(�) = 1 + �2 + e− �2

2√
2π

[
− 2

�3
+ O(�−5)

]
. (C3)

Next we compute the value of χ . Since only f0 and f2 are
present in Eq. (21), and only f2 is divergent, we group in terms
proportional to f2 to obtain

0 = 1 − χ [2(1 − c) − u] − χ2(c − 1)(1 − 2u)−χ3u(c − 1),

which we can check always has χ = −1/u as its negative
solution. Finally, from Eq. (22) we obtain M = 1/u and
Var[x] = 0.

As expected, these values are independent of c and �, since
in the limit of absent interactions Eq. (4) becomes a set of
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independent logistic maps. In this case, all species survive
with abundance 1/u, which is what we obtain.

2. Limit α → αc

There are two different scenarios for the limit α → αc

(where αc is the location of the phase transition).
(1) If c = 1, u < 1/2, then the divergence takes place as

u f2 → f 2
0 . Using Eq. (B1) we see that αc = u, and

αc − α = u − f2

( f0 + f2)2

(
f 2
0 − u f2

)
. (C4)

This implies that both χ and M diverge as (αc − α)−1 and q
diverges as (αc − α)−2.

(2) The other type of transition occurs when f0 → f2,
which implies � → 0. In this case χ remains finite and we

have near � = 0,

f0(�) = 1

2
+ �√

2π
− �3

6
√

2π
+ O(�4)

f1(�) = 1√
2π

+ �

2
+ �2

2
√

2π
+ O(�4)

f2(�) = 1

2
+

√
2

π
� + �2

2
+ �3

3
√

2π
+ O(�4). (C5)

We note from these expansions that f0 − f2 ∝ � as � →
0. Using Eq. (22) we then find M ∼ �−1. Similarly, we have
αc − α ∝ � [this can be seen from expanding f 2

0 / f2 in the
third relation in Eq. (22)], so we can conclude that M ∼ (α −
αc)−1. These results are consistent with simulations (see for
example Fig. 2).
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