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Cluster scaling and critical points: A cautionary tale
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Many systems in nature are conjectured to exist at a critical point, including the brain and earthquake faults.
The primary reason for this conjecture is that the distribution of clusters (avalanches of firing neurons in the brain
or regions of slip in earthquake faults) can be described by a power law. Because there are other mechanisms
such as 1/ f noise that can produce power laws, other criteria that the cluster critical exponents must satisfy can
be used to conclude whether or not the observed power-law behavior indicates an underlying critical point rather
than an alternate mechanism. We show how a possible misinterpretation of the cluster scaling data can lead one
to incorrectly conclude that the measured critical exponents do not satisfy these criteria. Examples of the possible
misinterpretation of the data for one-dimensional random site percolation and the one-dimensional Ising model
are presented. We stress that the interpretation of a power-law cluster distribution indicating the presence of a
critical point is subtle and its misinterpretation might lead to the abandonment of a promising area of research.
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Cluster scaling techniques, such as the determination of
the exponents which characterize the distribution of clusters
and the scaling laws which relate the different exponents,
have been used as an indicator that a system is operating
at a critical point. This approach has been applied to many
systems, including earthquake faults [1,2], the brain [3–12],
and micelles [13,14]. In this work we discuss the subtleties
of applying cluster scaling as a test for critical points, espe-
cially in neural systems. We highlight common pitfalls when
applying cluster scaling to two exactly solved models, namely,
the one-dimensional (1D) site-percolation and the 1D Ising
models, and discuss how to avoid them.

The idea of cluster scaling was formulated in its most quan-
titative form in the context of percolation [15]. A percolation
model is specified by defining the objects to be connected, the
rules which define the connections, and how the objects are
distributed (such as random or correlated). Percolation models
often exhibit a phase transition as a function of a parameter
such as the probability of an occupied site or bond [15]. The
percolation transition usually involves the appearance of an
infinite or spanning cluster [15].

In the neighborhood of the percolation transition, the prob-
ability P(s) of a cluster of size s can be described by the
critical exponents τ and σ in the Fisher-Stauffer scaling
relation [15]

P(s) ∼ s−τ+1e−s/sc , sc ∼ ε−1/σ (s � 1), (1)

where sc(ε) is the characteristic size of the clusters. The pa-
rameter ε is the relevant scaling field and is the independent
tuning parameter in the system. Here ε = 0 corresponds to the
percolation critical point.

The number of clusters with duration D satisfies a scaling
relation similar to Eq. (1) with τ replaced by τD (and σ

replaced by σD) [16–18]. The critical behavior at the percola-
tion transition is analogous to the behavior at thermal critical
points [15], which are characterized by long-range correla-
tions, a divergent response to external stimuli, and fluctuations
at all scales [15]. The existence of cluster scaling can also
indicate the presence of an underlying thermal critical point
as is found in the Ising model [19,20].

The question of whether the existence of cluster scaling
actually indicates the existence of an underlying percolation
and/or thermal critical point can be subtle [2,3] because sev-
eral mechanisms can result in scaling that is not associated
with a critical point [3,12]. A necessary but perhaps insuffi-
cient test of whether cluster scaling implies that there is an
underlying critical point is that the critical exponents ν and z
are related to the cluster exponents τ , σ , and τD by the relation
[21]

τD − 1

τ − 1
= 1

σνz
. (2)

The exponent ν characterizes the divergence as ε → 0 of the
connectedness and/or the correlation length ξ ∼ ε−ν [15], and
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FIG. 1. (a) Probability P(s) of a cluster of s sites grown from a seed using the Leath algorithm [24] for a 1D lattice of length L = 20 001 with
p = 0.997 and 109 trials. Here P(s) is well approximated by As e−bs, with A ≈ 9.03 × 10−6 and b ≈ 3.0 × 10−3, corresponding to τ̃p − 1 = 0
and σ̃p = 1. The value of b is consistent with b = 1 − p = q. (b) Quadratic dependence on q = 1 − p of the amplitude A(q) of the simulation
results.

the dynamical exponent z characterizes the divergence of the
the correlation time τ ∼ ξ z [21].

When cluster scaling is applied to models of the brain or
earthquake faults, the cluster may correspond to the number
of neurons that have fired or the area that has slipped in
an earthquake [22]. Touboul and Destexhe [12] argued that
the experimentally determined exponents associated with the
scaling of neural avalanches do not satisfy Eq. (2). Hence,
they concluded that the scaling of clusters of fired neurons
does not indicate that the brain is operating at a critical point.
In the following we argue that their conclusion may be based
on a possible misinterpretation of the cluster scaling data and
that further investigation is needed before it can be determined
whether or not the observed cluster scaling is associated with
an underlying critical point.

We first discuss cluster scaling for 1D site percolation. The
probability of a cluster of size s is given by Eq. (1), with p the
probability that a site is occupied, q = 1 − p, and sc ∼ q−1/σ .
The percolation exponent that characterizes the divergence of
the mean cluster size γp is related to τ and σ by

γp = 3 − τ

σ
(3)

and the order parameter exponent βp is given by

βp = τ − 2

σ
. (4)

The relations (3) and (4) can be obtained by evaluating the
first and second moments of P(s) in Eq. (1) and taking the
argument of the exponential to be zero up to qsσ ∼ 1, resulting
in integrals of the power-law part of P(s) from s = 1 to s =
1/q1/σ . In d = 1, the exponents γp = 1 and βp = 0 are known
exactly [23], which implies that τ = 2 and σ = 1.

Figure 1(a) shows the results of a simulation of the proba-
bility P(s) of a cluster of size s grown from a seed using the
Leath algorithm [24]. To avoid confusion, we denote the ex-
ponents obtained from the simulations by a tilde. We see that
P(s) is well approximated by the function se−bs, correspond-
ing to τ̃p − 1 = 0 and σ̃p = 1. We have denoted the argument
of the exponential by bs rather than by q1/σ s, because we have
used b as a fit parameter. If we use these values of τ̃ and σ̃

in Eqs. (3) and (4), we would find γ = 2 and β = −2, which
disagrees with the exact results.

To understand why the simulation does not yield the theo-
retical value of τ = 2, we calculate the probability of a cluster
of s sites exactly. We choose a seed site at random and occupy
it with probability p. We then occupy its two neighbors with
probability p. If we generate two empty sites with probability
q2, the cluster growth is terminated. Hence, the probability of
a cluster with s sites is given by

P(s) = sq2 ps + qδs,0, (5)

where the factor of s multiplying q2 ps is due to the fact that
any of the s sites in the cluster could be the seed [15]; δs,0 is
the Kronecker delta function. It is easy to show that P(s) is
normalized. There is a percolation phase transition at p = 1
[23].

We can express P(s) in the Fisher-Stauffer form of Eq. (1)
by writing

P(s) = sq2es ln p ≈ q2se−qs, (6)

where q � 1 and we have ignored the δs,0 term because the
exponents are determined by large clusters. The probability
distribution in Eq. (6) can be used to calculate βp and γp

with the expected results βp = 0 and γ = 1. However, if we
compare P(s) in Eq. (6) for a fixed value of q to Eq. (1),
we would conclude that τ − 1 = 0 (and σ = 1), consistent
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with the simulation result in Fig. 1(a) but inconsistent with
the exact result τ = 2.

Given the exact solution for P(s) in Eq. (6), the resolution
of this apparent contradiction is clear. Because the value of q
was fixed in the simulations, the factor of q2 in Eq. (6) was not
accounted for when obtaining the value of τ to use in Eqs. (3)
and (4). Hence, for 1D site percolation, the correct value of the
critical exponent τ cannot be obtained from a measurement of
the cluster distribution at a fixed value of q.

We can determine the value of τ that should be used in
the relations between τ and σ and between β and γ [Eqs. (3)
and (4)] as follows. For scaling purposes we can convert the
sum to an integral for q � 1 to calculate the exponents via
the moments of P(s). Because we are interested only in the
critical exponents, we can truncate the integral at qsσ = 1,
and because the contribution from the lower limit does not
enter into the scaling laws, we can obtain the same moments
by assuming that the amplitude of P(s) �= 0 as q → 0 and by
replacing q by 1/s in Eq. (6). The result is

P(s) ∼ se−qs

s2
(s � 1). (7)

From the form of P(s) in Eq. (7), we immediately obtain
the value τ = 2. However, we stress that we will not obtain
τ = 2 in a measurement of the cluster distribution for a sin-
gle value of q. Our argument simply demonstrates how the
amplitude might be accounted for in the calculation of the
critical exponents. The actual measured quadratic dependence
of the amplitude of the cluster distribution on the scaling
parameter q determined from the simulations is shown in
Fig. 1(b).

We stress that the form of P(s) in Eq. (6) is the same as
would be found if the cluster distribution were measured for
one value of q (the relevant scaling field). We cannot measure
the correct value of τ from P(s) from a single value of q
if we do not correctly account for the q2 dependence of the
amplitude.

We have seen that the measurement of the τ exponent from
the probability of finding a cluster of size s for one value of
the scaling field can lead to missing the relation between clus-
ter scaling and a possible underlying percolationlike critical
point. To illustrate the relation between cluster scaling and
a thermal critical point, we consider the temperature T = 0
critical point of the 1D nearest-neighbor ferromagnetic Ising
model in zero magnetic field. The Ising correlation length
exponent is ν = 1 [25] and the dynamical critical exponent
is z = 2 for model A dynamics [25–27].

We can map the Ising critical point onto a percolation
transition by assigning a down spin to be an occupied site and
an up spin to be empty. The distribution of spins satisfies the
Boltzmann probability distribution associated with the Ising
Hamiltonian. We assign a percolation bond between nearest-
neighbor occupied sites with probability pb = 1 − e−2K =
1 − qb, where K = J/kBT , with J the coupling constant and
kB the Boltzmann constant [20]. The thermal problem can be
treated as a distribution of independent Ising bonds, with the
probability of an Ising bond given by Ref. [28]

pI = eK

eK + e−K
≈ 1 − e−2K = 1 − qI (K � 1). (8)

We generate a cluster by choosing a down-spin seed site
and adding a site to the cluster if both the Ising and percolation
bonds are present, which occurs with probability p = pI pb.
The cluster grows until an empty bond is encountered on both
sides of the cluster with probability (qb + qI )2. Hence, the
probability P(s) of an Ising cluster of size s is

P(s) = s(qb + qI )2(pI pb)s. (9)

For K � 1 we have pb = pI and qb = qI , and

p ≡ pb pI = (1 − e−2K )2 ∼ 1 − 2e−2K = 1 − (qb + qI )

= 1 − 2e−2K = 1 − q. (10)

Therefore, the probability of a cluster of size s near the T = 0
critical point is

P(s) = sq2 ps, (11)

which is identical to Eq. (5). Because the form of Eq. (11) is
the same as for 1D random site percolation, we conclude that
τ and σ in Eq. (2) for the 1D Ising model are the same as the
1D random percolation exponents [23].

The dynamics of the Ising model is characterized by the
random-walk dynamics of the domain walls. To determine
the duration exponent τD, we note that the distance a domain
wall walker must travel in one dimension is s and s is the
correlation length. The probability that there is a cluster of
size s at the critical point is

P(s) ∼ 1

s
, (12)

where we have used q2 ∼ 1/s2. Because the lifetime D of
the cluster is proportional to s2, the probability that there is
a cluster with lifetime D at the critical point is

P(D) ∼ 1

(s2)1/2
= 1

D1/2
, (13)

which implies that τD − 1 = 1
2 or τD = 3

2 .
We substitute the values τD − 1 = 1

2 , τ − 1 = 1, σ = 1,
ν = 1, and z = 2 in Eq. (2) and find that this consistency
condition is satisfied. This result is not surprising because
we constructed the percolation model to be isomorphic to the
Ising critical point [20]. In contrast, the simulation results in
Fig. 2 for the probability P(s) of a cluster of s spins for the
d = 1 Ising cluster probability at one value of the temperature
yield an exponential for s � 1, or τ̃ − 1 = 0, which would
imply that τ̃D − 1 = 0 from the random-walk argument, rather
than the theoretical result τD = 3

2 . Hence, the ratio of τD − 1
to τ − 1 would be 1, and because z, ν, and σ remain the same,
the consistency condition in Eq. (2) would not be satisfied,
leading to an erroneous conclusion. Note that although P(s)
for the Ising model is not a power-law distribution, the behav-
ior of P(s) corresponds to a critical point.

We note that the prefactor of P(s) would not vanish as
the critical point is approached if the system self-organizes
to the critical point. Hence, the failure of the cluster criti-
cal exponents to satisfy the consistency condition in Eq. (2)
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FIG. 2. Probability P(s) of a cluster of s spins for the 1D Ising
model at temperature T = 0.4 with periodic boundary conditions and
L = 105 averaged over 106 Monte Carlo steps per spin. The form of
Ps is consistent with Ase−bs, with A ≈ 1.82 × 10−4 and b ≈ 1.35 ×
10−2, corresponding to τ̃ − 1 = 0 and σ̃ = 1 in Eq. (1).

for a single measurement appears to rule out the possibility
that the underlying critical point (if it exists) is self-organized.
Nonetheless, there remains the possibility that a different defi-
nition of the clusters might satisfy Eq. (2) with a nonvanishing
prefactor. Such a situation would be analogous to the case
of the d = 2 nearest-neighbor Ising model, which requires
a more subtle definition of the clusters associated with the
underlying thermal critical point [20].

Finally, we note that the examples of the vanishing of the
cluster scaling prefactor we have discussed are for models
in which both the cluster and thermal order parameter expo-
nent β is zero. We leave for future work the investigation of
whether this connection is general and if so its physical basis.

In summary, our results illustrate that Eq. (2) must be used
with caution and that the exponents associated with cluster
scaling at one value of the scaling parameter may not cor-
rectly determine the existence of an underlying critical point.
Instead, a true test requires that the cluster distribution be
measured at several values of the scaling field. Unfortunately,
such measurements may not be possible for physical systems
such as earthquake faults and in vivo neural systems. We also
stress it is important that a possible misinterpretation of the
data should not prematurely lead to the abandonment of a
promising direction of research.

We thank Karin A. Dahmen and Jan Tobochnik for useful
conversations.
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