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Packing spheres in high dimensions with moderate computational effort
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We generate nonlattice packings of spheres in up to 22 dimensions using the geometrical constraint satisfaction
algorithm RRR. Our aggregated data suggest that it is easy to double the density of Ball’s lower bound
and, more tentatively, that the exponential decay rate of the density can be improved relative to Minkowski’s
longstanding 1/2.

DOI: 10.1103/PhysRevE.108.034117

I. INTRODUCTION

The packing of congruent spheres in Euclidean space
has important practical implications and is a seemingly un-
bounded source of theoretical questions. A major recent
success was the discovery by Viazovska [1] and coworkers
[2] of modular functions that make the Cohn-Elkies linear
programming density upper bound [3,4] sharp for the E8 and
Leech lattices, proving that these lattice-based schemes for
packing spheres are the densest possible in 8 and 24 dimen-
sions. By contrast, the subject of lower bounds on achievable
densities is much murkier and progress seems to have stalled.

Minkowski [5] was the first to find a lower bound for
general dimension n that was superior to the density achieved
by any of the known packing schemes available for arbitrary
n. For example, a simple scheme is to center the spheres
on the n-dimensional checkerboard lattice Dn, the subset of
integer lattice points with even coordinate sum. This gives the
optimal density for n = 3 [6] and is also believed to be the
best possible for n = 4 and 5. On the other hand, the density
�, or fraction of space covered by spheres, decays as

�(Dn) ∼ 1√
4πn

(eπ

n

)n/2
,

which is much faster than Minkowski’s bound whose leading
behavior is 2−n.

Like Minkowski’s result, recent advances are also based on
lattices and have asymptotic densities

c
n

2n
,

with improvements in the value of the constant c. The current
best bound, for general n, is Ball’s bound [7],

� > �B = n − 1

2n−1
ζ (n),

corresponding to c = 2. Ball’s result hinges on a lemma in
Bang’s proof of the “plank problem” [8] and corresponds
geometrically to the transformed problem of custom-fitting
a thin oblate ellipsoid in the integer lattice that avoids all
lattice points except the origin. Though only the existence
of the ellipsoid is established, and the corresponding packing
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is not explicitly constructed, the value c = 2 appears as a
sharp estimate because the ellipsoid is constrained all over
its surface. Vance [9] was able to further improve c when n
is divisible by four and Venkatesh [10] found that c could be
replaced by log log n for very special n.

These increasingly sophisticated bounds, all based on lat-
tices, stand in stark contrast to a bound that makes no
reference to lattices at all and can be proved in five sentences.
A set of sphere centers S∗

n is “saturated” for spheres of radius
r if it is impossible to add another sphere, also of radius r,
without intersecting an existing sphere. This property implies
all points not covered by a sphere are within distance 2r of one
of the sphere centers. By doubling all the sphere radii, all of
these points will be covered as well. But this could not happen
if �(S∗

n ) < 2−n, since doubling the radii increases each sphere
volume by 2n. We therefore know that

�(S∗
n ) � 2−n.

Like the lattice-based bounds, this construction is not con-
structive in a practical sense. On the other hand, it reveals
that matching the leading asymptotic part of the sophisticated
bounds is already achieved by a greedy algorithm. Infor-
mation on where spheres can be placed is provided by the
Voronoi diagram of the sphere centers already placed, some-
thing that can be locally updated in a sequential construction
of a periodic saturated packing.

The crudeness of saturated packings suggests that easy
improvements on the lower bound should be possible just
by dropping the lattice constraint. Theoretically, this pro-
posal is still difficult because no one knows how to even
mildly enhance the density in a way that is also amenable
to computations. Torquato and Stillinger (TS) [11,12] have
conjectured the existence of packings that have a particular
limiting form of the sphere-center autocorrelation (pair dis-
tribution function) g2 in high dimensions. If such packings
exist, then the dominant 2−n behavior of the density would be
improved to bn, with b ≈ 0.583. The constrained optimization
of g2 used by TS to obtain this b can be interpreted as an
infinite-dimensional linear program (LP) dual to the LP used
by Cohn and Elkies [3,4,13] to establish upper bounds on
the density. In this setting the TS-conjectured lower bound
is a rigorous lower bound on the upper bounds that can be
achieved with the LP method. However, this “lower bound on
the upper bounds” may well be above realizable densities if it
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turns out that packings with the conjectured g2 do not exist. To
add perspective to the Torquato-Stillinger constant 0.583, we
note that by the Kabatiansky-Levenshtein upper bound [14],
the decay constant of the density is less than 0.661.

This study was prompted by the dearth of evidence that
could inform the pursuit of an improved lower bound. The
blindest saturated packing construction, called random se-
quential addition (RSA), is an obvious source of data [15].
In RSA, sphere placement is not informed by the Voronoi di-
agram (e.g., filling the smallest available hole) but is sampled
uniformly on the available set. Accurate estimates of the satu-
ration densities have been obtained in up to eight dimensions
[16]. These data are consistent with b = 1/2, and that may not
be surprising because this dominant behavior was proved for
the related ghost-RSA construction [17].

Physics inspired constructions, also called simulations,
have generated data in up to 12 dimensions [18]. The most
widely used is the Lubachevsky-Stillinger algorithm [19],
where spheres execute Newtonian dynamics with a simple
billiard-type collision rule. Initially, the spheres are small and
easily packed into a simulation cell with periodic boundary
conditions. As the spheres redistribute themselves through
collisions, they are also made to slowly grow in size. Even-
tually, the redistribution of the spheres, into more loosely
packed configurations that allow continued size growth, slows
so dramatically that the simulation cannot be continued any
further. The highest densities achieved by this method, in
12 dimensions, are about 88% higher than Ball’s bound [18].

We present two kinds of data of relevance to the lower
bound problem. Both are generated by the general pur-
pose relaxed-reflect-reflect (RRR) algorithm [20]. RRR is a
generalization, to general constraint sets, of the constraint
satisfaction algorithm used in phase retrieval. Provided the
problem at hand can be formulated as the search for a point
in the intersection of sets A and B in some Euclidean space,
and projections to these sets can be computed efficiently, the
application of RRR is straightforward.

Though RRR can find some of the densest-known pack-
ings, such as Best’s packing in 10 dimensions [21,22], our
focus has been on what density improvements are possible
with only moderate effort. In our first application of RRR we
find packings that exactly double the density of Ball’s bound
while taking careful account of the effort involved. Our results
extend to 22 dimensions and look like they can be continued
indefinitely. In the second, more ambitious application, we do
not set a density goal and instead specify a moderate level of
computational effort. These results extend to 19 dimensions
and the resulting densities support the existence of a bound
with b > 1/2, though less convincingly than the conclusion
of the first study.

A key part of both studies is to demonstrate that the exper-
iments have crossed into the asymptotic regime, so that the
data are relevant for the lower bound question. Our handle
on this is to pack spheres into the smallest possible n-torus,
whose period equals the sphere diameter. Instead of the usual
“thermodynamic limit” of physics that tries to eliminate the
effects of boundaries, we look for asymptotic behavior only
with respect to the dimension n. Even when confined to the
smallest torus, the fraction of a sphere’s surface available
for contacts with other spheres approaches 100% in high

dimensions. We use this property to help assess whether the
asymptotic regime (in dimension) has been accessed.

II. RRR ALGORITHM

The RRR algorithm [20] searches for a point x ∈ A ∩ B,
where A and B are sets in some Euclidean space. The elemen-
tary operations of the algorithm are the projectors PA and PB.
The point PA(x) is the element of A nearest to x, and similarly
for B. When a set is not convex there can be multiple nearest
points, but only for x in a set of measure zero. Since our
computations have finite precision, the implementations of the
projections always output unique points.

After selecting an initial point x, RRR iterates the map

x �→ x′ = x + β(PB(RA(x)) − PA(x)). (1)

Here RA(x) = 2PA(x) − x reflects in constraint set A and β is a
parameter analogous to a time step. When A and B are locally
affine, as they are in the sphere packing problem, RRR locally
converges to fixed-point sets X ∗ associated with solutions
x∗ ∈ A ∩ B. Though fixed-point convergence is assured by the
convexity of the affine local approximations of A and B, RRR
performs something analogous to an actual search when A
and B are not convex. One of the sets in the sphere packing
problem is nonconvex. RRR derives its name from the form it
takes when (1) is entirely expressed in terms of reflectors. For
additional background on this approach to solving problems
see Refs. [23,24].

III. A and B FOR SPHERE PACKING

We used divide-and-concur [25] to define A and B, where
variables are given multiple copies to make constraint projec-
tions easy. In the sphere packing problem we use (N

2 ) pairs
of n-tuple (sphere center) variables. For example, xi j is the
copy of sphere center i “that cares about” sphere j, and vice
versa for x ji. For all pairs (i, j), the projector PA moves the
centers xi j and x ji by the minimum distance to make their
spheres tangent if they intersect and does nothing if these
sphere copies are already disjoint. The other projector, PB,
implements “concur” by restoring equality to the copies in
a distance minimizing way. The total number of (replicated)
variables, N (N − 1)n, is the dimension of the space in which
RRR executes the search.

Finding distance-minimizing displacements that make two
spheres tangent when they intersect (set A), and the concurring
point nearest to N − 1 copies (set B), are both easy computa-
tions. Details, including complications that arise because of
the torus geometry, are provided in the Appendix. Our imple-
mentation also allows the metric that defines the projections to
adiabatically adjust to circumstances. Though all the spheres
are identical, their equivalence under constraint projections is
broken already in the initial, randomly generated configura-
tion. This has many sphere intersections, some spheres worse
off than others. Details for the general metric-update heuristic
we used that addresses such inequities can also be found in
the Appendix.

IV. PACKING THE n-TORUS

Our RRR sphere packing implementation packs N unit-
diameter spheres in the n-torus of width w:

Tn(w) = Rn/(wZ)n.
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When extended periodically this realizes a packing of Eu-
clidean space with density

� = N
vn(1/2)

wn
,

where vn(r) is the volume of the n-ball of radius r. To keep
N small in high dimensions we used the smallest possible
width or the unit torus of width w = 1. Though our packings
are in many respects random, in the unit torus each sphere will
at least be tangent to 2n others (when the packing is extended
periodically). Packing more than one sphere in the unit torus
first becomes possible in four dimensions, and the optimal
packing, of two spheres, is unique.

Unit diameter spheres with centers x1 and x2 that are tan-
gent in Euclidean n-space can be packed in Tn(1) only if x1

and x2 have no coordinate differences greater than 1/2 in
absolute value. When this is not the case, then one sphere
has a coset representative with a smaller coordinate-difference
magnitude, giving it a smaller distance to the other sphere, in
violation of the packing constraint.

The set of torus-restricted tangencies just described, that is,
the allowed set of center differences z = x1 − x2, is the set

S̃n(1) = Sn(1) ∩ Cn(1/2), (2)

where Sn(1) is the unit radius n-sphere and

Cn(1/2) = {z ∈ Rn : ‖z‖∞ � 1/2}
is the centered n-cube of unit width. In the Appendix we
provide details for the formula (n > 3)

vol(S̃n) = ãn

=
3∑

k=0

(−1)kan−k b(n, k) c(n, k), (3)

where

am = vol(Sm(1)) = mvm(1)

is the volume of the unrestricted m-sphere,

b(n, k) =
3∑

�=k

(−1)�
(

�

k

)(
n

�

)

is a combinatorial factor, and

c(n, k) =
∫

z∈Ck (1/2)

(
1 − ‖z‖2

2

) n−2−k
2 ,

is an integral over the k-cube with c(n, 0) = 1. When inter-
preting our packing experiments we will refer to the plot of
the fraction of the tangency volumes, fn = ãn/an, shown in
Fig. 1.

V. EXPERIMENTS WITH TORUSPACK

The main inputs for our RRR implementation, called
toruspack [26], are the dimension n, the number of spheres to
be packed N , and the torus width w. In this study we always
set w = 1 except when we want to specify a precise value
for the density. In that case we let the density determine a
fractional N with w = 1, round this upward to the nearest
integer, and then compensate by appropriately increasing w.

10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

n

fn

FIG. 1. Fraction of the sphere of radius 1 available for tangencies
when spheres are packed in the unit n-torus.

Because N grows rapidly with n, the value of w even in these
experiments is only very slightly greater than 1.

The other inputs relate to the behavior of RRR and are not
special to the sphere packing problem. Though local fixed-
point convergence is fastest when β = 1 is used for the RRR
time step, smaller values are more productive when the search
is faced with nonconvex constraints. We used β = 0.5 in all
the experiments. The parameter that controls the update rate
of the metric was set at the same small value, γ = 10−3, in
all the experiments except the one instance of a hard search
(Best’s packing), where we used γ = 10−2.

The algorithm’s progress is monitored via the normalized
error,

ε = ‖x′ − x‖/
√

N,

which may be interpreted both as the current root-mean-
square 2-norm of the distances moved by the copies of each
sphere, as well as the current proximity to a solution—since
ε = 0 corresponds to a fixed point. Figure 2 shows the time
series of ε in four runs with n = 10, N = 40, and w = 1. This
is a hard instance, with ε behaving chaotically. The occasional
dips to small values indicate the discovery of near solutions,
where only a few concurring spheres are intersecting, only a
few spheres are unable to settle on concurred positions, or
a combination of these. Eventually, when a true solution is
found, ε goes all the way to zero. In this instance it is Best’s
packing [21,22], the best known for n = 10, in which the
sphere centers form a binary code of Hamming distance four.

In all the experiments we terminate runs and declare them
successful when ε falls below 10−4. The number of iterations
I needed to find solutions is interesting because it measures
the computational work but depends unpredictably on the
random initial point. Though the run-to-run variation in I is

034117-3



VEIT ELSER PHYSICAL REVIEW E 108, 034117 (2023)

0 20000 40000 60000 80000 100000
0.0

0.2

0.4

0.6

0.8

iterations

no
rm
al
iz
ed
er
ro
r

n = 10 N = 40

FIG. 2. Error time series in four runs of packing 40 spheres in
10 dimensions, three of which found Best’s packing in under 105

iterations.

much smaller for our “lower-bound instances” than it is for
Best’s packing, the determination of accurate values for the
average number of iterations, I, is important for some of our
results. To facilitate this, another toruspack input allows the
user to specify the number of “trials” or separate runs differing
only in the initial random point x0. The point x0 is always in
set B, where each sphere has perfectly concurring copies but
is otherwise uniformly sampled in the n-torus.

The small run-to-run variation in I for the lower bound in-
stances is related to the near monotonicity of the error time se-
ries in these relatively easy packing problems. In order to have
control over the degree of difficulty, toruspack has a param-
eter m called the “monotonicity.” A solution is m-monotone
if for every iteration i the error satisfies εi+m < εi. The eas-
iest instances, where the error is strictly decreasing, have
1-monotone solutions. Runs are terminated by toruspack as
soon as the m-monotonicity criterion is violated and the trial is
declared unsuccessful. A packing instance, or (n, N ) pair, has
m-monotone difficulty if a successful run with monotonicity
parameter m has probability one-half (when sampling initial
points). In our second experiment we find the densities of
packings that have 100-monotone difficulty. Using toruspack
this means fixing n and m, then performing trials with in-
creasing N to identify the largest N (n, m) before the success
probability drops below one-half. Figure 3 shows successful

TABLE I. Growth in the number of spheres N (14, m) that can be
packed in 14 dimensions as the monotonicity m is increased. Also
tabulated is the density relative to Ball’s bound, the average number
of iterations, and the normalized standard deviation in the number of
iterations.

m 1 10 102 103

N (14, m) 17 42 115 164
�/�B 0.392 0.968 2.651 3.780
I 59 163 1190 3980
δI/I 0.092 0.047 0.070 0.184
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FIG. 3. Representative time series of the normalized error when
packing spheres in 14 dimensions as the monotonicity m is increased
from 1 to 103. The horizontal scales were stretched to aid compari-
son. Table I gives the actual number of iterations and the number of
spheres packed for each m.

error time series for packings in 14 dimensions and difficulty
ranging from 1-monotone to 1000-monotone. The timescales
have been stretched to have the same extent to highlight the
qualitative differences. The actual number of iterations and
related information is given in Table I. In all except the m = 1
runs there is a very short initial rise in the error. We interpret
this as transient behavior associated with the initial point
exactly satisfying constraint B. The m-monotonicity criterion
is imposed only after this maximum error has been passed.

The fixed point convergence shown in Figs. 2 and 3 are
qualitatively different and are misleading, as presented. Not
only is the overall error behavior of the easy instances quasi-
monotone, the rate of convergence accelerates. We believe this
is simply related to the fact that these packings are inherently
disordered, where all spheres are able to rattle around, though
typically in a very small free volume. The concur projection
PB at least provides a mechanism that can keep spheres from
being tangent in a solution. But whereas the constraint prob-
lem for the easy instances becomes increasingly trivial with
time, this is not the case in hard instances, where spheres
have many tangencies in a solution. The late stage conver-
gence of Best’s packing (not shown in Fig. 2) is in fact much
slower than in a disordered packing, and runs were terminated
already at ε < 10−2. Best’s packing, of course, was easy to
confirm by rounding coordinates.

VI. RESULTS

A. Doubling Ball’s density

Figure 4 shows the growth in the average number of RRR
iterations, In, to pack spheres at twice the density of Ball’s
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FIG. 4. Average number of iterations In used by RRR to pack
spheres in n dimensions at twice the density of Ball’s bound.

bound. The results are consistent with simple exponential
growth beyond 16 dimensions, as shown in the plot of the
ratios In+1/In in Fig. 5. Our reach into high dimensions was
limited not so much by the exponential growth in the number
of iterations but the super-exponential growth in the num-
ber of spheres being packed. For n = 22 RRR was packing
N = 11 397 spheres, and the divide-and-concur scheme works
with O(N2) variables. By using neighbor lists this number
can be reduced but not by all that much since most pairs
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FIG. 5. Successive ratios In+1/In of the iteration counts plotted
in Fig. 4.

TABLE II. Number of spheres N (n, 100) that RRR can pack in
the unit n-torus with 100-monotone difficulty, along with the average
number of iterations. These are the data that were used for the density
shown in Fig. 6.

n N (n, 100) I

6 4 71
7 5 237
8 8 293
9 12 454

10 18 471
11 29 588
12 46 736
13 72 869
14 115 ± 2 1190
15 156 ± 1 1080
16 274 ± 2 1410
17 507 ± 1 1960
18 967 ± 2 2830
19 1884 ± 3 4240

of spheres in the unit torus are neighbors for moderate n.
However, the particulars of the growth in time and memory
are mostly irrelevant for what we are aiming to demonstrate,
which is showing that we can count on the algorithm being
able to complete its task for arbitrary n. A negative result
would be signs that the number of iterations might diverge at
some n. The absence of such signs in our experiments raises
confidence that Ball’s lower bound on the packing density can
at least be doubled.

The transient behavior in In for n < 16 is likely a torus
artifact. The fraction fn of the unit-distance sphere available
for tangencies in the n-torus, plotted in Fig. 1, has an inflection
point at this dimension. It appears that the torus restriction
makes the task of packing spheres easier, at least for density
2�B.

B. Density of 100-monotone packings

One approach for gaining information about the possibility
of b > 1/2 in the decay of the lower bound would be to try
various b’s and, as in the previous section, look for signs
that the number of RRR iterations will diverge beyond some
value of b. But this is unlikely to produce convincing results
because one would also have to specify the equally unknown
subdominant behavior of the bound, whose effect may be as
large as an increase in b, which is surely small if nonzero.

We have taken an alternative approach, where the degree
of “moderate effort” is specified through the monotonicity m
of the solution process. As shown in Fig. 3, the time series of
the normalized error is suggestive of a reliable route to pack-
ings for m as large as 103. We chose m = 100 because this
lowers the average number of iterations and also the number
of spheres to be packed. The small run-to-run variation in the
number of iterations, δI/I = 0.07 for n = 14 (Table I), also
lends support to the assertion that RRR can be counted on to
complete its task at this degree of effort.

The number of spheres N (n, 100) that can be packed by
the m = 100 criterion are given in Table II. For small n these
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RRR 2ΔB best known
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FIG. 6. Density of 100-monotone packings found by RRR com-
pared with twice Ball’s bound and the best known packings.

numbers are known with high accuracy. That is because
enough trials can be performed to establish that N (n, 100)
spheres have 100-monotone solutions in over 50% of trials,
while this drops below 50% for N (n, 100) + 1 spheres. For
larger n the uncertainties in N (n, 100) are estimated as fol-
lows. T trials are performed for a range of equally spaced
candidate values of N (n, 100) and the number of success-
ful 100-monotone solutions S is tabulated for each of them.
The success probability is estimated as p = S/T , with stan-
dard uncertainty σ = √

p(1 − p)/T . The smallest candidate
is identified as the largest N (n, 100) for which p − σ > 1/2,
while the largest candidate is the largest N (n, 100) for which
p + σ > 1/2. The uncertainties given in Table II correspond
to half the difference of these extreme estimates of N (n, 100).
We performed 100 trials for each N (n, 100).

The densities associated with the data in Table II are plotted
in Fig. 6 and compared with 2�B and the densest known
packings. In this plot the uncertainties are smaller than the
plotting symbol. The former become noticeable in the plot of
the density ratios in Fig. 7. Both plots are consistent with the
interpretation given earlier that the tight unit-torus constraint
makes packing easier but that this effect wears off above
16 dimensions. Like the 2�B experiments, here it appears
we have also just barely been able to access the asymptotic
regime. Though the ratios are plotted against 1/n, the data
do not extend to large-enough n and the uncertainties are too
large to attempt an estimate of b by extrapolating to n = ∞.
Still, it appears that a lower bound with b > 1/2 is not easily
ruled out by these results.

C. Binary-code coordinate modulation

Additional evidence that torus artifacts are absent above
n = 16 can be seen in the distribution of coordinate values of

RRR ΔB

0.00 0.05 0.10 0.15
0.40

0.45
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1/n

rn

FIG. 7. Successive ratios rn = �n+1/�n of the 100-monotone
densities of Fig. 6 plotted against 1/n.

the packed spheres, shown in Fig. 8. In a disordered packing,
without periodicity imposed by an n-torus, the coordinates
should have a uniform distribution. While this is what we
see above 16 dimensions, there are strong departures in lower
dimensions. As epitomized by Best’s packing, the unit-torus
is the perfect scaffolding for packings with a Hamming-
distance-4 binary code structure. Though the 100-monotone
packings are disordered and far from a binary code, the dis-
tribution of coordinates shows a strong binary modulation in
low dimensions. Figure 8 shows how the amplitude of this

n = 14 n = 15 n = 16
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FIG. 8. Disappearance of the binary-code coordinate modulation
above 14 dimensions.
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FIG. 9. Sphere-center autocorrelation function g2(r) for the
100-monotone packings in 19 dimensions.

modulation rapidly decays above 14 dimensions. To create
these distributions we applied independent shifts s to the co-
ordinates in each of the n dimensions that maximize the sums

N∑
i=1

cos 4π (xi + s).

After alignment, the distributions for all n dimensions, and all
the successful 100-monotone packings, were combined into a
single distribution.

D. Sphere center autocorrelation

Because of the compact nature of our torus constraint, the
sphere center autocorrelations g2 of our packings are probably
not good tests of the Torquato-Stillinger conjectures [11].
The g2(r) function for our highest-dimension (n = 19) and
densest (N = 1890) packing is plotted in Fig. 9. To avoid
the normalization complications arising from the torus, these
were created by filling center-center distance bins (r), first for
the spheres of the packing and also for an equal number of
uniformly distributed random points. The plot shows the ratio
of the two kinds of bin counts.

VII. OUTLOOK

The endurance of Minkowski’s 2−n leading-order behavior
of the sphere packing density lower bound can be interpreted
in two ways. Either it represents something fundamental that
has resisted proof, mostly for lack of imagination on how that
can be done. The other possibility is that packings with a
slower decay exist, but that constructions analogous but better
than saturated packings have likewise eluded the imagination.
Though experiment will never replace proof (and imagina-
tion), it can provide guidance on which of these alternatives
is the more promising one to pursue.

In this study we showed that the RRR algorithm is a
good source of data for the lower bound question. Like
random sequential addition and the Lubachevsky-Stillinger
algorithm [19], RRR is a simple dynamical system, appro-
priate for constructing the disordered packings that prevail
at the lower bound. Unlike random sequential addition,

but like Lubachevsky-Stillinger, RRR acts synchronously on
the spheres in the packing. However, unlike Lubachevsky-
Stillinger, RRR is not prone to jamming and glassy behavior.

Our two sets of results fall short of the level one has
come to expect, say, in statistical mechanics, for supporting
hypotheses in intractable problems. Though the experiments
have nearly doubled the reach into high dimensions, even
higher dimensions are needed to convincingly eliminate
“torus artifacts.”

Using neighbor lists and allocating divide-and-concur
copies only for neighbors will certainly cut down on mem-
ory as well as the time per iteration. But only a few extra
dimensions can be gained in this way. A more significant
improvement is possible in principle by modifying the peri-
odicity of the packings. Instead of using the tightest possible
“cubic” cell for unit diameter spheres, Zn, we propose using
the checkerboard lattice Dn to define the periodicity. This is
not the tightest possible cell with that symmetry—that would
be Dn/

√
2—but the one having the same volume, up to a

factor of two, as Zn. The main advantage of Dn over Zn

is that the spheres will have a much rounder environment.
For example, the analogous inflection point in the fractional
volume available for tangencies (Fig. 1) occurs already at
n = 12. This lowering of the asymptotic regime will have a
greater benefit than extending the range in n through neighbor
lists. Also, with this scale for Dn the cosets of (Z/2)n/Dn

support dense packings in much the same way as (Z/2)n/Zn

(Hamming-distance-4 codes). The disappearance of a coor-
dinate modulation with n (Fig. 8) could again be used to
assess the homogeneity of the packings. Hard sphere liquid
simulations have also used Dn boundary conditions [27].
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APPENDIX A: SOFTWARE

The RRR C-language implementation toruspack, a short
user’s guide, and sample outputs can be found at [26]. The
program is a single file and compiles with just the standard
libraries.

APPENDIX B: RRR ON THE TORUS

Though RRR is strictly defined for constraint sets in
Euclidean space, only two small modifications are required
to preserve the fixed-point behavior on the torus.

In our divide-and-concur formulation of the sphere packing
problem, the variables live in the product space of N (N − 1)
tori Tn(w), and it is enough to address the modifications in
just one such factor. After replicating the sets A and B in all
of Rn with the periodicity of Tn(w), the corresponding torus-
distance between points x, x′ ∈ Rn is defined by

dist(x, x′) = ‖ [x − x′]w‖2, (B1)

where ‖ ‖2 is the standard norm in Euclidean space and
[y]w = y′ is the translate of y by an element of (wZ)n where
all components of y′ have absolute value bounded by w/2. We
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use the notation ‖y′‖∞ � w/2 to express this property. Points
with some components exactly equal to ±w/2, for which [ ]w
is ambiguous, do not arise in floating point computations.

The computations of PA and PB on the torus need not be
modified as long as (B1) is being minimized and the pro-
jection outputs are interpreted as coset elements. The first
modification of RRR is the definition of the reflector, here for
set A:

RA(x) = x + 2[PA(x) − x]w.

In words, this corresponds to “reflect in the nearest coset
element of A.”

The second modification is the rule for incrementing the
current x by the difference of projections:

x �→ x′ = x + β[PB(RA(x)) − PA(x)]w.

With this modification, the local analysis of RRR in Rn, in
the presence of a set intersection or near-intersection, also
applies in the torus. In particular, convergence to solutions
is still characterized by the vanishing of the Euclidean error,
‖x − x′‖2.

APPENDIX C: DISJOINT-SPHERE PROJECTION

Let x1 = xi j and x2 = x ji be the sphere-center copies that
implement the disjointedness constraint between spheres i and
j, both of radius r. For packings in the torus Tn(w) we reduce
the difference vector u = x1 − x2 so that ‖u‖∞ � w/2. If this
reduced vector satisfies ‖u‖2 � 2r, then the disjointedness
constraint is satisfied and the projection leaves x1 and x2

unchanged.
Now suppose ‖u‖2 < 2r. To satisfy the disjointedness con-

straint we seek a difference vector u′ satisfying ‖u′‖∞ � w/2,
‖u′‖2 � 2r and which minimizes ‖u′ − u‖2. The last two con-
ditions imply the new centers

x′
1 = x1 + (u′ − u)/2

x′
2 = x2 − (u′ − u)/2

satisfy the disjointedness constraint in a distance minimizing
way. If we did not have the first constraint, ‖u′‖∞ � w/2, then
u′ would just be a rescaling of u:

ũ = 2r

‖u‖2
u

To describe what we must do when at least one component
of ũ exceeds w/2 in absolute value, first express u as the
orthogonal decomposition

u = u‖ + u⊥,

where ‖ corresponds to all the components of ũ whose ab-
solute values exceed w/2. In this decomposition the distance
minimizing difference vector has the form

u′ = (w/2) sgn(u‖) + u′
⊥,

where the sign function sgn( ) is defined to be zero on the
⊥ components. The optimization problem for u′ has been
reduced to a similar optimization problem, now for the vec-
tor u′

⊥. This vector has fewer components, must also satisfy

‖u′
⊥‖∞ � w/2, and has a reduced magnitude bound:

‖u′
⊥‖2

2 � (2r)2 − (w/2)2‖sgn(u‖)‖2
2. (C1)

This recursive definition of u′ terminates when all components
of the rescaled vector ũ⊥ have absolute value below w/2. The
level of recursion never exceeds four, even in the smallest
torus (w = 2r), since in that case the bound in (C1) collapses
to zero when u‖ has four nonzero components.

APPENDIX D: CONCUR PROJECTION

In the concur projection, the sphere-center copies
xi1, xi2, . . . , xiN are all replaced by the same point in a distance
minimizing way. Without the complication of the torus geom-
etry, the distance minimizing point is just the centroid. To sim-
plify the presentation, when taking account of the torus, we
may treat the n dimensions independently. Given coordinates
y1, . . . , yN ∈ T1(w) = R/(wZ) (in one of the dimensions),
the problem is to find the ȳ ∈ T1(w) that minimizes

N∑
j=1

[ȳ − y j]
2
w. (D1)

For any ȳ, the numbers [ȳ − y j]w are ordered in the interval
Bw = [−w/2,w/2], which extends to an ordering on the cir-
cle if we identify −w/2 with w/2. Different ȳ correspond
to different ways of cutting the circle. There are exactly
N places to cut the circle, each case corresponding to a dif-
ferent choice of j such that [ȳ − y j]w is the smallest element
in Bw. The ordering on the circle determines the ordering of
all the others, now in Bw, and the distance minimizing ȳ is
simply the centroid of the correspondingly ordered y j . The
N centroids ȳ determined by the N places to cut the circle
will have N squared-distances (D1), and the projection selects
among these the smallest.

Instead of computing N centroids and their associated
squared-distances, the projection can be computed more ef-
ficiently by calculating the changes in the squared distance
between successive cuts of the circle. The work in keeping
track of the smallest squared-distance after all N changes have
been computed scales as O(N ), no different from the centroid
computation without the torus complication.

APPENDIX E: METRIC AUTO-TUNING

A diagonal modification of the isotropic Euclidean metric
preserves the local convergence of the RRR algorithm. In the
sphere packing problem, first without the torus complication,
a natural diagonal modification is

dist2(x, x′) =
∑
(i, j)

gi j
(‖xi j − x′

i j‖2
2 + ‖x ji − x′

ji‖2
2

)
,

where the sum is over all pairs of sphere centers and the gi j

are positive parameters. Because a rescaling of the variables
(and their constraints) restores the Euclidean metric, local
convergence (of the rescaled variables) still holds. We will
keep the variables (and constraints) unrescaled and adjust the
metric parameters gi j by a heuristic based on constraint dis-
crepancies. The adjustment is performed automatically, and
adiabatically, so as not to upset the local convergence.
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The local constraint discrepancy is defined as

ε2
i j = ∥∥xA

i j − xB
i j

∥∥2

2 + ∥∥xA
ji − xB

ji

∥∥2

2,

where superscripts A and B denote the A and B projections
in the current RRR update. The sphere-center copies xi j and
x ji for which ε2

i j is above average are the most troublesome
and deserve an above-average metric weight. We implement
this heuristic with the following metric-weight update rule, in
each RRR iteration:

g′
i j = gi j + γ

(
ε2

i j/〈ε2〉 − gi j
)
,

where 〈 〉 denotes the average of ε2
i j over (i, j) and γ > 0

is a small parameter. The metric parameters are initialized
at gi j = 1 and over time the most troublesome constraints
have their weights increased. As the packing is refined, the
metric parameters approach an equilibrium distribution gi j ≈
ε2

i j/〈ε2〉 over a characteristic time of 1/γ iterations.
The metric parameters have no effect on the projection to

the A constraint, since the pairs of sphere centers involved
share the same weight. However, the weights appear in an
intuitive way in the B constraint. The expression (D1) being
minimized for concurrence of the copies is replaced by

N∑
j=1

gi j [ȳ − y j]
2
w,

which has the effect of weighting copy y j = xi j of sphere cen-
ter i with weight gi j in the centroid computations. The copy in
the most troublesome constraint thereby gets a stronger voice
in deciding the sphere’s position.

APPENDIX F: TORUS-RESTRICTED SPHERE VOLUME

The volume ãn of the set S̃n(1) defined in (2) can be ex-
pressed as

ãn =
n∏

i=1

(∫ ∞

−∞
dxi θ (xi )

)
2δ

(‖x‖2
2 − 1

)
, (F1)

where δ( ) is the Dirac delta distribution and

θ (x) =
{

1, |x| � 1/2
0, otherwise.

Rewriting (F1) in terms of θ̄ = 1 − θ , we notice that terms
involving products of four or more θ̄ are zero because
‖x‖2

2 > 1 when four of the xi have absolute value greater than
1/2. The surviving terms can be indexed by �, 0 � � � 3, and
have the same value that only depends on � (in addition to n):

ãn =
3∑

�=0

(−1)�
(

n

�

)
d (n, �).

The integral in

d (n, �) =
�∏

j=0

(∫ ∞

−∞
dy j (1 − θ (y j ))

)

×
∫ ∞

0
(an−� rn−�−1dr) 2δ

(‖y‖2
2 + r2 − 1

)
(F2)

over the n − � variables that only appear via their norm r in
the integrand has been rewritten in terms of the volume an−�

of the sphere in that many dimensions. The final step of the
derivation of formula (3) is to express (F2) as a sum over the
number of factors of θ , indexed by k, all of which are equal:

d (n, �) =
3∑

k=0

(−1)k

(
�

k

)
e(n, k).

Expressing the integral in e(n, k) as earlier for d (n, �),

e(n, k) =
k∏

j=0

(∫ ∞

−∞
dy j θ (y j )

)

×
∫ ∞

0
(an−k rn−k−1dr) 2δ

(‖y‖2
2 + r2 − 1

)
,

we obtain

e(n, k) = an−k

k∏
j=0

(∫ ∞

−∞
dy j θ (y j )

)(
1 − ‖y‖2

2

) n−k−2
2

= an−k c(n, k).
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