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Physical properties of a generalized model of multilayer adsorption of dimers
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We investigate the transport properties of a complex porous structure with branched fractal architectures
formed due to the gradual deposition of dimers in a model of multilayer adsorption. We thoroughly study the
interplay between the orientational anisotropy parameter p0 of deposited dimers and the formation of porous
structures, as well as its impact on the conductivity of the system, through extensive numerical simulations.
By systematically varying the value of p0, several critical and off-critical scaling relations characterizing the
behavior of the system are examined. The results demonstrate that the degree of orientational anisotropy of
dimers plays a significant role in determining the structural and physical characteristics of the system. We
find that the Einstein relation relating to the size scaling of the electrical conductance holds true only in the
limiting case of p0 → 1. Monitoring the fractal dimension of the interface of the multilayer formation for
various p0 values, we reveal that in a wide range of p0 > 0.2 interface shows the characteristic of a self-avoiding
random walk, compared to the limiting case of p0 → 0 where it is characterized by the fractal dimension of the
backbone of ordinary percolation cluster at criticality. Our results thus can provide useful information about the
fundamental mechanisms underlying the formation and behavior of wide varieties of amorphous and disordered
systems that are of paramount importance both in science and technology as well as in environmental studies.
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I. INTRODUCTION

Understanding the transport properties of charges or flu-
ids in complex disordered or porous media is of paramount
interest in different disciplines of science as it provides deep
insights into many natural and industrial processes involving
the flow of particles or fluids through a network of con-
nected units or pores. Relevant examples include fluid flow in
sedimentary rocks, transport of contaminants in underground
water, radioactive nuclei transport from nuclear waste disposal
repositories, and transport of colloidal particles in vascular
systems [1–7]. In these systems, the conductivity of the largest
connected component of the porous network determines the
transport properties.

Importantly, the conductivity of the system is known to
be dependent on the micro-structural properties of the porous
network [8–11], while the structure itself gets modified due
to the sedimentation or precipitation of particles transported
through fluids [3,12]. This often gives rise to phenomena like
clogging [13–15]. At the pore scales, the occurrence of such
a process might induce dysfunctionalities in many biological
processes and can be dangerous; contrarily, it is utilized for
the purification of gases and liquids and for the separation of
various important compounds.

*palaciosg226@gmail.com

In many natural systems, the pore network structure ap-
pears to be statistically self-similar over several length scales,
such as porous rocks or sedimentary reservoirs and vascular
systems, whose complex internal structures are characterized
by fractal geometries [7,9,16]. The knowledge about the trans-
port properties in these systems is advantageous for many
practical applications, for example, oil recovery from geolog-
ical media and storage of gases such as hydrogen or activated
carbons [17–20].

The percolation theory has long been served as the starting
point to study the transport properties in all these systems
[21–23]. The emergence of a macroscopically large connected
component at the percolation threshold and its fractal nature
has provided basic information about the phase transition
and critical behavior of the system. The conductivity of the
percolation backbone has also been investigated by introduc-
ing different models of percolation and taking into account
different types of heterogeneity in the system [24,25].

A central question that is still not fully understood is
whether and to what extent the microstructural details of
fractal porous media formed due to the gradual deposition of
particles (e.g., sedimentary rock formation) affect the trans-
port properties of the system and whether they are universal
in nature. Motivated by this, we consider one of the vari-
ants of the ballistic deposition model [26–29] that produces
a growing structure with variability in pore-size distribution
and study in detail the conductivity properties of the system
by means of numerical simulations.
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In the simplest case of the ballistic deposition model
[26,27], particles in the form of monomers are dropped one by
one onto an initially empty flat substrate at random and stick
irreversibly to the surface of the growing structure. A newly
released particle can sit only on top of an already existing
particle in the presence of excluded volume interactions. Ad-
ditionally, with a nonzero sticking probability to the side of the
nearest-neighbor particle, the model is capable of generating
porous structures. In general, the dynamics leads to the forma-
tion of a particle aggregate with complex structural properties.
The roughness of the growing interface or the active zone
exhibits nontrivial properties described by the Family-Vicsek
scaling [30,31]. Furthermore, it has been shown that the active
zone is not a self-similar fractal [26].

In this paper, we generalize our recently introduced bal-
listic deposition model of extended objects for multilayer
adsorption [32] to generate complex internal porous struc-
tures that can be controlled by varying the parameters of the
model. Here the dimers (horizontal or vertical) are dropped
vertically and are deposited on the top of a randomly selected
column with growing structure formation and thus, in turn,
may prevent from accessing the lower layers at the selected
column for future deposits, generating pores in the structure.
By systematically controlling the orientational anisotropy p0

of the dimers, we thoroughly investigate the conductivity of
the system. Moreover, we study the system from the per-
spective of critical phenomena and report scaling relations
of several physical observables in the vicinity of the critical
point. Interestingly, the Einstein relation associated with the
critical exponents characterizing the fractal structure seems to
hold only for p0 close to unity for the system sizes considered
here.

The structure of the paper is organized as follows: In
Sec. II, we give the details of our simulation; in Sec. III, the
main results are presented and a discussion is made on the
morphological details of the structure, including the perco-
lation transition (Sec. III A), the fractality and diffusion on
the percolation clusters (Sec. III B), the electrical conduc-
tivity (Sec. III C), and the fractal properties of the interface
(Sec. III D). In Sec. IV, we summarize our findings and
present some future perspectives.

II. MODEL AND SIMULATION DETAILS

We consider a variant of the ballistic deposition model for
the formation of a growing structure on a one-dimensional
lattice of size L with hard wall boundary conditions. Dimers
are dropped one by one onto the randomly selected lattice
sites from a far distance from the growing structure along
the vertical direction. Specifically, a dimer follows a verti-
cal trajectory from its release point and lands on the top of
the growing surface where it first encounters a previously
deposited dimer. A dimer occupies two consecutive lattice
sites. For simplicity, we neglect the diffusive motion of the
incoming dimers. Note that the dimers are nonsticky in nature
and therefore, during its vertical motion even if a dimer finds a
previously deposited dimer at the side of the nearest-neighbor
columns, it continues its motion until it hits a dimer beneath
it and it cannot go down. The dynamics leads to a complex

FIG. 1. Schematic representation of the multilayer adsorption
model at an intermediate stage of the growth process using two
dimers, blue (at x0) and red (at x0 + 2), considering the different pos-
sibilities of adsorption (see text for more details). Blocking scenarios
arise due to the presence of overhangs.

porous structure formation due to the orientational anisotropy
of the incoming dimers.

We implement the dynamics in the following way: At
each instant of time t , by selecting the orientation of a dimer
randomly with probability p0 and (1 − p0) for horizontal and
vertical, respectively, we drop the dimer from a randomly
selected position x0 onto the lattice. For a horizontal (vertical)
dimer, we choose the location of one end of the dimer to be at
the site:

x0 ∈
{

[1, L − 1], if horizontal
[1, L], if vertical (1)

and then the dimer is placed at the sites:
{

([x0, x0 + 1], hmax), if horizontal
(x0, [hmax, hmax + 1]), if vertical , (2)

where hmax is the maximum height of the growing structure at
the corresponding columns. In Fig. 1, we display a schematics
of the deposition algorithm. In this illustration, we elucidate
a scenario encompassing the deposition of two new dimers:
one in blue at x0 and the other in red at x0 + 2, occurring at
two distinct time points. This follows the deposition of several
preceding dimers, which are depicted in black. It is important
to mention that, first, we select the orientation (which does
not change during the fall of the dimer) and then the column
at position x0.

Note that if the chosen orientation for the blue dimer is
horizontal, then two voids will be created with coordinates
(x0 + 1, 4) and (x0 + 1, 5), shown with an empty circle, that
will never be filled due to the blockage created by the blue
dimer. On the other hand, depending on the orientation drawn
for the red dimer, the height of the first monomer will be h = 3
(vertical) or h = 4 (horizontal). In the latter case of horizontal
orientation for the red dimer, the site (x0 + 2, 3) will remain
unoccupied during the entire dynamics.
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FIG. 2. Typical multilayer packing configurations of the model studied in the present article for L = Hmax = 512 and for selection
probabilities p0 = 0.1, 0.5, 0.9 from (a) to (c), respectively. The dimers are colored according to their time of deposition encoded in the
color bar on the right side of each figure.

Summarizing, the dynamics considered here always allows
adhesion on top of two different dimers or on top of a single
dimer, blocking the incoming dimers that arrive from the
top to the bottom on the growing surface due to the pres-
ence of overhangs (screening effects [33]). At any stage, the
maximum height of the entire growing structure along the
vertical direction is denoted by Hmax. The simulation stops
when Hmax reaches a desired value. For the analysis of the
critical behavior of the system, this is set at its minimum value
when a percolating cluster is formed. Figure 2 shows typical
configurations of the growing structure for different values of
p0.

These images suggest that the multilayer packing structure
of dimers results in dendritic structures with a complex pore
structure that is dependent on the parameter p0. With increas-
ing p0, porous space increases and the system becomes less
densely packed due to the increased screening effects from
horizontal dimers. Their morphologies are basically domi-
nated by the contribution of the complex geometry of the
internal region of the structure and of the boundary, known
as the active region (to be examined in Sec. III D). Both have
very interesting fractal properties. It should be noted that even
if the morphology of the formation might be different due
to the orientational anisotropy of the dimers, the roughness
exponent associated with the growing front is the same as the
ordinary ballistic deposition model.

In this work, the focus of the analysis is based on the phys-
ical properties of the percolation cluster, a cluster being a set
of occupied sites connected through their nearest neighbors.
To identify the percolation cluster, we combine the deposi-
tion algorithm discussed above with the Hoshen-Kopelman
algorithm [34]. This allows the labeling of the dimers at each
deposition step. To determine when the percolation cluster
is created it was used the following trick: The first and last
columns of the deposition grid are assigned two different la-
bels. During the deposition process, clusters of interconnected
dimers are created with different labels. The assignment of the
labels is carried out following the neighborhood connectivity
criterion adopted in Fig. 3 for vertical (a) and horizontal (b)
orientation of the incoming dimer. When the labels of the first
and the last column of the deposition grid are the same, it

means that the percolation cluster has emerged. We have also
used the Burning algorithm [35] to calculate the percolation
threshold.

III. RESULTS AND DISCUSSION

A. Percolation

The focus of this subsection is to study the percolation
properties of the growing structure formed due to particle de-
position. Note that the entire growth process can be classified
into three stages in time (see Fig. 4): (i) initial stage (increase
in the number of isolated clusters of dimers connected through
their nearest neighbors and their size growth with time), (ii)
intermediate stage (merging of growing clusters of different
sizes), and (iii) final stage (size growth of only one single
cluster). At this stage, there may also be other clusters, but
their growth is stopped, as a new incoming dimer cannot
penetrate the deep interior of the formed structure due to the
screening effect.

When the Hmax of the entire structure is sufficiently high,
there exists a spanning path from the left to the right of the
system through the largest cluster at the final stage, whereas
such a spanning cluster is absent at the initial stage. At the
intermediate stage of the cluster merging process, as Hmax

FIG. 3. Neighborhood connectivity criterion of the incoming
dimer aligned vertically (a) or horizontally (b). The gray squares
represent the connected neighboring sites. If there is only one label
among the neighbors, then the two sites occupied by the dimer inherit
that label. For different labels in the neighborhood of the dimer, a
find-union procedure is applied for assigning the label to the two
sites occupied by the dimer and the clusters are joined.
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FIG. 4. Snapshots of the growing structure on a lattice of size
L = 612 for p0 = 0.7 at different instants of time t = 4408 (a), 7466
(b), 10 330 (c), and 12 343 (d). The corresponding values of Hmax =
40, 60, 80, and 98, respectively. Different colors represent different
clusters.

gradually increases, a percolation transition occurs when such
a spanning cluster first appears between the left and right
boundaries of the system at a critical value of Hmax = Hc(L).
Figures 5(a)–5(e) display the left to right spanning probability
Pp of the system as a function of Hmax on a lattice of linear
size L ranging from 256 to 8192 for five different values of
p0. The curves clearly depend both on L and p0.

Notice that for a specific value of L, the sharp rise of the
curve for Pp shifts to the higher value of Hmax with increasing
the value of p0 [see Fig. 5(f)]. It indicates that the presence
of vertical dimers promotes percolation. Qualitatively, such a
behavior can be understood in the following way: For small
p0 the interior of the percolation cluster is more homogeneous
and all the deposited dimers belong to the cluster. When p0 is
increased, due to the increased screening effect from horizon-
tal dimers, at the base of the packing structure isolated clusters
are formed that will never help the growing structure to es-
tablish a spanning path (see Fig. 6). This implies that more
time (or more incoming dimers) is required for the structure to
grow to obtain a spanning path. Correspondingly, the height of
the percolating cluster at the percolation transition increases.
Finally, it is important to mention that a finite size scaling
was done on the Pp(L) curves using the curve collapse method
described in Ref. [32], but no universal exponents were found
when p0 is varied.

Numerically, the precise value of the percolation threshold
Hc(L) for a given value of L and p0 is determined using the
bisection method [36,37]. We start with a pair of values of
deposition time thi and t low such that a spanning cluster exists
at t = thi but not at t = t low. This interval is then successively
bisected and checked if there exists a spanning cluster using
the Burning algorithm [35] until thi − t low = 1. At this stage,
the corresponding height of the entire structure at t = thi
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FIG. 5. Percolation probability Pp as a function of the maximum
height Hmax of the multilayer growing structure for p0 = 0.1 (a), 0.3
(b), 0.5 (c), 0.7 (d), and 0.9 (e). (f) The plot of Pp vs Hmax for different
values of p0 using L = 1024, showing clearly its dependence on p0.
The results are based on averages over 106 (for the first two smaller
systems) to 13 750 (for the largest system) independent samples. For
L = 1024, we consider (at least) 2.2 × 105 samples.

defines the critical height for a given run. Note that, we ini-
tially stored the sequence of dimer deposition on the lattice
sites up to t = thi and used this sequence during the iterative
process. By repeating the entire procedure for a large number
of independent runs and averaging the corresponding critical
height values the percolation threshold Hc(L) is obtained.

The dependence of Hc(L) on L is exhibited in Fig. 7. It
appears that the data points are consistent with the following
functional form:

Hc(L) = ALν + c, (3)

where c and A are the fitting constants and ν > 0. We
find that the exponent value ν has a slight dependence
on p0 values: ν(p0 = 0.3) = 0.158 ± 0.004, ν(p0 = 0.5) =
0.130 ± 0.004, and ν(p0 = 0.7) = 0.108 ± 0.003.

In Fig. 7(b), the finite-size scaling of the size of the
percolation (spanning) cluster is presented. In this case,
we fit the data using a power law similar to Eq. (3) but
with c = 0. It was verified that for sufficiently large L,
Smax(L) scales as Smax(L) ∼ Lα with α(p0 = 0.3) = 1.268 ±
0.006, α(p0 = 0.5) = 1.258 ± 0.007, and α(p0 = 0.7)
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(b)

(a)

(c)

FIG. 6. The growing structure on a lattice of size L = 512 at
the percolation threshold for p0 = 0.2 (a), 0.5 (b), and 1.0 (c). The
critical height at which percolation transition occurs grows with
increasing the value of p0. Blue and red represent the percolating
cluster and all other isolated clusters, respectively.

= 1.250 ± 0.007. Note that irrespective of the value of p0 we
obtain nearly the same exponent value α associated with the
variation of Smax(L).

B. Fractal and diffusion dimension of the
percolation cluster

This subsection will be dedicated to the study of the frac-
tal and diffusion properties associated with the percolation
clusters generated with our model. It should be noted that
in this case, we cannot use the usual way of calculating the
fractal dimension in which the scaling exponent of the mass
(or area) of the percolation cluster with L is exactly the fractal
dimension.
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FIG. 7. Size-scaling of (a) Hc(L), and (b) Smax(L) for p0 =
0.3, 0.5, and 0.7. The solid line represents the fit using Eq. (3). The
number of samples used to find out these results are indicated in
Fig. 5.
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FIG. 8. In the left column we show the fractal dimension Df of
the percolation cluster for different values of the probability p0 and
for different sizes L of the substrate. In the right column, we show
the diffusion exponent. The solid line in all the plots represents the
fit of the data using Eq. (4). In all cases, the error bar (variance) is
much smaller than the size of the symbols.

This is an anisotropic system where the height Hc scales
nontrivially with L. That is why one should use some alterna-
tive method. To obtain their corresponding fractal dimensions
a method based on the density autocorrelation function was
chosen; the averaged density of occupied sites within neigh-
borhoods of radius r centered in all points belonging to
the cluster is first calculated. Afterward, a log-log plot (not
shown) of density against distance r then yields a straight
line with slope D f − D, where D is the dimensionality of
the space (2 in this case). For each value of p0, the fractal
dimension for each L = 128, 256, 512, and 1024 is obtained
by averaging the data over 16 000, 2800, 400, and 100
replicas, respectively. The diffusion exponent Dw [38] be-
longing to the percolation cluster was also calculated. For
this, random walks are generated starting at a random oc-
cupied site of the percolation cluster, allowing to walk up
to time steps t = 100, 200, 500, 1000, 5000, 10 000, 100 000
and then determining in each case the average of the
square of the distance between the starting and end-
ing point of the walk 〈r2〉. The average 〈r2〉 for each
value of t is taken with different number of replicas,
i.e., Nrep = 73 000, 44 000, 20 000, 10 000, 2000, 1000, 100,
respectively. Finally, the fractal dimension Dw of the walk
is defined by the scaling relation 〈r2〉 ∼ t2/Dw , which re-
duces to the known result 〈r2〉 ∼ t for Brownian walkers
(Dw = 2).

The behavior of the fractal dimension D f as a function of L,
for different values of the probability p0 and the correspond-
ing diffusion exponent Dw are shown, respectively, in the left
and right columns of Fig. 8.

Asymptotic analyses of D f (L → ∞) and Dw(L → ∞)
were done for all the curves shown in Fig. 8. The data of Dx(L)
(for x = f ,w) for the different values of p0 was fitted using
the following exponencial form:

Dx(L) = ae−bL + c. (4)
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TABLE I. Values of fractal dimension (Df ) and diffusion ex-
ponent (Dw), obtained from the asymptotic analysis using Eq. (4)
and representing the approximate value of such quantities in the
thermodynamic limit.

p0 Df Dw

0.2 1.806 ± 0.037 2.912 ± 0.099
0.4 1.838 ± 0.027 2.939 ± 0.124
0.6 1.852 ± 0.010 2.783 ± 0.137
0.8 1.877 ± 0.024 2.638 ± 0.065
1.0 1.888 ± 0.024 2.649 ± 0.050

The result of the fit is shown in Fig. 8 using a solid line in each
case. Table I shows the values of the fitted asymptotic coeffi-
cients c = Dx(L → ∞) valid in the thermodynamic limit, for
each value of p0.

One may note that the asymptotic value of Dw(L →
∞) closely matches its classical percolation value of Dw =
2.8784 [39] when p0 is close to 0; however, in this regime, D f

is more distant from its classical percolation value of 91/48
that is approached here in the limiting case of p0 close to unity.
Notably, Ben-Avraham and Havlin [40,41] reported Dw =
2.7 ± 0.1 for classical two-dimensional percolation, which is
close to our obtained values for p0 > 0.6 (see Table I).

C. Electrical conductivity

The Frank and Lobb algorithm [42] was used for finding
the conductivity between the left and right boundaries of the
two-dimensional structure that results from the dimer deposi-
tion process. The same approach described in Ref. [32] was
followed. The calculations of the conductivity σ were per-
formed each time until the multilayer reaches a given height.
For each given value of Hmax, the computer experiments were
repeated 1200 times.

In Fig. 9, we show the behavior of the mean conductivity as
a function of Hmax for different values of L and for two values
of p0.

As is known, the percolation phase transition occurs when
a system undergoes a transition from an insulating state to a
conducting state. In general, there exists a power-law scaling
relation between the electrical conductivity σ and the linear

FIG. 9. Mean conductivity as a function of Hmax for L =
100, 300, 500, 1000 and for p0 = 0.2 (a) and p0 = 0.8 (b). Inset
shows the scaling analysis of conductivity σ+(−) after (before) the
percolation transition. In the main plot and in the inset, the size of
the symbols is larger than the corresponding error bars.

TABLE II. Scaling exponents γ± of the conductivity before (−)
and after (+) the percolation transition. The data are fitted using the
power-law scaling relation in Eq. (5).

p0 γ− γ+

0.2 1.010 ± 0.003 1.069 ± 0.019
0.4 1.012 ± 0.003 1.073 ± 0.018
0.6 1.016 ± 0.004 1.091 ± 0.026
0.8 1.022 ± 0.005 1.107 ± 0.031
1.0 1.017 ± 0.013 1.129 ± 0.116

size L of the structure near the percolation threshold through
two different scaling relations for σ− (conductivity before the
percolation transition) and σ+ (conductivity after the percola-
tion transition) [43,44], i.e.,

σ± ∼ L−γ± . (5)

In Table II, we list the values of the scaling exponents γ− and
γ+ for the same values of p0 used in Table I.

The first interesting result is that for Hmax < Hc, i.e., below
the percolation transition, the system presents a universal be-
havior, which is reflected through a constant value (equal to
1) of the scaling exponent of σ−, regardless of the value of p0.
This value for the scaling exponent implies that the system
belongs to the universality class of percolation transition in
two dimensions [45,46]. The scaling exponent for σ+ is more
interesting. The results shown in the third column of Table II
suggest that just above the percolation point, the critical be-
havior of the conductivity depends on p0. More specifically,
in the postcritical regime, the decay of conductivity σ+ with L
becomes faster with increasing p0, i.e., horizontal alignment
induces the decrease of the conductivity for a given set of
parameter values.

The electrical conductivity in amorphous disordered sys-
tems crucially depends on its own structural details. The
notion of percolation theory and fractals are useful to under-
stand this [40,41]. A scaling relation, as described below, can
be obtained that uncovers this nontrivial dependency.

In a uniform Euclidean system, the Einstein [38,47] re-
lation says that the mean-square displacement 〈r(t )2〉 of a
random walker is proportional to time t , in any spatial dimen-
sion. However, for disordered systems, this linear relationship
is not valid in general and is described by:

〈r2(t )〉 ∼ t2/Dw . (6)

As mentioned in Sec. III B, the diffusion exponent as-
sumes a value Dw > 2 different from the classical Brownian
exponent Dw = 2. This delay in transport is caused by the
peculiarities in the spatial distribution of scattering centers in
the disordered structure [48]. Regarding geometric and struc-
tural aspects, the electrical resistance R of a material depends
both on the size and the space dimensionality D and on the
topology of the system as R = L/(σA), where L is the distance
between the electrodes and A is the cross-section area. This
implies that for a D-dimensional Euclidean system (whose
area A is proportional to LD−1) one gets:

R ∼ L2−D. (7)
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FIG. 10. Scaling of the conductivity of percolation cluster for
different values of the probability p0 = 0.2; 0.4; 0.6; 0.8; 1. The solid
lines represent the fit to power-law model σ ∼ L−γ0 (p0 ) whose expo-
nents γ0 are inserted in the figure.

Therefore, for homogeneous square samples the electrical re-
sistance does not depend on its size.

From the microscopic point of view, the electrical resis-
tance of a system can be written in general terms as:

R ∼ N/M, (8)

where N is the average number of scattering centers in the
system of length L and M is the number of possible scat-
tering centers [49]. The denominator M is proportional to
the number of atoms in the system, LD, whereas the numer-
ator N is proportional to the average time required for the
electron to go through the distance between the ends of the
system. From Eq. (6), it is expected that N is proportional to
t ∼ 〈r2(t )〉Dw/2 = (L2)Dw/2. For a nonuniform fractal system,
one can further express Eq. (8) in terms of L by assuming that
the resistor has a fractal dimension D f as R ∼ N

M ∼ LDw

LD f
∼

LDw−D f [41] or, equivalently, for the electrical conductance:

C ∼ LD f −Dw . (9)

Then, in a two-dimensional medium and with diffusion ex-
ponent Dw = 2 the electrical conductance scales as C ∼ Lα ,
where α = D f − Dw = 0. For a media with fractal dimension
different from the diffusion exponent, it is expected that α �=
0. For instance, for a percolation cluster in two dimensions,
D f = 91/48 = 1.8958 and Dw = 2.8784 [39], and therefore,
C ∼ LD f −Dw = L1.8958−2.8784 = L−0.9826.

In order to check the validity of this last result the scaling
behavior of the conductivity of the percolation cluster was
calculated. The results are shown in Fig. 10 with the solid
line representing the fit to the power-law model σpc(p0) ∼
L−γ0(p0 ). Here one can observe that at the critical point of
percolation, the conductivity presents a universal behavior
with the scaling exponent assuming the value γ0(p0) = γ0 =
0.754 ± 0.004 independent of p0.

TABLE III. Comparison between the exponent γ0 and the values
of the difference Df − Dw for different values of p0. The values are
provided with their respective uncertainties.

p0 γ0 Df − Dw

0.2 −0.755 ± 0.002 −1.10 ± 0.11
0.4 −0.753 ± 0.003 −1.10 ± 0.10
0.6 −0.755 ± 0.003 −0.93 ± 0.11
0.8 −0.754 ± 0.002 −0.75 ± 0.07
1.0 −0.756 ± 0.002 −0.76 ± 0.07

For completeness, Table III brings a comparison between
the exponent γ0 and the value of the difference D f − Dw for
the values of p0 shown in the Table II.

It is very interesting that, according to the obtained results,
the Eq. (9) which is deduced from the Einstein relation, is
valid only for p0 close to 1 exactly where the D f values are
close to the values obtained for the case of classical perco-
lation (see Table II). At this point, it is important to mention
that there are no works in the literature where the transport
properties are studied in the way it was done in this work, so
it is difficult to compare with results obtained by other authors.

D. Fractal properties of the interface

Finally, to highlight the complex interplay between the ori-
entational anisotropy of the depositing dimer and the structure
formation, we study the interfacial properties.

The interface profile is characterized by the curve that
separates the multilayered structure from the surrounding en-
vironment at a given instant of the growth process.

In the standard model of ballistic deposition of monomers
by Meakin et al., the interface is defined as the bijective curve
formed by the maximum heights of all columns. In contrast,
here we define the interface as the nonbijective curve that
traces the path of an ant walking on the stack of deposited
dimers. Note that nonbijectivity refers to the fact that for a
given horizontal position, there can generally be more than
one possible values for the height corresponding to a specific
column. This consideration provides us to uncover a more
detailed understanding of the inherent characteristics of the
interface. By varying the value of p0, we examine the interface
structure at a height of the formation Hmax = L. Figure 11 dis-
plays typical examples of interface profiles for three different
values of p0. It is prominent that the orientational anisotropy
of dimers has a great impact on the structure of the interface.

For a quantitative description, we calculate the fractal di-
mension DI (L) of the interface for various values of p0 on
a lattice of size L. In Fig. 12(a), we show the dependence
of the fractal dimension DI (L) on the parameter p0. For the
determination of the fractal dimension, the one-dimensional
Box-counting method was applied. It consists of measuring
the perimeter of the curve with “rulers” of size ε and writ-
ing down the number N of possible rulers of this size that
completely cover the curve. A log-log plot of N against the
inverse of ε then yields a straight line with slope DI (L) (not
shown). For a reliable estimate, the data are averaged over 106

independent replicas. It is also observed that for sufficiently
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FIG. 11. Typical interfaces or active regions for p0 = 0 (a), p0 =
0.3 (b), and p0 = 1 (c) using Hmax = L = 512, showing clearly the
impact of orientational anisotropy of dimers on determining the
interface of the growing structure.

large values of p0, the fractal dimension DI (L) decreases
linearly with increasing p0.

Asymptotic analysis DI (L → ∞) based on the same func-
tional form adopted in Sec. III B [Eq. (4)] is shown in the
Fig. 12(b). The inset exhibits the variation of DI (L → ∞) for
p0 � 0.2.

As a closing remark to this section, we consider a few com-
ments to be pertinent: (i) We notice that the obtained values
of DI (L → ∞), exhibited in the inset of Fig. 12(b), in a very
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1.5

1.6

1.7
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1.3

1.35
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FIG. 12. (a) The fractal dimension DI of the interface as func-
tion of the probability p0. (b) Asymptotic analysis of DI . The inset
presents the behavior of the parameter c = DI (L → ∞) in Eq. (4),
giving the value of the fractal dimension of the interface in the
thermodynamic limit as a function of p0. In all cases, the error bar
(variance) is much smaller than the size of the symbols. See text for
detail.

wide interval of p0 are in agreement with the fractal dimension
of the two-dimensional self-avoiding walks within typical un-
certainties of less than 1%. (ii) An equally intriguing result is
that in the opposite direction, i.e., in the low-p0 region, the
Fig. 12(a) indicates that DI (L → ∞) for the interface, in the
limit p0 = 0, converges close to the value found for the back-
bone of the ordinary percolation problem (dB = 1.62 ± 0.02)
[50] at the percolation threshold. (iii) These findings (i) and
(ii) concerning DI in two different domains of p0 appear to
be related, because the backbone of the percolation cluster
consists of all the sites visited by all possible self-avoiding
walks from the injection site(s) to the exit site(s) [51].

IV. CONCLUSION

We numerically investigated the morphology of a grow-
ing multilayer two-dimensional structure built on a one-
dimensional substrate that represents a simple not yet studied
model of disordered and amorphous matters involving bal-
listic deposition of dimers with two possible orientations,
horizontal and vertical, selected at random with probability p0

and (1 − p0), respectively. The most interesting characteristic
of the multilayer packing structures of dimers studied here is
the dendritic morphology as depicted in Figs. 2, 4, 6, with
a labyrinthine pore structure that is dominated by the contri-
bution of the complex geometry of both the internal and the
boundary parts of the system. In this work, a great deal of
effort is dedicated to deeply analyzing the physical proper-
ties of the percolation cluster, its critical behavior, nontrivial
scaling laws, critical exponents in the thermodynamic limit
(Secs. III A and III B, Fig. 7, Table I) and the corresponding
emergent electrical conductivity (Sec. III C, Figs. 9 and 10,
Tables II and III). The fractal aspects of the bulk and perimeter
(Sec. III D, Figs. 11 and 12) of the structure have also been
examined.

As a future problem, one may consider a modified version
of the deposition process by introducing defects into the sys-
tem, general k-mers, and also, bringing up the diffusional and
temperature effects that might influence the growth process
itself, leading to describe a more realistic dynamics for a
range of surface growth phenomena. Moreover, the present
study can help researchers from other areas to quantify and
control different levels of environmental concern linked to the
accumulation of pollutants in trees, as well as in other natural
and human-made structures, in places where contamination
can reach different levels.
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