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We study explosive percolation processes on random graphs for the so-called product rule (PR) and sum
rule (SR), in which M candidate edges are randomly selected from all possible ones at each time step, and
the edge with the smallest product or sum of the sizes of the two components that would be joined by the
edge is added to the graph, while all other M − 1 candidate edges are being discarded. These two rules are
prototypical “explosive” percolation rules, which exhibit an extremely abrupt yet continuous phase transition in
the thermodynamic limit. Recently, it has been demonstrated that PR and SR belong to the same universality
class for two competing edges, i.e., M = 2. Here we investigate whether the claimed PR-SR universality is valid
for higher-order models with M larger than 2. Based on traditional finite-size scaling theory and largest-gap
scaling, we obtain the percolation threshold and the critical exponents of the order parameter, susceptibility, and
the derivative of entropy for PR and SR for M from 2 to 9. Our results strongly suggest PR-SR universality, for
any fixed M.
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I. INTRODUCTION

Percolation, the emergence of large-scale connectivity, is
widely used in many natural, technological, and social sys-
tems [1–7], including the spreading of forest fires [8–10], fluid
flow through porous media [11–13], infiltrations in composite
materials processing [14], epidemic spreading [15–17], and
information diffusion [18,19]. One of the most classic per-
colation models is random percolation on Erdős-Rényi (ER)
random graphs [20]. This model is initiated with N isolated
nodes. From the modeling perspective, two randomly selected
nodes at each step are being connected. In graph theory par-
lance, once the density of edges in the graph exceeds a critical
threshold tc = 1/2, a macroscopic giant component emerges
in the graph in a continuous, second-order transition in the
thermodynamic limit [21].

The Achlioptas process imposes a competition rule to the
ER model where several candidate random edges are selected
at each step but only one of them is added to the graph while
all other candidate edges are being discarded, based on certain
competition rules [22]. The first proposed and well-studied
competition rules are product rule (PR) and sum rule (SR)
which connect the edge with the smallest product or sum of
the sizes of components they join. Due to this size-suppressive
bias, the onset of the percolation is delayed and the giant
component emerges in an abrupt, “explosive” phase transition.
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Explosive phenomena of percolation transition have come
with a great deal of interest. The majority of proposed explo-
sive percolation models show a continuous transition in the
thermodynamic limit, while a few are genuinely discontinu-
ous, showing gaps in the order parameter [23–29]. In addition,
there are many investigations still underway to understand
the critical and supercritical behaviors of explosive phase
transition such as multiple transitions, multiple giant com-
ponents, and discrete scale invariance [30–32]. In particular,
genuinely discontinuous and continuous explosive percolation
has enjoyed a number of applications, while a classifica-
tion of critical percolation phenomena can be found in
reviews [29,33,34].

Different percolation models may have the same critical
behavior of phase transition and therefore belong to the same
universality class [35]. Classification of percolation models to
universality classes is an important topic in studying critical
phenomena [36–38]. For explosive percolation, Grassberger
et al. first reported that four Achlioptas-type processes with
explosive percolation transitions are in different universality
classes, yet with unusual finite-size behavior [39]. Bastas
et al. found that site and bond explosive percolation on the
lattice are not in the same universality class [40]. D’Souza
and Nagler studied some explosive percolation models and
showed that they are in different universality classes [33]. Re-
cently, Sabbir and Hassan reported that explosive percolation
on ER networks for PR and SR (for M = 2) belong to the
same universality class [41], meaning that these two different
microscopic processes have the same critical exponents in the
thermodynamic limit. This work was the first result showing
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FIG. 1. Percolation threshold tc as a function of M for PR and
SR. Solid and dashed lines are fits according to Eqs. (4) and (5).

that different explosive-type percolation models can belong
to the same universality class. However, they only refer to
the case of randomly selecting two (but not more) candidate
edges at each step. Here we further investigate whether PR-SR

universality holds for the general case of randomly selecting
M candidate edges at each step where M may be larger than
2. We use finite-size scaling analysis and largest-gap statistics
[35] to measure the critical exponents about order parame-
ter, susceptibility, and the derivative of entropy for explosive
percolation models under PR and SR. We find that PR-SR
universality holds for M between 2 and 9. The remainder of
the paper is structured as follows. In Sec. II we introduce the
Achlioptas process under PR and SR, and the Monte Carlo
algorithm. In Sec. III we first measure the percolation thresh-
old tc for PR and SR. Then we study the critical exponents
for order parameter, susceptibility, and derivative of entropy
with finite-size scaling analysis. Finally, our results will be
discussed and concluded in Sec. IV.

II. NETWORK GROWTH MODELS

We study the Achlioptas process under PR and SR. We
start with N isolated nodes and iteratively add one edge
at each time step to the system. Therefore, after n edges
have been added to the system, the edge density in the
system is t = n/N . At each time step, M candidate edges,
ei1 j1 , ei2 j2 , ei3 j3 , . . . , eiM jM , are randomly selected among all

FIG. 2. Order parameter P versus t for PR and SR, for M competing edges, and system sizes N .
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FIG. 3. Plots of PNβ/ν versus (t − tc )N1/ν for PR and SR
with M = 2, 3, 4, 5, 6, 7 (for M = 8, 9, see Supplemental Material
Fig. 1 [45]).

possible edges. For PR, we consider the size of the two
components joined by each candidate edge, and the edge
minimizing the product of the sizes of the two components
that would be joined by the edge is occupied. For SR, we
use the sum of the sizes of the two components that would
be joined by the edge instead of the product. For both SR and
PR, the growth of the largest component is suppressed due to
the applied minimization criterion. The emergence of the giant
component is delayed with an explosive transition, which for
any finite system is substantially more abrupt than the perco-
lation transition in the Erdős-Rényi model. The finite-system
gap of the order parameter and its scaling for various models
has been discussed in [35].

The fast Monte Carlo algorithm for percolation proposed
by Newman and Ziff [42,43], which involves the union-
find procedure to merge components, can allow us to keep
track of the component size distribution. In all simulations,
we use the algorithm for determining an observable Q(p).
Then, once accurately n edges have been occupied, we evalu-
ate the “microcanonical” Qn and find the “canonical” Q(p)
by performing a convolution with a binomial distribution

B(N, n, p) = (N
n

)
pn(1 − p)N−n,

Q(p) =
N∑

n=0

(
N
n

)
pn(1 − p)N−nQn. (1)

In the Monte Carlo simulations we run 2N steps for all N
and 10 000 independent simulations have been performed for
each network size.

III. NUMERICAL ANALYSIS

A. The percolation threshold

Several methods have been proposed to identify the perco-
lation threshold tc. The first method is based on the finite-size
scaling theory. If the percolation transition is continuous, an
observable X near the percolation threshold is said to satisfy
the following scaling form:

X ∼ Nω/ν�[(t − tc)N1/ν], (2)

where ω and ν are different critical exponents and � is
the universal scaling function. If t = tc, we have X ∼ Nω/ν .
Therefore the percolation threshold can be determined by
estimating the value of t at which the variable X and system
size N satisfy the underlying scaling law [44]. The second
method is based on the scaling window, �T = t2 − t1, which
is proposed by Achlioptas et al. [22]. �T is a function of
system size N , where t1 is the last step at which the largest
connected component Smax < N1/2 and t2 is the first step
at which Smax > 0.5N . When N tends to infinity, t1 and t2
converge to the critical threshold. The third method is based
on largest-gap scaling [26,35]. We define the order parameter
P = Smax/N , where Smax is the largest connected component
size and N is the number of nodes in the network. The edge
density at which the largest gap of the order parameter occurs
in a network of size N , denoted as tc(N ), obeys the scaling
relation

tc(N ) = tc + bN−1/v. (3)

We use the third method to measure the percolation thresh-
old for the Achlioptas process for PR and SR with the number
of candidate edges M from 2 to 9. The value of tc can be
obtained with linear fitting, which is shown in Table I. It
is worth noting that for the Achlioptas process of PR and
SR with M = 2, the percolation thresholds and the critical
exponents obtained in our paper are slightly different from
those reported in Ref. [41]. Our method, however, based on
largest gap averaging, is expected to provide better estimates
and data collapses [35] than methods based on simple ensem-
ble averaging, which is numerically confirmed by our results,
showing clean data collapses together with a high consistence
of scaling parameters, as we will demonstrate.

In Fig. 1 we study the percolation threshold tc as a function
of M for both PR and SR. Through least-square fitting, the
fitting functions read

SR: tc = −0.9047(e−0.9395M ) + 0.9987, (4)

PR: tc = −1.0936(e−1.1442M ) + 0.9995. (5)
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FIG. 4. Susceptibility χ versus t for PR and SR, for different M and N .

In agreement with existing literature [29], for a fixed M, the
percolation threshold of SR is smaller than that of PR, which
indicates that PR is more effective in delaying the onset of the
giant component as shown in Fig. 1. Moreover, the onset of
the giant component is delayed for larger values of M, due to
a higher number of edges that compete for addition.

B. The order parameter

Here, we study the order parameter as a function of the
edge density near the percolation threshold for PR and SR,
for M varying from 2 to 9 and different system sizes. Un-
like random percolation, Achlioptas rules change the growth
process of networks and delay the formation of the giant
component. For finite systems, for increasing system sizes, the
order parameter P exhibits sharper changes, and the curves
of the order parameters versus edge density under different

system sizes cross at the same point near the phase transition
point tc in Fig. 2 and the Supplemental Material [45].

If the percolation transition is continuous, according to the
finite-size scaling theory [46,47], the order parameter satisfies
the following scaling form:

P ∼ N−β/ν�(1)[(t − tc)N1/ν], (6)

where tc is the critical threshold of percolation, β and ν are
the critical exponents for the phase transition, and �(1) is the
universal scaling function. At t = tc, log(P) versus log(N )
is a straight line, and through linear regression, we can find
β/ν. For M = 3, β/ν = 0.0144 for PR, while β/ν = 0.0153
for SR.

The calculated values for other values of M are shown
in Table II. The ratio β/ν remains within error bars
for PR and SR. As M increases, β/ν decreases. From

TABLE I. Percolation thresholds for PR and SR for M competing edges.

M 2 3 4 5 6 7 8 9

tc PR 0.888470(60) 0.964798(7) 0.987575(2) 0.995408(1) 0.998263(1) 0.999335(1) 0.999741(1) 0.999895(1)
SR 0.860159(10) 0.946069(2) 0.976553(2) 0.989212(2) 0.994879(3) 0.997533(3) 0.998797(1) 0.999406(3)
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TABLE II. Critical exponents for PR and SR for different M.

M 2 3 4 5 6 7 8 9

β/ν PR 0.045(3) 0.0144(7) 0.0071(9) 0.0045(3) 0.0034(1) 0.0021(4) 0.0014(3) 0.0011(9)
SR 0.044(2) 0.0153(12) 0.0073(8) 0.0045(10) 0.0037(8) 0.0021(5) 0.0014(6) 0.0012(7)

γ /ν PR 0.472(1) 0.4944(8) 0.5001(9) 0.5017(6) 0.5022(26) 0.5024(3) 0.5024(2) 0.5024(2)
SR 0.474(1) 0.4932(9) 0.4985(8) 0.5008(5) 0.5017(3) 0.5021(3) 0.5023(2) 0.5024(2)

α/ν PR 0.532(1) 0.5629(11) 0.5740(13) 0.5776(11) 0.5788(12) 0.5791(11) 0.5791(9) 0.5792(9)
SR 0.534(1) 0.5646(9) 0.5726(7) 0.5763(10) 0.5779(11) 0.5785(11) 0.5789(9) 0.5791(9)

1/ν PR 0.517(4) 0.5087(15) 0.5072(18) 0.5062(9) 0.5056(27) 0.5048(7) 0.5038(5) 0.5035(11)
SR 0.518(3) 0.5085(21) 0.5063(16) 0.5053(15) 0.5045(11) 0.5047(8) 0.5037(8) 0.5036(9)

tc(N ) = tc + bN−1/v and the behavior of the giant component,
we obtain the critical exponent β.

We plot PNβ/ν versus (t − tc)N1/ν to test that P(t, N )
obeys finite-size scaling, using the same critical exponents γ

and ν for both the PR and the SR case. All the curves collapse
into a single curve, as shown in Fig. 3, which is consistent
with the universal scaling function �(1) that does not depend
on N .

FIG. 5. Plots of χN−γ /ν versus (t − tc )N1/ν for PR and SR, M =
2, 3, 4, 5, 6, 7.

C. The susceptibility of percolation

Another important method is to study the susceptibility
of percolation, which has been proposed [48,49] to discern
continuous and discontinuous percolation transitions. The
susceptibility characterizes the range of fluctuations of the
order parameter P, defined as [26,35,41]

χ (t ) = �P

�t
. (7)

Using �P = �Smax/N and �t = 1/N , we have χ =
�Smax, which becomes the derivative of the order parameter
P in the thermodynamic limit N → ∞, for which �t → 0.

In Fig. 4 we study the susceptibility χ as a function of
the edge density t around the critical threshold tc for PR
and SR, with M ranging from 2 to 9. When t = tc, the size
of the second-largest component in the network reaches the
maximum, and it merges with the largest component, which
leads to the maximum of χ at critical threshold tc [26]. For all
investigated M, around the critical threshold the susceptibility
increases with N .

For a continuous phase transition, according to the finite-
size scaling theory, the susceptibility χ satisfies

χ (t, N ) ∼ Nγ /ν�(2)[(t − tc)N1/ν], (8)

FIG. 6. Plots of susceptibility χ and the derivative of entropy Ḣ
versus t for PR with M = 2 and for system size N = 200 000. The
red vertical line is t = tc; in this case it is 0.888 470.
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FIG. 7. Derivative of entropy, Ḣ versus t for PR and SR, for different M and N .

where tc is the critical threshold of percolation, γ and ν are the
critical exponents, and �(2) is the universal scaling function.
At t = tc, we have χ (t, N ) ∼ Nγ /ν , and plotting log(χ ) vs
log(N ) gives a straight line with a slope of γ /ν. We obtain
the same values of γ /ν for PR and SR, as shown in Table II.

As mentioned earlier, for N → ∞, χ becomes the deriva-
tive of P. Then, we have 1/ν = γ /ν + β/ν, as summarized
in Table II. For the same number of competing edges M, the
values of 1/ν are equal within error bars for PR and SR.

In Fig. 5, using the same critical exponents γ and ν for
PR and SR, we plot the curves of χN−γ /ν versus (t − tc)N1/ν .
The data well collapse into its scaling function �(2). This sug-
gests that χ (t, N ) ∼ (t − tc)−γ together with the divergence
of susceptibility at the critical threshold.

D. The derivative of entropy

In addition to the order parameter and its susceptibility,
entropy can also be used to study the critical behaviors of
phase transitions [50]. In particular, it has been proposed for
analyzing whether the phase transition is continuous or dis-
continuous [51–53]. There are various definitions for entropy.
Here we use the Shannon entropy with respect to the cluster

size distribution, defined as

H (t ) = −K
k∑
i

μi log μi, (9)

where K is a constant and can be treated as being 1, for
simplicity. For a given t , assuming that there are k clusters
in the system, we label clusters i = 1, 2, . . . , k whose sizes
are s1, s2, . . . , sk , while μi = si/N denotes the probability of
selecting a node at random which belongs to cluster i. The
Shannon entropy represents the degree of system disorder and
stands in that way opposite to the percolation order parameter.

For further analyzing the critical behaviors,
in Fig. 6, we investigate the evolution of the derivative

of entropy and the susceptibility. Our analysis suggests that
the derivative of entropy is minimal where the susceptibility
attains its maximum. Fundamentally, this behavior is expected
since an Achlioptas rule exhibits a continuous percolation
transition and the information entropy must attain a maximum
at tc in the thermodynamic limit. Yet, this expectation has
been contrasted by the results by Viera et al. [51]. They
point out that the entropy attains a maximum at the phase
transition point for classical percolation but not necessarily
for explosive percolation. They also conclude that the location
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FIG. 8. Scaling function �(3). We plot ḢN−α/ν versus
(t − tc )N1/ν for PR and SR, and M = 2, 3, 4, 5, 6, 7.

of the minimum of the derivative of entropy Ḣ can more
robustly quantify the critical threshold for both explosive and
traditional percolation models. Here, we note that the def-
inition of entropy used in their paper is different from our
definition. Specifically, Viera et al. defines the entropy as H =
−K

∑
i (pi log2 pi ), based on the time-dependent probability

distribution {pi = nt (i)/n(t )}, with n(t ) = ∑
i nt (i) clusters at

time t , nt (i) clusters of size i.
In Fig. 7 we find that Ḣ<0 for the entire process, where

the minimum is attained at tc. For continuous percolation,
according to the finite-size scaling theory, we can assume that

Ḣ ∼ Nα/ν�(3)[(t − tc)N1/ν], (10)

where α and ν are the standard critical exponents, and �(3) is
the universal scaling function. Therefore, whether Ḣ is asym-
metric with respect to tc is governed by the scaling function
�(3). Figure 8 suggests that �(3) is asymmetric with respect
to tc. Hence, Ḣ adopts the asymmetry with respect to tc, as
shown in Fig. 7.

Similarly to the methodology for computing the critical
exponents for the order parameter, α/ν is computed, as shown
in Table II, which also displays no significant differences
between PR and SR for the same M.

FIG. 9. Critical exponents versus M.

Using these calculated values, we study ḢN−α/ν as a func-
tion of (t − tc)N1/ν , for PR and SR, for which the curves
become indistinguishable for larger M, as shown in Fig. 8.
Taken together, we find that the universal function of Ḣ does
not show any finite-size dependence, further supporting the
continuity of the percolation transition of PR and SR. In
Figs. 3, 5, 8, for M < 5, the universal functions of PR and SR
show only slight differences from each other. For M � 5, we
observe that the curves of PR and SR basically overlap, which
indicates that the universal functions of PR and SR become
practically identical for the already moderately large values
of M.

E. Critical exponents versus number of competing edges

The values of critical exponents as a function of M are
shown in Fig. 9, whereas the regression results are shown
in Eqs. (11)–(13). We observe that the values of β/ν, γ /ν,
and α/ν lie between 0 and 1. The values of β/ν decrease
continuously with M while the values of γ /ν and α/ν in-
crease continuously with M. Moreover, for M � 6, γ /ν settles
around 0.5 while α/ν approach a plateau around 0.58. Strik-
ingly, for the entire range of M, 1/ν remains invariant at about
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0.5. Evidently, Eq. (11) implies that as M tends to infinity, β/ν

approaches 0. This indicates that the phase transition becomes
discontinuous in the limit M → ∞, which is consistent with
the results in Refs. [23,26] for Achlioptas processes.

β

v
= 0.2784 ∗ (M−2.6366), (11)

γ

v
= −0.2829 ∗ (e−1.1887M ) + 0.5024, (12)

α

v
= −0.3403 ∗ (e−1.0172M ) + 0.5794. (13)

IV. CONCLUSION

In this paper, we have studied two families of explosive
percolation models, where M edges compete for addition: the
product rule (PR) and the sum rule (SR). In agreement with
existing literature, for PR and SR, we demonstrated that the
critical percolation threshold tc increases as M increases, that
is, percolation is delayed. We have also numerically studied
several observables, including order parameter, susceptibility,
entropy, and the derivatives of entropy. We proposed a slightly
different definition of the entropy, which led to clean data
collapses and consistent results. We found that for all studied

values of M, order parameter, susceptibility, and the derivative
of entropy show power-law scaling at the critical threshold,
as one would expect for a continuous or second-order phase
transition.

By definition, for M = 1, both the PR rule and the SR rule
are identical to classical random percolation, exhibiting the
same universality class. Previous work suggested that PR and
SR belong to the same universality class for M = 2. We find
that the critical exponents are the same with error bars for PR
and SR, for all studied M � 2. This strongly suggests that PR
and SR, for the same M, belong to the same universality class,
which is our main result.

Future work must establish how prominent universality is
in explosive percolation, whose models have been known to
crucially depend on their microscopic details. In that light,
we believe that PR and SR were worth revisiting regarding
universality.
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